Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rhmpreimacn Structured version   Visualization version   GIF version

Theorem rhmpreimacn 32934
Description: The function mapping a prime ideal to its preimage by a surjective ring homomorphism is continuous, when considering the Zariski topology. Corollary 1.2.3 of [EGA], p. 83. Notice that the direction of the continuous map 𝐺 is reverse: the original ring homomorphism 𝐹 goes from 𝑅 to 𝑆, but the continuous map 𝐺 goes from 𝐡 to 𝐴. This mapping is also called "induced map on prime spectra" or "pullback on primes". (Contributed by Thierry Arnoux, 8-Jul-2024.)
Hypotheses
Ref Expression
rhmpreimacn.t 𝑇 = (Specβ€˜π‘…)
rhmpreimacn.u π‘ˆ = (Specβ€˜π‘†)
rhmpreimacn.a 𝐴 = (PrmIdealβ€˜π‘…)
rhmpreimacn.b 𝐡 = (PrmIdealβ€˜π‘†)
rhmpreimacn.j 𝐽 = (TopOpenβ€˜π‘‡)
rhmpreimacn.k 𝐾 = (TopOpenβ€˜π‘ˆ)
rhmpreimacn.g 𝐺 = (𝑖 ∈ 𝐡 ↦ (◑𝐹 β€œ 𝑖))
rhmpreimacn.r (πœ‘ β†’ 𝑅 ∈ CRing)
rhmpreimacn.s (πœ‘ β†’ 𝑆 ∈ CRing)
rhmpreimacn.f (πœ‘ β†’ 𝐹 ∈ (𝑅 RingHom 𝑆))
rhmpreimacn.1 (πœ‘ β†’ ran 𝐹 = (Baseβ€˜π‘†))
Assertion
Ref Expression
rhmpreimacn (πœ‘ β†’ 𝐺 ∈ (𝐾 Cn 𝐽))
Distinct variable groups:   𝐴,𝑖   𝐡,𝑖   𝑖,𝐹   𝑖,𝐺   𝑖,𝐽   𝑅,𝑖   𝑆,𝑖   πœ‘,𝑖
Allowed substitution hints:   𝑇(𝑖)   π‘ˆ(𝑖)   𝐾(𝑖)

Proof of Theorem rhmpreimacn
Dummy variables 𝑗 π‘˜ π‘₯ 𝑏 π‘Ž 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rhmpreimacn.s . . 3 (πœ‘ β†’ 𝑆 ∈ CRing)
2 rhmpreimacn.u . . . 4 π‘ˆ = (Specβ€˜π‘†)
3 rhmpreimacn.k . . . 4 𝐾 = (TopOpenβ€˜π‘ˆ)
4 rhmpreimacn.b . . . 4 𝐡 = (PrmIdealβ€˜π‘†)
52, 3, 4zartopon 32926 . . 3 (𝑆 ∈ CRing β†’ 𝐾 ∈ (TopOnβ€˜π΅))
61, 5syl 17 . 2 (πœ‘ β†’ 𝐾 ∈ (TopOnβ€˜π΅))
7 rhmpreimacn.r . . 3 (πœ‘ β†’ 𝑅 ∈ CRing)
8 rhmpreimacn.t . . . 4 𝑇 = (Specβ€˜π‘…)
9 rhmpreimacn.j . . . 4 𝐽 = (TopOpenβ€˜π‘‡)
10 rhmpreimacn.a . . . 4 𝐴 = (PrmIdealβ€˜π‘…)
118, 9, 10zartopon 32926 . . 3 (𝑅 ∈ CRing β†’ 𝐽 ∈ (TopOnβ€˜π΄))
127, 11syl 17 . 2 (πœ‘ β†’ 𝐽 ∈ (TopOnβ€˜π΄))
131adantr 481 . . . 4 ((πœ‘ ∧ 𝑖 ∈ 𝐡) β†’ 𝑆 ∈ CRing)
14 rhmpreimacn.f . . . . 5 (πœ‘ β†’ 𝐹 ∈ (𝑅 RingHom 𝑆))
1514adantr 481 . . . 4 ((πœ‘ ∧ 𝑖 ∈ 𝐡) β†’ 𝐹 ∈ (𝑅 RingHom 𝑆))
16 simpr 485 . . . . 5 ((πœ‘ ∧ 𝑖 ∈ 𝐡) β†’ 𝑖 ∈ 𝐡)
1716, 4eleqtrdi 2843 . . . 4 ((πœ‘ ∧ 𝑖 ∈ 𝐡) β†’ 𝑖 ∈ (PrmIdealβ€˜π‘†))
1810rhmpreimaprmidl 32615 . . . 4 (((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝑖 ∈ (PrmIdealβ€˜π‘†)) β†’ (◑𝐹 β€œ 𝑖) ∈ 𝐴)
1913, 15, 17, 18syl21anc 836 . . 3 ((πœ‘ ∧ 𝑖 ∈ 𝐡) β†’ (◑𝐹 β€œ 𝑖) ∈ 𝐴)
20 rhmpreimacn.g . . 3 𝐺 = (𝑖 ∈ 𝐡 ↦ (◑𝐹 β€œ 𝑖))
2119, 20fmptd 7115 . 2 (πœ‘ β†’ 𝐺:𝐡⟢𝐴)
224fvexi 6905 . . . . . . 7 𝐡 ∈ V
2322rabex 5332 . . . . . 6 {π‘˜ ∈ 𝐡 ∣ 𝑗 βŠ† π‘˜} ∈ V
24 sseq1 4007 . . . . . . . 8 (𝑙 = 𝑗 β†’ (𝑙 βŠ† π‘˜ ↔ 𝑗 βŠ† π‘˜))
2524rabbidv 3440 . . . . . . 7 (𝑙 = 𝑗 β†’ {π‘˜ ∈ 𝐡 ∣ 𝑙 βŠ† π‘˜} = {π‘˜ ∈ 𝐡 ∣ 𝑗 βŠ† π‘˜})
2625cbvmptv 5261 . . . . . 6 (𝑙 ∈ (LIdealβ€˜π‘†) ↦ {π‘˜ ∈ 𝐡 ∣ 𝑙 βŠ† π‘˜}) = (𝑗 ∈ (LIdealβ€˜π‘†) ↦ {π‘˜ ∈ 𝐡 ∣ 𝑗 βŠ† π‘˜})
2723, 26fnmpti 6693 . . . . 5 (𝑙 ∈ (LIdealβ€˜π‘†) ↦ {π‘˜ ∈ 𝐡 ∣ 𝑙 βŠ† π‘˜}) Fn (LIdealβ€˜π‘†)
2814ad3antrrr 728 . . . . . . . 8 ((((πœ‘ ∧ π‘₯ ∈ (Clsdβ€˜π½)) ∧ π‘Ž ∈ (LIdealβ€˜π‘…)) ∧ ((𝑙 ∈ (LIdealβ€˜π‘…) ↦ {π‘˜ ∈ 𝐴 ∣ 𝑙 βŠ† π‘˜})β€˜π‘Ž) = π‘₯) β†’ 𝐹 ∈ (𝑅 RingHom 𝑆))
29 rhmpreimacn.1 . . . . . . . . 9 (πœ‘ β†’ ran 𝐹 = (Baseβ€˜π‘†))
3029ad3antrrr 728 . . . . . . . 8 ((((πœ‘ ∧ π‘₯ ∈ (Clsdβ€˜π½)) ∧ π‘Ž ∈ (LIdealβ€˜π‘…)) ∧ ((𝑙 ∈ (LIdealβ€˜π‘…) ↦ {π‘˜ ∈ 𝐴 ∣ 𝑙 βŠ† π‘˜})β€˜π‘Ž) = π‘₯) β†’ ran 𝐹 = (Baseβ€˜π‘†))
31 simplr 767 . . . . . . . 8 ((((πœ‘ ∧ π‘₯ ∈ (Clsdβ€˜π½)) ∧ π‘Ž ∈ (LIdealβ€˜π‘…)) ∧ ((𝑙 ∈ (LIdealβ€˜π‘…) ↦ {π‘˜ ∈ 𝐴 ∣ 𝑙 βŠ† π‘˜})β€˜π‘Ž) = π‘₯) β†’ π‘Ž ∈ (LIdealβ€˜π‘…))
32 eqid 2732 . . . . . . . . 9 (Baseβ€˜π‘†) = (Baseβ€˜π‘†)
33 eqid 2732 . . . . . . . . 9 (LIdealβ€˜π‘…) = (LIdealβ€˜π‘…)
34 eqid 2732 . . . . . . . . 9 (LIdealβ€˜π‘†) = (LIdealβ€˜π‘†)
3532, 33, 34rhmimaidl 32595 . . . . . . . 8 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = (Baseβ€˜π‘†) ∧ π‘Ž ∈ (LIdealβ€˜π‘…)) β†’ (𝐹 β€œ π‘Ž) ∈ (LIdealβ€˜π‘†))
3628, 30, 31, 35syl3anc 1371 . . . . . . 7 ((((πœ‘ ∧ π‘₯ ∈ (Clsdβ€˜π½)) ∧ π‘Ž ∈ (LIdealβ€˜π‘…)) ∧ ((𝑙 ∈ (LIdealβ€˜π‘…) ↦ {π‘˜ ∈ 𝐴 ∣ 𝑙 βŠ† π‘˜})β€˜π‘Ž) = π‘₯) β†’ (𝐹 β€œ π‘Ž) ∈ (LIdealβ€˜π‘†))
37 fveqeq2 6900 . . . . . . . 8 (𝑏 = (𝐹 β€œ π‘Ž) β†’ (((𝑙 ∈ (LIdealβ€˜π‘†) ↦ {π‘˜ ∈ 𝐡 ∣ 𝑙 βŠ† π‘˜})β€˜π‘) = (◑𝐺 β€œ π‘₯) ↔ ((𝑙 ∈ (LIdealβ€˜π‘†) ↦ {π‘˜ ∈ 𝐡 ∣ 𝑙 βŠ† π‘˜})β€˜(𝐹 β€œ π‘Ž)) = (◑𝐺 β€œ π‘₯)))
3837adantl 482 . . . . . . 7 (((((πœ‘ ∧ π‘₯ ∈ (Clsdβ€˜π½)) ∧ π‘Ž ∈ (LIdealβ€˜π‘…)) ∧ ((𝑙 ∈ (LIdealβ€˜π‘…) ↦ {π‘˜ ∈ 𝐴 ∣ 𝑙 βŠ† π‘˜})β€˜π‘Ž) = π‘₯) ∧ 𝑏 = (𝐹 β€œ π‘Ž)) β†’ (((𝑙 ∈ (LIdealβ€˜π‘†) ↦ {π‘˜ ∈ 𝐡 ∣ 𝑙 βŠ† π‘˜})β€˜π‘) = (◑𝐺 β€œ π‘₯) ↔ ((𝑙 ∈ (LIdealβ€˜π‘†) ↦ {π‘˜ ∈ 𝐡 ∣ 𝑙 βŠ† π‘˜})β€˜(𝐹 β€œ π‘Ž)) = (◑𝐺 β€œ π‘₯)))
397ad3antrrr 728 . . . . . . . . 9 ((((πœ‘ ∧ π‘₯ ∈ (Clsdβ€˜π½)) ∧ π‘Ž ∈ (LIdealβ€˜π‘…)) ∧ ((𝑙 ∈ (LIdealβ€˜π‘…) ↦ {π‘˜ ∈ 𝐴 ∣ 𝑙 βŠ† π‘˜})β€˜π‘Ž) = π‘₯) β†’ 𝑅 ∈ CRing)
401ad3antrrr 728 . . . . . . . . 9 ((((πœ‘ ∧ π‘₯ ∈ (Clsdβ€˜π½)) ∧ π‘Ž ∈ (LIdealβ€˜π‘…)) ∧ ((𝑙 ∈ (LIdealβ€˜π‘…) ↦ {π‘˜ ∈ 𝐴 ∣ 𝑙 βŠ† π‘˜})β€˜π‘Ž) = π‘₯) β†’ 𝑆 ∈ CRing)
4124rabbidv 3440 . . . . . . . . . 10 (𝑙 = 𝑗 β†’ {π‘˜ ∈ 𝐴 ∣ 𝑙 βŠ† π‘˜} = {π‘˜ ∈ 𝐴 ∣ 𝑗 βŠ† π‘˜})
4241cbvmptv 5261 . . . . . . . . 9 (𝑙 ∈ (LIdealβ€˜π‘…) ↦ {π‘˜ ∈ 𝐴 ∣ 𝑙 βŠ† π‘˜}) = (𝑗 ∈ (LIdealβ€˜π‘…) ↦ {π‘˜ ∈ 𝐴 ∣ 𝑗 βŠ† π‘˜})
438, 2, 10, 4, 9, 3, 20, 39, 40, 28, 30, 31, 42, 26rhmpreimacnlem 32933 . . . . . . . 8 ((((πœ‘ ∧ π‘₯ ∈ (Clsdβ€˜π½)) ∧ π‘Ž ∈ (LIdealβ€˜π‘…)) ∧ ((𝑙 ∈ (LIdealβ€˜π‘…) ↦ {π‘˜ ∈ 𝐴 ∣ 𝑙 βŠ† π‘˜})β€˜π‘Ž) = π‘₯) β†’ ((𝑙 ∈ (LIdealβ€˜π‘†) ↦ {π‘˜ ∈ 𝐡 ∣ 𝑙 βŠ† π‘˜})β€˜(𝐹 β€œ π‘Ž)) = (◑𝐺 β€œ ((𝑙 ∈ (LIdealβ€˜π‘…) ↦ {π‘˜ ∈ 𝐴 ∣ 𝑙 βŠ† π‘˜})β€˜π‘Ž)))
44 simpr 485 . . . . . . . . 9 ((((πœ‘ ∧ π‘₯ ∈ (Clsdβ€˜π½)) ∧ π‘Ž ∈ (LIdealβ€˜π‘…)) ∧ ((𝑙 ∈ (LIdealβ€˜π‘…) ↦ {π‘˜ ∈ 𝐴 ∣ 𝑙 βŠ† π‘˜})β€˜π‘Ž) = π‘₯) β†’ ((𝑙 ∈ (LIdealβ€˜π‘…) ↦ {π‘˜ ∈ 𝐴 ∣ 𝑙 βŠ† π‘˜})β€˜π‘Ž) = π‘₯)
4544imaeq2d 6059 . . . . . . . 8 ((((πœ‘ ∧ π‘₯ ∈ (Clsdβ€˜π½)) ∧ π‘Ž ∈ (LIdealβ€˜π‘…)) ∧ ((𝑙 ∈ (LIdealβ€˜π‘…) ↦ {π‘˜ ∈ 𝐴 ∣ 𝑙 βŠ† π‘˜})β€˜π‘Ž) = π‘₯) β†’ (◑𝐺 β€œ ((𝑙 ∈ (LIdealβ€˜π‘…) ↦ {π‘˜ ∈ 𝐴 ∣ 𝑙 βŠ† π‘˜})β€˜π‘Ž)) = (◑𝐺 β€œ π‘₯))
4643, 45eqtrd 2772 . . . . . . 7 ((((πœ‘ ∧ π‘₯ ∈ (Clsdβ€˜π½)) ∧ π‘Ž ∈ (LIdealβ€˜π‘…)) ∧ ((𝑙 ∈ (LIdealβ€˜π‘…) ↦ {π‘˜ ∈ 𝐴 ∣ 𝑙 βŠ† π‘˜})β€˜π‘Ž) = π‘₯) β†’ ((𝑙 ∈ (LIdealβ€˜π‘†) ↦ {π‘˜ ∈ 𝐡 ∣ 𝑙 βŠ† π‘˜})β€˜(𝐹 β€œ π‘Ž)) = (◑𝐺 β€œ π‘₯))
4736, 38, 46rspcedvd 3614 . . . . . 6 ((((πœ‘ ∧ π‘₯ ∈ (Clsdβ€˜π½)) ∧ π‘Ž ∈ (LIdealβ€˜π‘…)) ∧ ((𝑙 ∈ (LIdealβ€˜π‘…) ↦ {π‘˜ ∈ 𝐴 ∣ 𝑙 βŠ† π‘˜})β€˜π‘Ž) = π‘₯) β†’ βˆƒπ‘ ∈ (LIdealβ€˜π‘†)((𝑙 ∈ (LIdealβ€˜π‘†) ↦ {π‘˜ ∈ 𝐡 ∣ 𝑙 βŠ† π‘˜})β€˜π‘) = (◑𝐺 β€œ π‘₯))
4810fvexi 6905 . . . . . . . . 9 𝐴 ∈ V
4948rabex 5332 . . . . . . . 8 {π‘˜ ∈ 𝐴 ∣ 𝑗 βŠ† π‘˜} ∈ V
5049, 42fnmpti 6693 . . . . . . 7 (𝑙 ∈ (LIdealβ€˜π‘…) ↦ {π‘˜ ∈ 𝐴 ∣ 𝑙 βŠ† π‘˜}) Fn (LIdealβ€˜π‘…)
51 simpr 485 . . . . . . . 8 ((πœ‘ ∧ π‘₯ ∈ (Clsdβ€˜π½)) β†’ π‘₯ ∈ (Clsdβ€˜π½))
527adantr 481 . . . . . . . . 9 ((πœ‘ ∧ π‘₯ ∈ (Clsdβ€˜π½)) β†’ 𝑅 ∈ CRing)
538, 9, 10, 42zartopn 32924 . . . . . . . . . 10 (𝑅 ∈ CRing β†’ (𝐽 ∈ (TopOnβ€˜π΄) ∧ ran (𝑙 ∈ (LIdealβ€˜π‘…) ↦ {π‘˜ ∈ 𝐴 ∣ 𝑙 βŠ† π‘˜}) = (Clsdβ€˜π½)))
5453simprd 496 . . . . . . . . 9 (𝑅 ∈ CRing β†’ ran (𝑙 ∈ (LIdealβ€˜π‘…) ↦ {π‘˜ ∈ 𝐴 ∣ 𝑙 βŠ† π‘˜}) = (Clsdβ€˜π½))
5552, 54syl 17 . . . . . . . 8 ((πœ‘ ∧ π‘₯ ∈ (Clsdβ€˜π½)) β†’ ran (𝑙 ∈ (LIdealβ€˜π‘…) ↦ {π‘˜ ∈ 𝐴 ∣ 𝑙 βŠ† π‘˜}) = (Clsdβ€˜π½))
5651, 55eleqtrrd 2836 . . . . . . 7 ((πœ‘ ∧ π‘₯ ∈ (Clsdβ€˜π½)) β†’ π‘₯ ∈ ran (𝑙 ∈ (LIdealβ€˜π‘…) ↦ {π‘˜ ∈ 𝐴 ∣ 𝑙 βŠ† π‘˜}))
57 fvelrnb 6952 . . . . . . . 8 ((𝑙 ∈ (LIdealβ€˜π‘…) ↦ {π‘˜ ∈ 𝐴 ∣ 𝑙 βŠ† π‘˜}) Fn (LIdealβ€˜π‘…) β†’ (π‘₯ ∈ ran (𝑙 ∈ (LIdealβ€˜π‘…) ↦ {π‘˜ ∈ 𝐴 ∣ 𝑙 βŠ† π‘˜}) ↔ βˆƒπ‘Ž ∈ (LIdealβ€˜π‘…)((𝑙 ∈ (LIdealβ€˜π‘…) ↦ {π‘˜ ∈ 𝐴 ∣ 𝑙 βŠ† π‘˜})β€˜π‘Ž) = π‘₯))
5857biimpa 477 . . . . . . 7 (((𝑙 ∈ (LIdealβ€˜π‘…) ↦ {π‘˜ ∈ 𝐴 ∣ 𝑙 βŠ† π‘˜}) Fn (LIdealβ€˜π‘…) ∧ π‘₯ ∈ ran (𝑙 ∈ (LIdealβ€˜π‘…) ↦ {π‘˜ ∈ 𝐴 ∣ 𝑙 βŠ† π‘˜})) β†’ βˆƒπ‘Ž ∈ (LIdealβ€˜π‘…)((𝑙 ∈ (LIdealβ€˜π‘…) ↦ {π‘˜ ∈ 𝐴 ∣ 𝑙 βŠ† π‘˜})β€˜π‘Ž) = π‘₯)
5950, 56, 58sylancr 587 . . . . . 6 ((πœ‘ ∧ π‘₯ ∈ (Clsdβ€˜π½)) β†’ βˆƒπ‘Ž ∈ (LIdealβ€˜π‘…)((𝑙 ∈ (LIdealβ€˜π‘…) ↦ {π‘˜ ∈ 𝐴 ∣ 𝑙 βŠ† π‘˜})β€˜π‘Ž) = π‘₯)
6047, 59r19.29a 3162 . . . . 5 ((πœ‘ ∧ π‘₯ ∈ (Clsdβ€˜π½)) β†’ βˆƒπ‘ ∈ (LIdealβ€˜π‘†)((𝑙 ∈ (LIdealβ€˜π‘†) ↦ {π‘˜ ∈ 𝐡 ∣ 𝑙 βŠ† π‘˜})β€˜π‘) = (◑𝐺 β€œ π‘₯))
61 fvelrnb 6952 . . . . . 6 ((𝑙 ∈ (LIdealβ€˜π‘†) ↦ {π‘˜ ∈ 𝐡 ∣ 𝑙 βŠ† π‘˜}) Fn (LIdealβ€˜π‘†) β†’ ((◑𝐺 β€œ π‘₯) ∈ ran (𝑙 ∈ (LIdealβ€˜π‘†) ↦ {π‘˜ ∈ 𝐡 ∣ 𝑙 βŠ† π‘˜}) ↔ βˆƒπ‘ ∈ (LIdealβ€˜π‘†)((𝑙 ∈ (LIdealβ€˜π‘†) ↦ {π‘˜ ∈ 𝐡 ∣ 𝑙 βŠ† π‘˜})β€˜π‘) = (◑𝐺 β€œ π‘₯)))
6261biimpar 478 . . . . 5 (((𝑙 ∈ (LIdealβ€˜π‘†) ↦ {π‘˜ ∈ 𝐡 ∣ 𝑙 βŠ† π‘˜}) Fn (LIdealβ€˜π‘†) ∧ βˆƒπ‘ ∈ (LIdealβ€˜π‘†)((𝑙 ∈ (LIdealβ€˜π‘†) ↦ {π‘˜ ∈ 𝐡 ∣ 𝑙 βŠ† π‘˜})β€˜π‘) = (◑𝐺 β€œ π‘₯)) β†’ (◑𝐺 β€œ π‘₯) ∈ ran (𝑙 ∈ (LIdealβ€˜π‘†) ↦ {π‘˜ ∈ 𝐡 ∣ 𝑙 βŠ† π‘˜}))
6327, 60, 62sylancr 587 . . . 4 ((πœ‘ ∧ π‘₯ ∈ (Clsdβ€˜π½)) β†’ (◑𝐺 β€œ π‘₯) ∈ ran (𝑙 ∈ (LIdealβ€˜π‘†) ↦ {π‘˜ ∈ 𝐡 ∣ 𝑙 βŠ† π‘˜}))
642, 3, 4, 26zartopn 32924 . . . . . . 7 (𝑆 ∈ CRing β†’ (𝐾 ∈ (TopOnβ€˜π΅) ∧ ran (𝑙 ∈ (LIdealβ€˜π‘†) ↦ {π‘˜ ∈ 𝐡 ∣ 𝑙 βŠ† π‘˜}) = (Clsdβ€˜πΎ)))
6564simprd 496 . . . . . 6 (𝑆 ∈ CRing β†’ ran (𝑙 ∈ (LIdealβ€˜π‘†) ↦ {π‘˜ ∈ 𝐡 ∣ 𝑙 βŠ† π‘˜}) = (Clsdβ€˜πΎ))
661, 65syl 17 . . . . 5 (πœ‘ β†’ ran (𝑙 ∈ (LIdealβ€˜π‘†) ↦ {π‘˜ ∈ 𝐡 ∣ 𝑙 βŠ† π‘˜}) = (Clsdβ€˜πΎ))
6766adantr 481 . . . 4 ((πœ‘ ∧ π‘₯ ∈ (Clsdβ€˜π½)) β†’ ran (𝑙 ∈ (LIdealβ€˜π‘†) ↦ {π‘˜ ∈ 𝐡 ∣ 𝑙 βŠ† π‘˜}) = (Clsdβ€˜πΎ))
6863, 67eleqtrd 2835 . . 3 ((πœ‘ ∧ π‘₯ ∈ (Clsdβ€˜π½)) β†’ (◑𝐺 β€œ π‘₯) ∈ (Clsdβ€˜πΎ))
6968ralrimiva 3146 . 2 (πœ‘ β†’ βˆ€π‘₯ ∈ (Clsdβ€˜π½)(◑𝐺 β€œ π‘₯) ∈ (Clsdβ€˜πΎ))
70 iscncl 22780 . . 3 ((𝐾 ∈ (TopOnβ€˜π΅) ∧ 𝐽 ∈ (TopOnβ€˜π΄)) β†’ (𝐺 ∈ (𝐾 Cn 𝐽) ↔ (𝐺:𝐡⟢𝐴 ∧ βˆ€π‘₯ ∈ (Clsdβ€˜π½)(◑𝐺 β€œ π‘₯) ∈ (Clsdβ€˜πΎ))))
7170biimpar 478 . 2 (((𝐾 ∈ (TopOnβ€˜π΅) ∧ 𝐽 ∈ (TopOnβ€˜π΄)) ∧ (𝐺:𝐡⟢𝐴 ∧ βˆ€π‘₯ ∈ (Clsdβ€˜π½)(◑𝐺 β€œ π‘₯) ∈ (Clsdβ€˜πΎ))) β†’ 𝐺 ∈ (𝐾 Cn 𝐽))
726, 12, 21, 69, 71syl22anc 837 1 (πœ‘ β†’ 𝐺 ∈ (𝐾 Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  βˆƒwrex 3070  {crab 3432   βŠ† wss 3948   ↦ cmpt 5231  β—‘ccnv 5675  ran crn 5677   β€œ cima 5679   Fn wfn 6538  βŸΆwf 6539  β€˜cfv 6543  (class class class)co 7411  Basecbs 17146  TopOpenctopn 17369  CRingccrg 20059   RingHom crh 20252  LIdealclidl 20789  TopOnctopon 22419  Clsdccld 22527   Cn ccn 22735  PrmIdealcprmidl 32598  Speccrspec 32911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-ac2 10460  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-rpss 7715  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-oadd 8472  df-er 8705  df-map 8824  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-dju 9898  df-card 9936  df-ac 10113  df-pnf 11252  df-mnf 11253  df-xr 11254  df-ltxr 11255  df-le 11256  df-sub 11448  df-neg 11449  df-nn 12215  df-2 12277  df-3 12278  df-4 12279  df-5 12280  df-6 12281  df-7 12282  df-8 12283  df-9 12284  df-n0 12475  df-z 12561  df-dec 12680  df-uz 12825  df-fz 13487  df-struct 17082  df-sets 17099  df-slot 17117  df-ndx 17129  df-base 17147  df-ress 17176  df-plusg 17212  df-mulr 17213  df-sca 17215  df-vsca 17216  df-ip 17217  df-tset 17218  df-ple 17219  df-rest 17370  df-topn 17371  df-0g 17389  df-mre 17532  df-mgm 18563  df-sgrp 18612  df-mnd 18628  df-mhm 18673  df-submnd 18674  df-grp 18824  df-minusg 18825  df-sbg 18826  df-subg 19005  df-ghm 19092  df-cntz 19183  df-lsm 19506  df-cmn 19652  df-abl 19653  df-mgp 19990  df-ur 20007  df-ring 20060  df-cring 20061  df-rnghom 20255  df-subrg 20321  df-lmod 20477  df-lss 20548  df-lsp 20588  df-sra 20791  df-rgmod 20792  df-lidl 20793  df-rsp 20794  df-lpidl 20887  df-top 22403  df-topon 22420  df-cld 22530  df-cn 22738  df-prmidl 32599  df-mxidl 32621  df-idlsrg 32660  df-rspec 32912
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator