Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rhmpreimacn Structured version   Visualization version   GIF version

Theorem rhmpreimacn 33875
Description: The function mapping a prime ideal to its preimage by a surjective ring homomorphism is continuous, when considering the Zariski topology. Corollary 1.2.3 of [EGA], p. 83. Notice that the direction of the continuous map 𝐺 is reverse: the original ring homomorphism 𝐹 goes from 𝑅 to 𝑆, but the continuous map 𝐺 goes from 𝐵 to 𝐴. This mapping is also called "induced map on prime spectra" or "pullback on primes". (Contributed by Thierry Arnoux, 8-Jul-2024.)
Hypotheses
Ref Expression
rhmpreimacn.t 𝑇 = (Spec‘𝑅)
rhmpreimacn.u 𝑈 = (Spec‘𝑆)
rhmpreimacn.a 𝐴 = (PrmIdeal‘𝑅)
rhmpreimacn.b 𝐵 = (PrmIdeal‘𝑆)
rhmpreimacn.j 𝐽 = (TopOpen‘𝑇)
rhmpreimacn.k 𝐾 = (TopOpen‘𝑈)
rhmpreimacn.g 𝐺 = (𝑖𝐵 ↦ (𝐹𝑖))
rhmpreimacn.r (𝜑𝑅 ∈ CRing)
rhmpreimacn.s (𝜑𝑆 ∈ CRing)
rhmpreimacn.f (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))
rhmpreimacn.1 (𝜑 → ran 𝐹 = (Base‘𝑆))
Assertion
Ref Expression
rhmpreimacn (𝜑𝐺 ∈ (𝐾 Cn 𝐽))
Distinct variable groups:   𝑅,𝑖   𝑖,𝐽   𝑆,𝑖   𝜑,𝑖   𝑖,𝐺   𝐵,𝑖   𝐴,𝑖   𝑖,𝐹
Allowed substitution hints:   𝑇(𝑖)   𝑈(𝑖)   𝐾(𝑖)

Proof of Theorem rhmpreimacn
Dummy variables 𝑎 𝑏 𝑘 𝑙 𝑗 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rhmpreimacn.s . . 3 (𝜑𝑆 ∈ CRing)
2 rhmpreimacn.u . . . 4 𝑈 = (Spec‘𝑆)
3 rhmpreimacn.k . . . 4 𝐾 = (TopOpen‘𝑈)
4 rhmpreimacn.b . . . 4 𝐵 = (PrmIdeal‘𝑆)
52, 3, 4zartopon 33867 . . 3 (𝑆 ∈ CRing → 𝐾 ∈ (TopOn‘𝐵))
61, 5syl 17 . 2 (𝜑𝐾 ∈ (TopOn‘𝐵))
7 rhmpreimacn.r . . 3 (𝜑𝑅 ∈ CRing)
8 rhmpreimacn.t . . . 4 𝑇 = (Spec‘𝑅)
9 rhmpreimacn.j . . . 4 𝐽 = (TopOpen‘𝑇)
10 rhmpreimacn.a . . . 4 𝐴 = (PrmIdeal‘𝑅)
118, 9, 10zartopon 33867 . . 3 (𝑅 ∈ CRing → 𝐽 ∈ (TopOn‘𝐴))
127, 11syl 17 . 2 (𝜑𝐽 ∈ (TopOn‘𝐴))
131adantr 480 . . . 4 ((𝜑𝑖𝐵) → 𝑆 ∈ CRing)
14 rhmpreimacn.f . . . . 5 (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))
1514adantr 480 . . . 4 ((𝜑𝑖𝐵) → 𝐹 ∈ (𝑅 RingHom 𝑆))
16 simpr 484 . . . . 5 ((𝜑𝑖𝐵) → 𝑖𝐵)
1716, 4eleqtrdi 2838 . . . 4 ((𝜑𝑖𝐵) → 𝑖 ∈ (PrmIdeal‘𝑆))
1810rhmpreimaprmidl 33422 . . . 4 (((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝑖 ∈ (PrmIdeal‘𝑆)) → (𝐹𝑖) ∈ 𝐴)
1913, 15, 17, 18syl21anc 837 . . 3 ((𝜑𝑖𝐵) → (𝐹𝑖) ∈ 𝐴)
20 rhmpreimacn.g . . 3 𝐺 = (𝑖𝐵 ↦ (𝐹𝑖))
2119, 20fmptd 7086 . 2 (𝜑𝐺:𝐵𝐴)
224fvexi 6872 . . . . . . 7 𝐵 ∈ V
2322rabex 5294 . . . . . 6 {𝑘𝐵𝑗𝑘} ∈ V
24 sseq1 3972 . . . . . . . 8 (𝑙 = 𝑗 → (𝑙𝑘𝑗𝑘))
2524rabbidv 3413 . . . . . . 7 (𝑙 = 𝑗 → {𝑘𝐵𝑙𝑘} = {𝑘𝐵𝑗𝑘})
2625cbvmptv 5211 . . . . . 6 (𝑙 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑙𝑘}) = (𝑗 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑗𝑘})
2723, 26fnmpti 6661 . . . . 5 (𝑙 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑙𝑘}) Fn (LIdeal‘𝑆)
2814ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑥 ∈ (Clsd‘𝐽)) ∧ 𝑎 ∈ (LIdeal‘𝑅)) ∧ ((𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘})‘𝑎) = 𝑥) → 𝐹 ∈ (𝑅 RingHom 𝑆))
29 rhmpreimacn.1 . . . . . . . . 9 (𝜑 → ran 𝐹 = (Base‘𝑆))
3029ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑥 ∈ (Clsd‘𝐽)) ∧ 𝑎 ∈ (LIdeal‘𝑅)) ∧ ((𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘})‘𝑎) = 𝑥) → ran 𝐹 = (Base‘𝑆))
31 simplr 768 . . . . . . . 8 ((((𝜑𝑥 ∈ (Clsd‘𝐽)) ∧ 𝑎 ∈ (LIdeal‘𝑅)) ∧ ((𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘})‘𝑎) = 𝑥) → 𝑎 ∈ (LIdeal‘𝑅))
32 eqid 2729 . . . . . . . . 9 (Base‘𝑆) = (Base‘𝑆)
33 eqid 2729 . . . . . . . . 9 (LIdeal‘𝑅) = (LIdeal‘𝑅)
34 eqid 2729 . . . . . . . . 9 (LIdeal‘𝑆) = (LIdeal‘𝑆)
3532, 33, 34rhmimaidl 33403 . . . . . . . 8 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = (Base‘𝑆) ∧ 𝑎 ∈ (LIdeal‘𝑅)) → (𝐹𝑎) ∈ (LIdeal‘𝑆))
3628, 30, 31, 35syl3anc 1373 . . . . . . 7 ((((𝜑𝑥 ∈ (Clsd‘𝐽)) ∧ 𝑎 ∈ (LIdeal‘𝑅)) ∧ ((𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘})‘𝑎) = 𝑥) → (𝐹𝑎) ∈ (LIdeal‘𝑆))
37 fveqeq2 6867 . . . . . . . 8 (𝑏 = (𝐹𝑎) → (((𝑙 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑙𝑘})‘𝑏) = (𝐺𝑥) ↔ ((𝑙 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑙𝑘})‘(𝐹𝑎)) = (𝐺𝑥)))
3837adantl 481 . . . . . . 7 (((((𝜑𝑥 ∈ (Clsd‘𝐽)) ∧ 𝑎 ∈ (LIdeal‘𝑅)) ∧ ((𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘})‘𝑎) = 𝑥) ∧ 𝑏 = (𝐹𝑎)) → (((𝑙 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑙𝑘})‘𝑏) = (𝐺𝑥) ↔ ((𝑙 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑙𝑘})‘(𝐹𝑎)) = (𝐺𝑥)))
397ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑥 ∈ (Clsd‘𝐽)) ∧ 𝑎 ∈ (LIdeal‘𝑅)) ∧ ((𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘})‘𝑎) = 𝑥) → 𝑅 ∈ CRing)
401ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑥 ∈ (Clsd‘𝐽)) ∧ 𝑎 ∈ (LIdeal‘𝑅)) ∧ ((𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘})‘𝑎) = 𝑥) → 𝑆 ∈ CRing)
4124rabbidv 3413 . . . . . . . . . 10 (𝑙 = 𝑗 → {𝑘𝐴𝑙𝑘} = {𝑘𝐴𝑗𝑘})
4241cbvmptv 5211 . . . . . . . . 9 (𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘}) = (𝑗 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑗𝑘})
438, 2, 10, 4, 9, 3, 20, 39, 40, 28, 30, 31, 42, 26rhmpreimacnlem 33874 . . . . . . . 8 ((((𝜑𝑥 ∈ (Clsd‘𝐽)) ∧ 𝑎 ∈ (LIdeal‘𝑅)) ∧ ((𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘})‘𝑎) = 𝑥) → ((𝑙 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑙𝑘})‘(𝐹𝑎)) = (𝐺 “ ((𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘})‘𝑎)))
44 simpr 484 . . . . . . . . 9 ((((𝜑𝑥 ∈ (Clsd‘𝐽)) ∧ 𝑎 ∈ (LIdeal‘𝑅)) ∧ ((𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘})‘𝑎) = 𝑥) → ((𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘})‘𝑎) = 𝑥)
4544imaeq2d 6031 . . . . . . . 8 ((((𝜑𝑥 ∈ (Clsd‘𝐽)) ∧ 𝑎 ∈ (LIdeal‘𝑅)) ∧ ((𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘})‘𝑎) = 𝑥) → (𝐺 “ ((𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘})‘𝑎)) = (𝐺𝑥))
4643, 45eqtrd 2764 . . . . . . 7 ((((𝜑𝑥 ∈ (Clsd‘𝐽)) ∧ 𝑎 ∈ (LIdeal‘𝑅)) ∧ ((𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘})‘𝑎) = 𝑥) → ((𝑙 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑙𝑘})‘(𝐹𝑎)) = (𝐺𝑥))
4736, 38, 46rspcedvd 3590 . . . . . 6 ((((𝜑𝑥 ∈ (Clsd‘𝐽)) ∧ 𝑎 ∈ (LIdeal‘𝑅)) ∧ ((𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘})‘𝑎) = 𝑥) → ∃𝑏 ∈ (LIdeal‘𝑆)((𝑙 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑙𝑘})‘𝑏) = (𝐺𝑥))
4810fvexi 6872 . . . . . . . . 9 𝐴 ∈ V
4948rabex 5294 . . . . . . . 8 {𝑘𝐴𝑗𝑘} ∈ V
5049, 42fnmpti 6661 . . . . . . 7 (𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘}) Fn (LIdeal‘𝑅)
51 simpr 484 . . . . . . . 8 ((𝜑𝑥 ∈ (Clsd‘𝐽)) → 𝑥 ∈ (Clsd‘𝐽))
527adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (Clsd‘𝐽)) → 𝑅 ∈ CRing)
538, 9, 10, 42zartopn 33865 . . . . . . . . . 10 (𝑅 ∈ CRing → (𝐽 ∈ (TopOn‘𝐴) ∧ ran (𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘}) = (Clsd‘𝐽)))
5453simprd 495 . . . . . . . . 9 (𝑅 ∈ CRing → ran (𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘}) = (Clsd‘𝐽))
5552, 54syl 17 . . . . . . . 8 ((𝜑𝑥 ∈ (Clsd‘𝐽)) → ran (𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘}) = (Clsd‘𝐽))
5651, 55eleqtrrd 2831 . . . . . . 7 ((𝜑𝑥 ∈ (Clsd‘𝐽)) → 𝑥 ∈ ran (𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘}))
57 fvelrnb 6921 . . . . . . . 8 ((𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘}) Fn (LIdeal‘𝑅) → (𝑥 ∈ ran (𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘}) ↔ ∃𝑎 ∈ (LIdeal‘𝑅)((𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘})‘𝑎) = 𝑥))
5857biimpa 476 . . . . . . 7 (((𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘}) Fn (LIdeal‘𝑅) ∧ 𝑥 ∈ ran (𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘})) → ∃𝑎 ∈ (LIdeal‘𝑅)((𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘})‘𝑎) = 𝑥)
5950, 56, 58sylancr 587 . . . . . 6 ((𝜑𝑥 ∈ (Clsd‘𝐽)) → ∃𝑎 ∈ (LIdeal‘𝑅)((𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘})‘𝑎) = 𝑥)
6047, 59r19.29a 3141 . . . . 5 ((𝜑𝑥 ∈ (Clsd‘𝐽)) → ∃𝑏 ∈ (LIdeal‘𝑆)((𝑙 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑙𝑘})‘𝑏) = (𝐺𝑥))
61 fvelrnb 6921 . . . . . 6 ((𝑙 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑙𝑘}) Fn (LIdeal‘𝑆) → ((𝐺𝑥) ∈ ran (𝑙 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑙𝑘}) ↔ ∃𝑏 ∈ (LIdeal‘𝑆)((𝑙 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑙𝑘})‘𝑏) = (𝐺𝑥)))
6261biimpar 477 . . . . 5 (((𝑙 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑙𝑘}) Fn (LIdeal‘𝑆) ∧ ∃𝑏 ∈ (LIdeal‘𝑆)((𝑙 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑙𝑘})‘𝑏) = (𝐺𝑥)) → (𝐺𝑥) ∈ ran (𝑙 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑙𝑘}))
6327, 60, 62sylancr 587 . . . 4 ((𝜑𝑥 ∈ (Clsd‘𝐽)) → (𝐺𝑥) ∈ ran (𝑙 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑙𝑘}))
642, 3, 4, 26zartopn 33865 . . . . . . 7 (𝑆 ∈ CRing → (𝐾 ∈ (TopOn‘𝐵) ∧ ran (𝑙 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑙𝑘}) = (Clsd‘𝐾)))
6564simprd 495 . . . . . 6 (𝑆 ∈ CRing → ran (𝑙 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑙𝑘}) = (Clsd‘𝐾))
661, 65syl 17 . . . . 5 (𝜑 → ran (𝑙 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑙𝑘}) = (Clsd‘𝐾))
6766adantr 480 . . . 4 ((𝜑𝑥 ∈ (Clsd‘𝐽)) → ran (𝑙 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑙𝑘}) = (Clsd‘𝐾))
6863, 67eleqtrd 2830 . . 3 ((𝜑𝑥 ∈ (Clsd‘𝐽)) → (𝐺𝑥) ∈ (Clsd‘𝐾))
6968ralrimiva 3125 . 2 (𝜑 → ∀𝑥 ∈ (Clsd‘𝐽)(𝐺𝑥) ∈ (Clsd‘𝐾))
70 iscncl 23156 . . 3 ((𝐾 ∈ (TopOn‘𝐵) ∧ 𝐽 ∈ (TopOn‘𝐴)) → (𝐺 ∈ (𝐾 Cn 𝐽) ↔ (𝐺:𝐵𝐴 ∧ ∀𝑥 ∈ (Clsd‘𝐽)(𝐺𝑥) ∈ (Clsd‘𝐾))))
7170biimpar 477 . 2 (((𝐾 ∈ (TopOn‘𝐵) ∧ 𝐽 ∈ (TopOn‘𝐴)) ∧ (𝐺:𝐵𝐴 ∧ ∀𝑥 ∈ (Clsd‘𝐽)(𝐺𝑥) ∈ (Clsd‘𝐾))) → 𝐺 ∈ (𝐾 Cn 𝐽))
726, 12, 21, 69, 71syl22anc 838 1 (𝜑𝐺 ∈ (𝐾 Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {crab 3405  wss 3914  cmpt 5188  ccnv 5637  ran crn 5639  cima 5641   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  Basecbs 17179  TopOpenctopn 17384  CRingccrg 20143   RingHom crh 20378  LIdealclidl 21116  TopOnctopon 22797  Clsdccld 22903   Cn ccn 23111  PrmIdealcprmidl 33406  Speccrspec 33852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-ac2 10416  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-rpss 7699  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-oadd 8438  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-dju 9854  df-card 9892  df-ac 10069  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-rest 17385  df-topn 17386  df-0g 17404  df-mre 17547  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-subg 19055  df-ghm 19145  df-cntz 19249  df-lsm 19566  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-cring 20145  df-rhm 20381  df-subrg 20479  df-lmod 20768  df-lss 20838  df-lsp 20878  df-sra 21080  df-rgmod 21081  df-lidl 21118  df-rsp 21119  df-lpidl 21232  df-top 22781  df-topon 22798  df-cld 22906  df-cn 23114  df-prmidl 33407  df-mxidl 33431  df-idlsrg 33472  df-rspec 33853
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator