Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rhmpreimacn Structured version   Visualization version   GIF version

Theorem rhmpreimacn 33831
Description: The function mapping a prime ideal to its preimage by a surjective ring homomorphism is continuous, when considering the Zariski topology. Corollary 1.2.3 of [EGA], p. 83. Notice that the direction of the continuous map 𝐺 is reverse: the original ring homomorphism 𝐹 goes from 𝑅 to 𝑆, but the continuous map 𝐺 goes from 𝐵 to 𝐴. This mapping is also called "induced map on prime spectra" or "pullback on primes". (Contributed by Thierry Arnoux, 8-Jul-2024.)
Hypotheses
Ref Expression
rhmpreimacn.t 𝑇 = (Spec‘𝑅)
rhmpreimacn.u 𝑈 = (Spec‘𝑆)
rhmpreimacn.a 𝐴 = (PrmIdeal‘𝑅)
rhmpreimacn.b 𝐵 = (PrmIdeal‘𝑆)
rhmpreimacn.j 𝐽 = (TopOpen‘𝑇)
rhmpreimacn.k 𝐾 = (TopOpen‘𝑈)
rhmpreimacn.g 𝐺 = (𝑖𝐵 ↦ (𝐹𝑖))
rhmpreimacn.r (𝜑𝑅 ∈ CRing)
rhmpreimacn.s (𝜑𝑆 ∈ CRing)
rhmpreimacn.f (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))
rhmpreimacn.1 (𝜑 → ran 𝐹 = (Base‘𝑆))
Assertion
Ref Expression
rhmpreimacn (𝜑𝐺 ∈ (𝐾 Cn 𝐽))
Distinct variable groups:   𝐴,𝑖   𝐵,𝑖   𝑖,𝐹   𝑖,𝐺   𝑖,𝐽   𝑅,𝑖   𝑆,𝑖   𝜑,𝑖
Allowed substitution hints:   𝑇(𝑖)   𝑈(𝑖)   𝐾(𝑖)

Proof of Theorem rhmpreimacn
Dummy variables 𝑗 𝑘 𝑥 𝑏 𝑎 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rhmpreimacn.s . . 3 (𝜑𝑆 ∈ CRing)
2 rhmpreimacn.u . . . 4 𝑈 = (Spec‘𝑆)
3 rhmpreimacn.k . . . 4 𝐾 = (TopOpen‘𝑈)
4 rhmpreimacn.b . . . 4 𝐵 = (PrmIdeal‘𝑆)
52, 3, 4zartopon 33823 . . 3 (𝑆 ∈ CRing → 𝐾 ∈ (TopOn‘𝐵))
61, 5syl 17 . 2 (𝜑𝐾 ∈ (TopOn‘𝐵))
7 rhmpreimacn.r . . 3 (𝜑𝑅 ∈ CRing)
8 rhmpreimacn.t . . . 4 𝑇 = (Spec‘𝑅)
9 rhmpreimacn.j . . . 4 𝐽 = (TopOpen‘𝑇)
10 rhmpreimacn.a . . . 4 𝐴 = (PrmIdeal‘𝑅)
118, 9, 10zartopon 33823 . . 3 (𝑅 ∈ CRing → 𝐽 ∈ (TopOn‘𝐴))
127, 11syl 17 . 2 (𝜑𝐽 ∈ (TopOn‘𝐴))
131adantr 480 . . . 4 ((𝜑𝑖𝐵) → 𝑆 ∈ CRing)
14 rhmpreimacn.f . . . . 5 (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))
1514adantr 480 . . . 4 ((𝜑𝑖𝐵) → 𝐹 ∈ (𝑅 RingHom 𝑆))
16 simpr 484 . . . . 5 ((𝜑𝑖𝐵) → 𝑖𝐵)
1716, 4eleqtrdi 2854 . . . 4 ((𝜑𝑖𝐵) → 𝑖 ∈ (PrmIdeal‘𝑆))
1810rhmpreimaprmidl 33444 . . . 4 (((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝑖 ∈ (PrmIdeal‘𝑆)) → (𝐹𝑖) ∈ 𝐴)
1913, 15, 17, 18syl21anc 837 . . 3 ((𝜑𝑖𝐵) → (𝐹𝑖) ∈ 𝐴)
20 rhmpreimacn.g . . 3 𝐺 = (𝑖𝐵 ↦ (𝐹𝑖))
2119, 20fmptd 7148 . 2 (𝜑𝐺:𝐵𝐴)
224fvexi 6934 . . . . . . 7 𝐵 ∈ V
2322rabex 5357 . . . . . 6 {𝑘𝐵𝑗𝑘} ∈ V
24 sseq1 4034 . . . . . . . 8 (𝑙 = 𝑗 → (𝑙𝑘𝑗𝑘))
2524rabbidv 3451 . . . . . . 7 (𝑙 = 𝑗 → {𝑘𝐵𝑙𝑘} = {𝑘𝐵𝑗𝑘})
2625cbvmptv 5279 . . . . . 6 (𝑙 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑙𝑘}) = (𝑗 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑗𝑘})
2723, 26fnmpti 6723 . . . . 5 (𝑙 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑙𝑘}) Fn (LIdeal‘𝑆)
2814ad3antrrr 729 . . . . . . . 8 ((((𝜑𝑥 ∈ (Clsd‘𝐽)) ∧ 𝑎 ∈ (LIdeal‘𝑅)) ∧ ((𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘})‘𝑎) = 𝑥) → 𝐹 ∈ (𝑅 RingHom 𝑆))
29 rhmpreimacn.1 . . . . . . . . 9 (𝜑 → ran 𝐹 = (Base‘𝑆))
3029ad3antrrr 729 . . . . . . . 8 ((((𝜑𝑥 ∈ (Clsd‘𝐽)) ∧ 𝑎 ∈ (LIdeal‘𝑅)) ∧ ((𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘})‘𝑎) = 𝑥) → ran 𝐹 = (Base‘𝑆))
31 simplr 768 . . . . . . . 8 ((((𝜑𝑥 ∈ (Clsd‘𝐽)) ∧ 𝑎 ∈ (LIdeal‘𝑅)) ∧ ((𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘})‘𝑎) = 𝑥) → 𝑎 ∈ (LIdeal‘𝑅))
32 eqid 2740 . . . . . . . . 9 (Base‘𝑆) = (Base‘𝑆)
33 eqid 2740 . . . . . . . . 9 (LIdeal‘𝑅) = (LIdeal‘𝑅)
34 eqid 2740 . . . . . . . . 9 (LIdeal‘𝑆) = (LIdeal‘𝑆)
3532, 33, 34rhmimaidl 33425 . . . . . . . 8 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = (Base‘𝑆) ∧ 𝑎 ∈ (LIdeal‘𝑅)) → (𝐹𝑎) ∈ (LIdeal‘𝑆))
3628, 30, 31, 35syl3anc 1371 . . . . . . 7 ((((𝜑𝑥 ∈ (Clsd‘𝐽)) ∧ 𝑎 ∈ (LIdeal‘𝑅)) ∧ ((𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘})‘𝑎) = 𝑥) → (𝐹𝑎) ∈ (LIdeal‘𝑆))
37 fveqeq2 6929 . . . . . . . 8 (𝑏 = (𝐹𝑎) → (((𝑙 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑙𝑘})‘𝑏) = (𝐺𝑥) ↔ ((𝑙 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑙𝑘})‘(𝐹𝑎)) = (𝐺𝑥)))
3837adantl 481 . . . . . . 7 (((((𝜑𝑥 ∈ (Clsd‘𝐽)) ∧ 𝑎 ∈ (LIdeal‘𝑅)) ∧ ((𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘})‘𝑎) = 𝑥) ∧ 𝑏 = (𝐹𝑎)) → (((𝑙 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑙𝑘})‘𝑏) = (𝐺𝑥) ↔ ((𝑙 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑙𝑘})‘(𝐹𝑎)) = (𝐺𝑥)))
397ad3antrrr 729 . . . . . . . . 9 ((((𝜑𝑥 ∈ (Clsd‘𝐽)) ∧ 𝑎 ∈ (LIdeal‘𝑅)) ∧ ((𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘})‘𝑎) = 𝑥) → 𝑅 ∈ CRing)
401ad3antrrr 729 . . . . . . . . 9 ((((𝜑𝑥 ∈ (Clsd‘𝐽)) ∧ 𝑎 ∈ (LIdeal‘𝑅)) ∧ ((𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘})‘𝑎) = 𝑥) → 𝑆 ∈ CRing)
4124rabbidv 3451 . . . . . . . . . 10 (𝑙 = 𝑗 → {𝑘𝐴𝑙𝑘} = {𝑘𝐴𝑗𝑘})
4241cbvmptv 5279 . . . . . . . . 9 (𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘}) = (𝑗 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑗𝑘})
438, 2, 10, 4, 9, 3, 20, 39, 40, 28, 30, 31, 42, 26rhmpreimacnlem 33830 . . . . . . . 8 ((((𝜑𝑥 ∈ (Clsd‘𝐽)) ∧ 𝑎 ∈ (LIdeal‘𝑅)) ∧ ((𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘})‘𝑎) = 𝑥) → ((𝑙 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑙𝑘})‘(𝐹𝑎)) = (𝐺 “ ((𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘})‘𝑎)))
44 simpr 484 . . . . . . . . 9 ((((𝜑𝑥 ∈ (Clsd‘𝐽)) ∧ 𝑎 ∈ (LIdeal‘𝑅)) ∧ ((𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘})‘𝑎) = 𝑥) → ((𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘})‘𝑎) = 𝑥)
4544imaeq2d 6089 . . . . . . . 8 ((((𝜑𝑥 ∈ (Clsd‘𝐽)) ∧ 𝑎 ∈ (LIdeal‘𝑅)) ∧ ((𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘})‘𝑎) = 𝑥) → (𝐺 “ ((𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘})‘𝑎)) = (𝐺𝑥))
4643, 45eqtrd 2780 . . . . . . 7 ((((𝜑𝑥 ∈ (Clsd‘𝐽)) ∧ 𝑎 ∈ (LIdeal‘𝑅)) ∧ ((𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘})‘𝑎) = 𝑥) → ((𝑙 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑙𝑘})‘(𝐹𝑎)) = (𝐺𝑥))
4736, 38, 46rspcedvd 3637 . . . . . 6 ((((𝜑𝑥 ∈ (Clsd‘𝐽)) ∧ 𝑎 ∈ (LIdeal‘𝑅)) ∧ ((𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘})‘𝑎) = 𝑥) → ∃𝑏 ∈ (LIdeal‘𝑆)((𝑙 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑙𝑘})‘𝑏) = (𝐺𝑥))
4810fvexi 6934 . . . . . . . . 9 𝐴 ∈ V
4948rabex 5357 . . . . . . . 8 {𝑘𝐴𝑗𝑘} ∈ V
5049, 42fnmpti 6723 . . . . . . 7 (𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘}) Fn (LIdeal‘𝑅)
51 simpr 484 . . . . . . . 8 ((𝜑𝑥 ∈ (Clsd‘𝐽)) → 𝑥 ∈ (Clsd‘𝐽))
527adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (Clsd‘𝐽)) → 𝑅 ∈ CRing)
538, 9, 10, 42zartopn 33821 . . . . . . . . . 10 (𝑅 ∈ CRing → (𝐽 ∈ (TopOn‘𝐴) ∧ ran (𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘}) = (Clsd‘𝐽)))
5453simprd 495 . . . . . . . . 9 (𝑅 ∈ CRing → ran (𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘}) = (Clsd‘𝐽))
5552, 54syl 17 . . . . . . . 8 ((𝜑𝑥 ∈ (Clsd‘𝐽)) → ran (𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘}) = (Clsd‘𝐽))
5651, 55eleqtrrd 2847 . . . . . . 7 ((𝜑𝑥 ∈ (Clsd‘𝐽)) → 𝑥 ∈ ran (𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘}))
57 fvelrnb 6982 . . . . . . . 8 ((𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘}) Fn (LIdeal‘𝑅) → (𝑥 ∈ ran (𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘}) ↔ ∃𝑎 ∈ (LIdeal‘𝑅)((𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘})‘𝑎) = 𝑥))
5857biimpa 476 . . . . . . 7 (((𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘}) Fn (LIdeal‘𝑅) ∧ 𝑥 ∈ ran (𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘})) → ∃𝑎 ∈ (LIdeal‘𝑅)((𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘})‘𝑎) = 𝑥)
5950, 56, 58sylancr 586 . . . . . 6 ((𝜑𝑥 ∈ (Clsd‘𝐽)) → ∃𝑎 ∈ (LIdeal‘𝑅)((𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘})‘𝑎) = 𝑥)
6047, 59r19.29a 3168 . . . . 5 ((𝜑𝑥 ∈ (Clsd‘𝐽)) → ∃𝑏 ∈ (LIdeal‘𝑆)((𝑙 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑙𝑘})‘𝑏) = (𝐺𝑥))
61 fvelrnb 6982 . . . . . 6 ((𝑙 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑙𝑘}) Fn (LIdeal‘𝑆) → ((𝐺𝑥) ∈ ran (𝑙 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑙𝑘}) ↔ ∃𝑏 ∈ (LIdeal‘𝑆)((𝑙 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑙𝑘})‘𝑏) = (𝐺𝑥)))
6261biimpar 477 . . . . 5 (((𝑙 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑙𝑘}) Fn (LIdeal‘𝑆) ∧ ∃𝑏 ∈ (LIdeal‘𝑆)((𝑙 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑙𝑘})‘𝑏) = (𝐺𝑥)) → (𝐺𝑥) ∈ ran (𝑙 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑙𝑘}))
6327, 60, 62sylancr 586 . . . 4 ((𝜑𝑥 ∈ (Clsd‘𝐽)) → (𝐺𝑥) ∈ ran (𝑙 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑙𝑘}))
642, 3, 4, 26zartopn 33821 . . . . . . 7 (𝑆 ∈ CRing → (𝐾 ∈ (TopOn‘𝐵) ∧ ran (𝑙 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑙𝑘}) = (Clsd‘𝐾)))
6564simprd 495 . . . . . 6 (𝑆 ∈ CRing → ran (𝑙 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑙𝑘}) = (Clsd‘𝐾))
661, 65syl 17 . . . . 5 (𝜑 → ran (𝑙 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑙𝑘}) = (Clsd‘𝐾))
6766adantr 480 . . . 4 ((𝜑𝑥 ∈ (Clsd‘𝐽)) → ran (𝑙 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑙𝑘}) = (Clsd‘𝐾))
6863, 67eleqtrd 2846 . . 3 ((𝜑𝑥 ∈ (Clsd‘𝐽)) → (𝐺𝑥) ∈ (Clsd‘𝐾))
6968ralrimiva 3152 . 2 (𝜑 → ∀𝑥 ∈ (Clsd‘𝐽)(𝐺𝑥) ∈ (Clsd‘𝐾))
70 iscncl 23298 . . 3 ((𝐾 ∈ (TopOn‘𝐵) ∧ 𝐽 ∈ (TopOn‘𝐴)) → (𝐺 ∈ (𝐾 Cn 𝐽) ↔ (𝐺:𝐵𝐴 ∧ ∀𝑥 ∈ (Clsd‘𝐽)(𝐺𝑥) ∈ (Clsd‘𝐾))))
7170biimpar 477 . 2 (((𝐾 ∈ (TopOn‘𝐵) ∧ 𝐽 ∈ (TopOn‘𝐴)) ∧ (𝐺:𝐵𝐴 ∧ ∀𝑥 ∈ (Clsd‘𝐽)(𝐺𝑥) ∈ (Clsd‘𝐾))) → 𝐺 ∈ (𝐾 Cn 𝐽))
726, 12, 21, 69, 71syl22anc 838 1 (𝜑𝐺 ∈ (𝐾 Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  wrex 3076  {crab 3443  wss 3976  cmpt 5249  ccnv 5699  ran crn 5701  cima 5703   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  Basecbs 17258  TopOpenctopn 17481  CRingccrg 20261   RingHom crh 20495  LIdealclidl 21239  TopOnctopon 22937  Clsdccld 23045   Cn ccn 23253  PrmIdealcprmidl 33428  Speccrspec 33808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-ac2 10532  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-rpss 7758  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-dju 9970  df-card 10008  df-ac 10185  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-rest 17482  df-topn 17483  df-0g 17501  df-mre 17644  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-subg 19163  df-ghm 19253  df-cntz 19357  df-lsm 19678  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-rhm 20498  df-subrg 20597  df-lmod 20882  df-lss 20953  df-lsp 20993  df-sra 21195  df-rgmod 21196  df-lidl 21241  df-rsp 21242  df-lpidl 21355  df-top 22921  df-topon 22938  df-cld 23048  df-cn 23256  df-prmidl 33429  df-mxidl 33453  df-idlsrg 33494  df-rspec 33809
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator