Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rhmpreimacn Structured version   Visualization version   GIF version

Theorem rhmpreimacn 33866
Description: The function mapping a prime ideal to its preimage by a surjective ring homomorphism is continuous, when considering the Zariski topology. Corollary 1.2.3 of [EGA], p. 83. Notice that the direction of the continuous map 𝐺 is reverse: the original ring homomorphism 𝐹 goes from 𝑅 to 𝑆, but the continuous map 𝐺 goes from 𝐵 to 𝐴. This mapping is also called "induced map on prime spectra" or "pullback on primes". (Contributed by Thierry Arnoux, 8-Jul-2024.)
Hypotheses
Ref Expression
rhmpreimacn.t 𝑇 = (Spec‘𝑅)
rhmpreimacn.u 𝑈 = (Spec‘𝑆)
rhmpreimacn.a 𝐴 = (PrmIdeal‘𝑅)
rhmpreimacn.b 𝐵 = (PrmIdeal‘𝑆)
rhmpreimacn.j 𝐽 = (TopOpen‘𝑇)
rhmpreimacn.k 𝐾 = (TopOpen‘𝑈)
rhmpreimacn.g 𝐺 = (𝑖𝐵 ↦ (𝐹𝑖))
rhmpreimacn.r (𝜑𝑅 ∈ CRing)
rhmpreimacn.s (𝜑𝑆 ∈ CRing)
rhmpreimacn.f (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))
rhmpreimacn.1 (𝜑 → ran 𝐹 = (Base‘𝑆))
Assertion
Ref Expression
rhmpreimacn (𝜑𝐺 ∈ (𝐾 Cn 𝐽))
Distinct variable groups:   𝑅,𝑖   𝑖,𝐽   𝑆,𝑖   𝜑,𝑖   𝑖,𝐺   𝐵,𝑖   𝐴,𝑖   𝑖,𝐹
Allowed substitution hints:   𝑇(𝑖)   𝑈(𝑖)   𝐾(𝑖)

Proof of Theorem rhmpreimacn
Dummy variables 𝑎 𝑏 𝑘 𝑙 𝑗 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rhmpreimacn.s . . 3 (𝜑𝑆 ∈ CRing)
2 rhmpreimacn.u . . . 4 𝑈 = (Spec‘𝑆)
3 rhmpreimacn.k . . . 4 𝐾 = (TopOpen‘𝑈)
4 rhmpreimacn.b . . . 4 𝐵 = (PrmIdeal‘𝑆)
52, 3, 4zartopon 33858 . . 3 (𝑆 ∈ CRing → 𝐾 ∈ (TopOn‘𝐵))
61, 5syl 17 . 2 (𝜑𝐾 ∈ (TopOn‘𝐵))
7 rhmpreimacn.r . . 3 (𝜑𝑅 ∈ CRing)
8 rhmpreimacn.t . . . 4 𝑇 = (Spec‘𝑅)
9 rhmpreimacn.j . . . 4 𝐽 = (TopOpen‘𝑇)
10 rhmpreimacn.a . . . 4 𝐴 = (PrmIdeal‘𝑅)
118, 9, 10zartopon 33858 . . 3 (𝑅 ∈ CRing → 𝐽 ∈ (TopOn‘𝐴))
127, 11syl 17 . 2 (𝜑𝐽 ∈ (TopOn‘𝐴))
131adantr 480 . . . 4 ((𝜑𝑖𝐵) → 𝑆 ∈ CRing)
14 rhmpreimacn.f . . . . 5 (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))
1514adantr 480 . . . 4 ((𝜑𝑖𝐵) → 𝐹 ∈ (𝑅 RingHom 𝑆))
16 simpr 484 . . . . 5 ((𝜑𝑖𝐵) → 𝑖𝐵)
1716, 4eleqtrdi 2838 . . . 4 ((𝜑𝑖𝐵) → 𝑖 ∈ (PrmIdeal‘𝑆))
1810rhmpreimaprmidl 33384 . . . 4 (((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝑖 ∈ (PrmIdeal‘𝑆)) → (𝐹𝑖) ∈ 𝐴)
1913, 15, 17, 18syl21anc 837 . . 3 ((𝜑𝑖𝐵) → (𝐹𝑖) ∈ 𝐴)
20 rhmpreimacn.g . . 3 𝐺 = (𝑖𝐵 ↦ (𝐹𝑖))
2119, 20fmptd 7041 . 2 (𝜑𝐺:𝐵𝐴)
224fvexi 6830 . . . . . . 7 𝐵 ∈ V
2322rabex 5274 . . . . . 6 {𝑘𝐵𝑗𝑘} ∈ V
24 sseq1 3957 . . . . . . . 8 (𝑙 = 𝑗 → (𝑙𝑘𝑗𝑘))
2524rabbidv 3399 . . . . . . 7 (𝑙 = 𝑗 → {𝑘𝐵𝑙𝑘} = {𝑘𝐵𝑗𝑘})
2625cbvmptv 5192 . . . . . 6 (𝑙 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑙𝑘}) = (𝑗 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑗𝑘})
2723, 26fnmpti 6619 . . . . 5 (𝑙 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑙𝑘}) Fn (LIdeal‘𝑆)
2814ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑥 ∈ (Clsd‘𝐽)) ∧ 𝑎 ∈ (LIdeal‘𝑅)) ∧ ((𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘})‘𝑎) = 𝑥) → 𝐹 ∈ (𝑅 RingHom 𝑆))
29 rhmpreimacn.1 . . . . . . . . 9 (𝜑 → ran 𝐹 = (Base‘𝑆))
3029ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑥 ∈ (Clsd‘𝐽)) ∧ 𝑎 ∈ (LIdeal‘𝑅)) ∧ ((𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘})‘𝑎) = 𝑥) → ran 𝐹 = (Base‘𝑆))
31 simplr 768 . . . . . . . 8 ((((𝜑𝑥 ∈ (Clsd‘𝐽)) ∧ 𝑎 ∈ (LIdeal‘𝑅)) ∧ ((𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘})‘𝑎) = 𝑥) → 𝑎 ∈ (LIdeal‘𝑅))
32 eqid 2729 . . . . . . . . 9 (Base‘𝑆) = (Base‘𝑆)
33 eqid 2729 . . . . . . . . 9 (LIdeal‘𝑅) = (LIdeal‘𝑅)
34 eqid 2729 . . . . . . . . 9 (LIdeal‘𝑆) = (LIdeal‘𝑆)
3532, 33, 34rhmimaidl 33365 . . . . . . . 8 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = (Base‘𝑆) ∧ 𝑎 ∈ (LIdeal‘𝑅)) → (𝐹𝑎) ∈ (LIdeal‘𝑆))
3628, 30, 31, 35syl3anc 1373 . . . . . . 7 ((((𝜑𝑥 ∈ (Clsd‘𝐽)) ∧ 𝑎 ∈ (LIdeal‘𝑅)) ∧ ((𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘})‘𝑎) = 𝑥) → (𝐹𝑎) ∈ (LIdeal‘𝑆))
37 fveqeq2 6825 . . . . . . . 8 (𝑏 = (𝐹𝑎) → (((𝑙 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑙𝑘})‘𝑏) = (𝐺𝑥) ↔ ((𝑙 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑙𝑘})‘(𝐹𝑎)) = (𝐺𝑥)))
3837adantl 481 . . . . . . 7 (((((𝜑𝑥 ∈ (Clsd‘𝐽)) ∧ 𝑎 ∈ (LIdeal‘𝑅)) ∧ ((𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘})‘𝑎) = 𝑥) ∧ 𝑏 = (𝐹𝑎)) → (((𝑙 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑙𝑘})‘𝑏) = (𝐺𝑥) ↔ ((𝑙 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑙𝑘})‘(𝐹𝑎)) = (𝐺𝑥)))
397ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑥 ∈ (Clsd‘𝐽)) ∧ 𝑎 ∈ (LIdeal‘𝑅)) ∧ ((𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘})‘𝑎) = 𝑥) → 𝑅 ∈ CRing)
401ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑥 ∈ (Clsd‘𝐽)) ∧ 𝑎 ∈ (LIdeal‘𝑅)) ∧ ((𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘})‘𝑎) = 𝑥) → 𝑆 ∈ CRing)
4124rabbidv 3399 . . . . . . . . . 10 (𝑙 = 𝑗 → {𝑘𝐴𝑙𝑘} = {𝑘𝐴𝑗𝑘})
4241cbvmptv 5192 . . . . . . . . 9 (𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘}) = (𝑗 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑗𝑘})
438, 2, 10, 4, 9, 3, 20, 39, 40, 28, 30, 31, 42, 26rhmpreimacnlem 33865 . . . . . . . 8 ((((𝜑𝑥 ∈ (Clsd‘𝐽)) ∧ 𝑎 ∈ (LIdeal‘𝑅)) ∧ ((𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘})‘𝑎) = 𝑥) → ((𝑙 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑙𝑘})‘(𝐹𝑎)) = (𝐺 “ ((𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘})‘𝑎)))
44 simpr 484 . . . . . . . . 9 ((((𝜑𝑥 ∈ (Clsd‘𝐽)) ∧ 𝑎 ∈ (LIdeal‘𝑅)) ∧ ((𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘})‘𝑎) = 𝑥) → ((𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘})‘𝑎) = 𝑥)
4544imaeq2d 6005 . . . . . . . 8 ((((𝜑𝑥 ∈ (Clsd‘𝐽)) ∧ 𝑎 ∈ (LIdeal‘𝑅)) ∧ ((𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘})‘𝑎) = 𝑥) → (𝐺 “ ((𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘})‘𝑎)) = (𝐺𝑥))
4643, 45eqtrd 2764 . . . . . . 7 ((((𝜑𝑥 ∈ (Clsd‘𝐽)) ∧ 𝑎 ∈ (LIdeal‘𝑅)) ∧ ((𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘})‘𝑎) = 𝑥) → ((𝑙 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑙𝑘})‘(𝐹𝑎)) = (𝐺𝑥))
4736, 38, 46rspcedvd 3576 . . . . . 6 ((((𝜑𝑥 ∈ (Clsd‘𝐽)) ∧ 𝑎 ∈ (LIdeal‘𝑅)) ∧ ((𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘})‘𝑎) = 𝑥) → ∃𝑏 ∈ (LIdeal‘𝑆)((𝑙 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑙𝑘})‘𝑏) = (𝐺𝑥))
4810fvexi 6830 . . . . . . . . 9 𝐴 ∈ V
4948rabex 5274 . . . . . . . 8 {𝑘𝐴𝑗𝑘} ∈ V
5049, 42fnmpti 6619 . . . . . . 7 (𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘}) Fn (LIdeal‘𝑅)
51 simpr 484 . . . . . . . 8 ((𝜑𝑥 ∈ (Clsd‘𝐽)) → 𝑥 ∈ (Clsd‘𝐽))
527adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (Clsd‘𝐽)) → 𝑅 ∈ CRing)
538, 9, 10, 42zartopn 33856 . . . . . . . . . 10 (𝑅 ∈ CRing → (𝐽 ∈ (TopOn‘𝐴) ∧ ran (𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘}) = (Clsd‘𝐽)))
5453simprd 495 . . . . . . . . 9 (𝑅 ∈ CRing → ran (𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘}) = (Clsd‘𝐽))
5552, 54syl 17 . . . . . . . 8 ((𝜑𝑥 ∈ (Clsd‘𝐽)) → ran (𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘}) = (Clsd‘𝐽))
5651, 55eleqtrrd 2831 . . . . . . 7 ((𝜑𝑥 ∈ (Clsd‘𝐽)) → 𝑥 ∈ ran (𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘}))
57 fvelrnb 6876 . . . . . . . 8 ((𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘}) Fn (LIdeal‘𝑅) → (𝑥 ∈ ran (𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘}) ↔ ∃𝑎 ∈ (LIdeal‘𝑅)((𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘})‘𝑎) = 𝑥))
5857biimpa 476 . . . . . . 7 (((𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘}) Fn (LIdeal‘𝑅) ∧ 𝑥 ∈ ran (𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘})) → ∃𝑎 ∈ (LIdeal‘𝑅)((𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘})‘𝑎) = 𝑥)
5950, 56, 58sylancr 587 . . . . . 6 ((𝜑𝑥 ∈ (Clsd‘𝐽)) → ∃𝑎 ∈ (LIdeal‘𝑅)((𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘})‘𝑎) = 𝑥)
6047, 59r19.29a 3137 . . . . 5 ((𝜑𝑥 ∈ (Clsd‘𝐽)) → ∃𝑏 ∈ (LIdeal‘𝑆)((𝑙 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑙𝑘})‘𝑏) = (𝐺𝑥))
61 fvelrnb 6876 . . . . . 6 ((𝑙 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑙𝑘}) Fn (LIdeal‘𝑆) → ((𝐺𝑥) ∈ ran (𝑙 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑙𝑘}) ↔ ∃𝑏 ∈ (LIdeal‘𝑆)((𝑙 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑙𝑘})‘𝑏) = (𝐺𝑥)))
6261biimpar 477 . . . . 5 (((𝑙 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑙𝑘}) Fn (LIdeal‘𝑆) ∧ ∃𝑏 ∈ (LIdeal‘𝑆)((𝑙 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑙𝑘})‘𝑏) = (𝐺𝑥)) → (𝐺𝑥) ∈ ran (𝑙 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑙𝑘}))
6327, 60, 62sylancr 587 . . . 4 ((𝜑𝑥 ∈ (Clsd‘𝐽)) → (𝐺𝑥) ∈ ran (𝑙 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑙𝑘}))
642, 3, 4, 26zartopn 33856 . . . . . . 7 (𝑆 ∈ CRing → (𝐾 ∈ (TopOn‘𝐵) ∧ ran (𝑙 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑙𝑘}) = (Clsd‘𝐾)))
6564simprd 495 . . . . . 6 (𝑆 ∈ CRing → ran (𝑙 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑙𝑘}) = (Clsd‘𝐾))
661, 65syl 17 . . . . 5 (𝜑 → ran (𝑙 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑙𝑘}) = (Clsd‘𝐾))
6766adantr 480 . . . 4 ((𝜑𝑥 ∈ (Clsd‘𝐽)) → ran (𝑙 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑙𝑘}) = (Clsd‘𝐾))
6863, 67eleqtrd 2830 . . 3 ((𝜑𝑥 ∈ (Clsd‘𝐽)) → (𝐺𝑥) ∈ (Clsd‘𝐾))
6968ralrimiva 3121 . 2 (𝜑 → ∀𝑥 ∈ (Clsd‘𝐽)(𝐺𝑥) ∈ (Clsd‘𝐾))
70 iscncl 23138 . . 3 ((𝐾 ∈ (TopOn‘𝐵) ∧ 𝐽 ∈ (TopOn‘𝐴)) → (𝐺 ∈ (𝐾 Cn 𝐽) ↔ (𝐺:𝐵𝐴 ∧ ∀𝑥 ∈ (Clsd‘𝐽)(𝐺𝑥) ∈ (Clsd‘𝐾))))
7170biimpar 477 . 2 (((𝐾 ∈ (TopOn‘𝐵) ∧ 𝐽 ∈ (TopOn‘𝐴)) ∧ (𝐺:𝐵𝐴 ∧ ∀𝑥 ∈ (Clsd‘𝐽)(𝐺𝑥) ∈ (Clsd‘𝐾))) → 𝐺 ∈ (𝐾 Cn 𝐽))
726, 12, 21, 69, 71syl22anc 838 1 (𝜑𝐺 ∈ (𝐾 Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {crab 3392  wss 3899  cmpt 5169  ccnv 5612  ran crn 5614  cima 5616   Fn wfn 6471  wf 6472  cfv 6476  (class class class)co 7340  Basecbs 17107  TopOpenctopn 17312  CRingccrg 20106   RingHom crh 20341  LIdealclidl 21097  TopOnctopon 22779  Clsdccld 22885   Cn ccn 23093  PrmIdealcprmidl 33368  Speccrspec 33843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5214  ax-sep 5231  ax-nul 5241  ax-pow 5300  ax-pr 5367  ax-un 7662  ax-ac2 10345  ax-cnex 11053  ax-resscn 11054  ax-1cn 11055  ax-icn 11056  ax-addcl 11057  ax-addrcl 11058  ax-mulcl 11059  ax-mulrcl 11060  ax-mulcom 11061  ax-addass 11062  ax-mulass 11063  ax-distr 11064  ax-i2m1 11065  ax-1ne0 11066  ax-1rid 11067  ax-rnegex 11068  ax-rrecex 11069  ax-cnre 11070  ax-pre-lttri 11071  ax-pre-lttrn 11072  ax-pre-ltadd 11073  ax-pre-mulgt0 11074
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3393  df-v 3435  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4895  df-iun 4940  df-iin 4941  df-br 5089  df-opab 5151  df-mpt 5170  df-tr 5196  df-id 5508  df-eprel 5513  df-po 5521  df-so 5522  df-fr 5566  df-se 5567  df-we 5568  df-xp 5619  df-rel 5620  df-cnv 5621  df-co 5622  df-dm 5623  df-rn 5624  df-res 5625  df-ima 5626  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7297  df-ov 7343  df-oprab 7344  df-mpo 7345  df-rpss 7650  df-om 7791  df-1st 7915  df-2nd 7916  df-frecs 8205  df-wrecs 8236  df-recs 8285  df-rdg 8323  df-1o 8379  df-oadd 8383  df-er 8616  df-map 8746  df-en 8864  df-dom 8865  df-sdom 8866  df-fin 8867  df-dju 9785  df-card 9823  df-ac 9998  df-pnf 11139  df-mnf 11140  df-xr 11141  df-ltxr 11142  df-le 11143  df-sub 11337  df-neg 11338  df-nn 12117  df-2 12179  df-3 12180  df-4 12181  df-5 12182  df-6 12183  df-7 12184  df-8 12185  df-9 12186  df-n0 12373  df-z 12460  df-dec 12580  df-uz 12724  df-fz 13399  df-struct 17045  df-sets 17062  df-slot 17080  df-ndx 17092  df-base 17108  df-ress 17129  df-plusg 17161  df-mulr 17162  df-sca 17164  df-vsca 17165  df-ip 17166  df-tset 17167  df-ple 17168  df-rest 17313  df-topn 17314  df-0g 17332  df-mre 17475  df-mgm 18501  df-sgrp 18580  df-mnd 18596  df-mhm 18644  df-submnd 18645  df-grp 18802  df-minusg 18803  df-sbg 18804  df-subg 18989  df-ghm 19079  df-cntz 19183  df-lsm 19502  df-cmn 19648  df-abl 19649  df-mgp 20013  df-rng 20025  df-ur 20054  df-ring 20107  df-cring 20108  df-rhm 20344  df-subrg 20439  df-lmod 20749  df-lss 20819  df-lsp 20859  df-sra 21061  df-rgmod 21062  df-lidl 21099  df-rsp 21100  df-lpidl 21213  df-top 22763  df-topon 22780  df-cld 22888  df-cn 23096  df-prmidl 33369  df-mxidl 33393  df-idlsrg 33434  df-rspec 33844
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator