Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rhmpreimacn Structured version   Visualization version   GIF version

Theorem rhmpreimacn 33916
Description: The function mapping a prime ideal to its preimage by a surjective ring homomorphism is continuous, when considering the Zariski topology. Corollary 1.2.3 of [EGA], p. 83. Notice that the direction of the continuous map 𝐺 is reverse: the original ring homomorphism 𝐹 goes from 𝑅 to 𝑆, but the continuous map 𝐺 goes from 𝐵 to 𝐴. This mapping is also called "induced map on prime spectra" or "pullback on primes". (Contributed by Thierry Arnoux, 8-Jul-2024.)
Hypotheses
Ref Expression
rhmpreimacn.t 𝑇 = (Spec‘𝑅)
rhmpreimacn.u 𝑈 = (Spec‘𝑆)
rhmpreimacn.a 𝐴 = (PrmIdeal‘𝑅)
rhmpreimacn.b 𝐵 = (PrmIdeal‘𝑆)
rhmpreimacn.j 𝐽 = (TopOpen‘𝑇)
rhmpreimacn.k 𝐾 = (TopOpen‘𝑈)
rhmpreimacn.g 𝐺 = (𝑖𝐵 ↦ (𝐹𝑖))
rhmpreimacn.r (𝜑𝑅 ∈ CRing)
rhmpreimacn.s (𝜑𝑆 ∈ CRing)
rhmpreimacn.f (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))
rhmpreimacn.1 (𝜑 → ran 𝐹 = (Base‘𝑆))
Assertion
Ref Expression
rhmpreimacn (𝜑𝐺 ∈ (𝐾 Cn 𝐽))
Distinct variable groups:   𝑅,𝑖   𝑖,𝐽   𝑆,𝑖   𝜑,𝑖   𝑖,𝐺   𝐵,𝑖   𝐴,𝑖   𝑖,𝐹
Allowed substitution hints:   𝑇(𝑖)   𝑈(𝑖)   𝐾(𝑖)

Proof of Theorem rhmpreimacn
Dummy variables 𝑎 𝑏 𝑘 𝑙 𝑗 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rhmpreimacn.s . . 3 (𝜑𝑆 ∈ CRing)
2 rhmpreimacn.u . . . 4 𝑈 = (Spec‘𝑆)
3 rhmpreimacn.k . . . 4 𝐾 = (TopOpen‘𝑈)
4 rhmpreimacn.b . . . 4 𝐵 = (PrmIdeal‘𝑆)
52, 3, 4zartopon 33908 . . 3 (𝑆 ∈ CRing → 𝐾 ∈ (TopOn‘𝐵))
61, 5syl 17 . 2 (𝜑𝐾 ∈ (TopOn‘𝐵))
7 rhmpreimacn.r . . 3 (𝜑𝑅 ∈ CRing)
8 rhmpreimacn.t . . . 4 𝑇 = (Spec‘𝑅)
9 rhmpreimacn.j . . . 4 𝐽 = (TopOpen‘𝑇)
10 rhmpreimacn.a . . . 4 𝐴 = (PrmIdeal‘𝑅)
118, 9, 10zartopon 33908 . . 3 (𝑅 ∈ CRing → 𝐽 ∈ (TopOn‘𝐴))
127, 11syl 17 . 2 (𝜑𝐽 ∈ (TopOn‘𝐴))
131adantr 480 . . . 4 ((𝜑𝑖𝐵) → 𝑆 ∈ CRing)
14 rhmpreimacn.f . . . . 5 (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))
1514adantr 480 . . . 4 ((𝜑𝑖𝐵) → 𝐹 ∈ (𝑅 RingHom 𝑆))
16 simpr 484 . . . . 5 ((𝜑𝑖𝐵) → 𝑖𝐵)
1716, 4eleqtrdi 2844 . . . 4 ((𝜑𝑖𝐵) → 𝑖 ∈ (PrmIdeal‘𝑆))
1810rhmpreimaprmidl 33466 . . . 4 (((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝑖 ∈ (PrmIdeal‘𝑆)) → (𝐹𝑖) ∈ 𝐴)
1913, 15, 17, 18syl21anc 837 . . 3 ((𝜑𝑖𝐵) → (𝐹𝑖) ∈ 𝐴)
20 rhmpreimacn.g . . 3 𝐺 = (𝑖𝐵 ↦ (𝐹𝑖))
2119, 20fmptd 7104 . 2 (𝜑𝐺:𝐵𝐴)
224fvexi 6890 . . . . . . 7 𝐵 ∈ V
2322rabex 5309 . . . . . 6 {𝑘𝐵𝑗𝑘} ∈ V
24 sseq1 3984 . . . . . . . 8 (𝑙 = 𝑗 → (𝑙𝑘𝑗𝑘))
2524rabbidv 3423 . . . . . . 7 (𝑙 = 𝑗 → {𝑘𝐵𝑙𝑘} = {𝑘𝐵𝑗𝑘})
2625cbvmptv 5225 . . . . . 6 (𝑙 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑙𝑘}) = (𝑗 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑗𝑘})
2723, 26fnmpti 6681 . . . . 5 (𝑙 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑙𝑘}) Fn (LIdeal‘𝑆)
2814ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑥 ∈ (Clsd‘𝐽)) ∧ 𝑎 ∈ (LIdeal‘𝑅)) ∧ ((𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘})‘𝑎) = 𝑥) → 𝐹 ∈ (𝑅 RingHom 𝑆))
29 rhmpreimacn.1 . . . . . . . . 9 (𝜑 → ran 𝐹 = (Base‘𝑆))
3029ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑥 ∈ (Clsd‘𝐽)) ∧ 𝑎 ∈ (LIdeal‘𝑅)) ∧ ((𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘})‘𝑎) = 𝑥) → ran 𝐹 = (Base‘𝑆))
31 simplr 768 . . . . . . . 8 ((((𝜑𝑥 ∈ (Clsd‘𝐽)) ∧ 𝑎 ∈ (LIdeal‘𝑅)) ∧ ((𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘})‘𝑎) = 𝑥) → 𝑎 ∈ (LIdeal‘𝑅))
32 eqid 2735 . . . . . . . . 9 (Base‘𝑆) = (Base‘𝑆)
33 eqid 2735 . . . . . . . . 9 (LIdeal‘𝑅) = (LIdeal‘𝑅)
34 eqid 2735 . . . . . . . . 9 (LIdeal‘𝑆) = (LIdeal‘𝑆)
3532, 33, 34rhmimaidl 33447 . . . . . . . 8 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = (Base‘𝑆) ∧ 𝑎 ∈ (LIdeal‘𝑅)) → (𝐹𝑎) ∈ (LIdeal‘𝑆))
3628, 30, 31, 35syl3anc 1373 . . . . . . 7 ((((𝜑𝑥 ∈ (Clsd‘𝐽)) ∧ 𝑎 ∈ (LIdeal‘𝑅)) ∧ ((𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘})‘𝑎) = 𝑥) → (𝐹𝑎) ∈ (LIdeal‘𝑆))
37 fveqeq2 6885 . . . . . . . 8 (𝑏 = (𝐹𝑎) → (((𝑙 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑙𝑘})‘𝑏) = (𝐺𝑥) ↔ ((𝑙 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑙𝑘})‘(𝐹𝑎)) = (𝐺𝑥)))
3837adantl 481 . . . . . . 7 (((((𝜑𝑥 ∈ (Clsd‘𝐽)) ∧ 𝑎 ∈ (LIdeal‘𝑅)) ∧ ((𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘})‘𝑎) = 𝑥) ∧ 𝑏 = (𝐹𝑎)) → (((𝑙 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑙𝑘})‘𝑏) = (𝐺𝑥) ↔ ((𝑙 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑙𝑘})‘(𝐹𝑎)) = (𝐺𝑥)))
397ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑥 ∈ (Clsd‘𝐽)) ∧ 𝑎 ∈ (LIdeal‘𝑅)) ∧ ((𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘})‘𝑎) = 𝑥) → 𝑅 ∈ CRing)
401ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑥 ∈ (Clsd‘𝐽)) ∧ 𝑎 ∈ (LIdeal‘𝑅)) ∧ ((𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘})‘𝑎) = 𝑥) → 𝑆 ∈ CRing)
4124rabbidv 3423 . . . . . . . . . 10 (𝑙 = 𝑗 → {𝑘𝐴𝑙𝑘} = {𝑘𝐴𝑗𝑘})
4241cbvmptv 5225 . . . . . . . . 9 (𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘}) = (𝑗 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑗𝑘})
438, 2, 10, 4, 9, 3, 20, 39, 40, 28, 30, 31, 42, 26rhmpreimacnlem 33915 . . . . . . . 8 ((((𝜑𝑥 ∈ (Clsd‘𝐽)) ∧ 𝑎 ∈ (LIdeal‘𝑅)) ∧ ((𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘})‘𝑎) = 𝑥) → ((𝑙 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑙𝑘})‘(𝐹𝑎)) = (𝐺 “ ((𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘})‘𝑎)))
44 simpr 484 . . . . . . . . 9 ((((𝜑𝑥 ∈ (Clsd‘𝐽)) ∧ 𝑎 ∈ (LIdeal‘𝑅)) ∧ ((𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘})‘𝑎) = 𝑥) → ((𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘})‘𝑎) = 𝑥)
4544imaeq2d 6047 . . . . . . . 8 ((((𝜑𝑥 ∈ (Clsd‘𝐽)) ∧ 𝑎 ∈ (LIdeal‘𝑅)) ∧ ((𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘})‘𝑎) = 𝑥) → (𝐺 “ ((𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘})‘𝑎)) = (𝐺𝑥))
4643, 45eqtrd 2770 . . . . . . 7 ((((𝜑𝑥 ∈ (Clsd‘𝐽)) ∧ 𝑎 ∈ (LIdeal‘𝑅)) ∧ ((𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘})‘𝑎) = 𝑥) → ((𝑙 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑙𝑘})‘(𝐹𝑎)) = (𝐺𝑥))
4736, 38, 46rspcedvd 3603 . . . . . 6 ((((𝜑𝑥 ∈ (Clsd‘𝐽)) ∧ 𝑎 ∈ (LIdeal‘𝑅)) ∧ ((𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘})‘𝑎) = 𝑥) → ∃𝑏 ∈ (LIdeal‘𝑆)((𝑙 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑙𝑘})‘𝑏) = (𝐺𝑥))
4810fvexi 6890 . . . . . . . . 9 𝐴 ∈ V
4948rabex 5309 . . . . . . . 8 {𝑘𝐴𝑗𝑘} ∈ V
5049, 42fnmpti 6681 . . . . . . 7 (𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘}) Fn (LIdeal‘𝑅)
51 simpr 484 . . . . . . . 8 ((𝜑𝑥 ∈ (Clsd‘𝐽)) → 𝑥 ∈ (Clsd‘𝐽))
527adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (Clsd‘𝐽)) → 𝑅 ∈ CRing)
538, 9, 10, 42zartopn 33906 . . . . . . . . . 10 (𝑅 ∈ CRing → (𝐽 ∈ (TopOn‘𝐴) ∧ ran (𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘}) = (Clsd‘𝐽)))
5453simprd 495 . . . . . . . . 9 (𝑅 ∈ CRing → ran (𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘}) = (Clsd‘𝐽))
5552, 54syl 17 . . . . . . . 8 ((𝜑𝑥 ∈ (Clsd‘𝐽)) → ran (𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘}) = (Clsd‘𝐽))
5651, 55eleqtrrd 2837 . . . . . . 7 ((𝜑𝑥 ∈ (Clsd‘𝐽)) → 𝑥 ∈ ran (𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘}))
57 fvelrnb 6939 . . . . . . . 8 ((𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘}) Fn (LIdeal‘𝑅) → (𝑥 ∈ ran (𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘}) ↔ ∃𝑎 ∈ (LIdeal‘𝑅)((𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘})‘𝑎) = 𝑥))
5857biimpa 476 . . . . . . 7 (((𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘}) Fn (LIdeal‘𝑅) ∧ 𝑥 ∈ ran (𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘})) → ∃𝑎 ∈ (LIdeal‘𝑅)((𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘})‘𝑎) = 𝑥)
5950, 56, 58sylancr 587 . . . . . 6 ((𝜑𝑥 ∈ (Clsd‘𝐽)) → ∃𝑎 ∈ (LIdeal‘𝑅)((𝑙 ∈ (LIdeal‘𝑅) ↦ {𝑘𝐴𝑙𝑘})‘𝑎) = 𝑥)
6047, 59r19.29a 3148 . . . . 5 ((𝜑𝑥 ∈ (Clsd‘𝐽)) → ∃𝑏 ∈ (LIdeal‘𝑆)((𝑙 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑙𝑘})‘𝑏) = (𝐺𝑥))
61 fvelrnb 6939 . . . . . 6 ((𝑙 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑙𝑘}) Fn (LIdeal‘𝑆) → ((𝐺𝑥) ∈ ran (𝑙 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑙𝑘}) ↔ ∃𝑏 ∈ (LIdeal‘𝑆)((𝑙 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑙𝑘})‘𝑏) = (𝐺𝑥)))
6261biimpar 477 . . . . 5 (((𝑙 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑙𝑘}) Fn (LIdeal‘𝑆) ∧ ∃𝑏 ∈ (LIdeal‘𝑆)((𝑙 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑙𝑘})‘𝑏) = (𝐺𝑥)) → (𝐺𝑥) ∈ ran (𝑙 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑙𝑘}))
6327, 60, 62sylancr 587 . . . 4 ((𝜑𝑥 ∈ (Clsd‘𝐽)) → (𝐺𝑥) ∈ ran (𝑙 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑙𝑘}))
642, 3, 4, 26zartopn 33906 . . . . . . 7 (𝑆 ∈ CRing → (𝐾 ∈ (TopOn‘𝐵) ∧ ran (𝑙 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑙𝑘}) = (Clsd‘𝐾)))
6564simprd 495 . . . . . 6 (𝑆 ∈ CRing → ran (𝑙 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑙𝑘}) = (Clsd‘𝐾))
661, 65syl 17 . . . . 5 (𝜑 → ran (𝑙 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑙𝑘}) = (Clsd‘𝐾))
6766adantr 480 . . . 4 ((𝜑𝑥 ∈ (Clsd‘𝐽)) → ran (𝑙 ∈ (LIdeal‘𝑆) ↦ {𝑘𝐵𝑙𝑘}) = (Clsd‘𝐾))
6863, 67eleqtrd 2836 . . 3 ((𝜑𝑥 ∈ (Clsd‘𝐽)) → (𝐺𝑥) ∈ (Clsd‘𝐾))
6968ralrimiva 3132 . 2 (𝜑 → ∀𝑥 ∈ (Clsd‘𝐽)(𝐺𝑥) ∈ (Clsd‘𝐾))
70 iscncl 23207 . . 3 ((𝐾 ∈ (TopOn‘𝐵) ∧ 𝐽 ∈ (TopOn‘𝐴)) → (𝐺 ∈ (𝐾 Cn 𝐽) ↔ (𝐺:𝐵𝐴 ∧ ∀𝑥 ∈ (Clsd‘𝐽)(𝐺𝑥) ∈ (Clsd‘𝐾))))
7170biimpar 477 . 2 (((𝐾 ∈ (TopOn‘𝐵) ∧ 𝐽 ∈ (TopOn‘𝐴)) ∧ (𝐺:𝐵𝐴 ∧ ∀𝑥 ∈ (Clsd‘𝐽)(𝐺𝑥) ∈ (Clsd‘𝐾))) → 𝐺 ∈ (𝐾 Cn 𝐽))
726, 12, 21, 69, 71syl22anc 838 1 (𝜑𝐺 ∈ (𝐾 Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  wrex 3060  {crab 3415  wss 3926  cmpt 5201  ccnv 5653  ran crn 5655  cima 5657   Fn wfn 6526  wf 6527  cfv 6531  (class class class)co 7405  Basecbs 17228  TopOpenctopn 17435  CRingccrg 20194   RingHom crh 20429  LIdealclidl 21167  TopOnctopon 22848  Clsdccld 22954   Cn ccn 23162  PrmIdealcprmidl 33450  Speccrspec 33893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-ac2 10477  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-rpss 7717  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-oadd 8484  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-dju 9915  df-card 9953  df-ac 10130  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-fz 13525  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-rest 17436  df-topn 17437  df-0g 17455  df-mre 17598  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mhm 18761  df-submnd 18762  df-grp 18919  df-minusg 18920  df-sbg 18921  df-subg 19106  df-ghm 19196  df-cntz 19300  df-lsm 19617  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-cring 20196  df-rhm 20432  df-subrg 20530  df-lmod 20819  df-lss 20889  df-lsp 20929  df-sra 21131  df-rgmod 21132  df-lidl 21169  df-rsp 21170  df-lpidl 21283  df-top 22832  df-topon 22849  df-cld 22957  df-cn 23165  df-prmidl 33451  df-mxidl 33475  df-idlsrg 33516  df-rspec 33894
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator