Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rhmpreimacn Structured version   Visualization version   GIF version

Theorem rhmpreimacn 32865
Description: The function mapping a prime ideal to its preimage by a surjective ring homomorphism is continuous, when considering the Zariski topology. Corollary 1.2.3 of [EGA], p. 83. Notice that the direction of the continuous map 𝐺 is reverse: the original ring homomorphism 𝐹 goes from 𝑅 to 𝑆, but the continuous map 𝐺 goes from 𝐡 to 𝐴. This mapping is also called "induced map on prime spectra" or "pullback on primes". (Contributed by Thierry Arnoux, 8-Jul-2024.)
Hypotheses
Ref Expression
rhmpreimacn.t 𝑇 = (Specβ€˜π‘…)
rhmpreimacn.u π‘ˆ = (Specβ€˜π‘†)
rhmpreimacn.a 𝐴 = (PrmIdealβ€˜π‘…)
rhmpreimacn.b 𝐡 = (PrmIdealβ€˜π‘†)
rhmpreimacn.j 𝐽 = (TopOpenβ€˜π‘‡)
rhmpreimacn.k 𝐾 = (TopOpenβ€˜π‘ˆ)
rhmpreimacn.g 𝐺 = (𝑖 ∈ 𝐡 ↦ (◑𝐹 β€œ 𝑖))
rhmpreimacn.r (πœ‘ β†’ 𝑅 ∈ CRing)
rhmpreimacn.s (πœ‘ β†’ 𝑆 ∈ CRing)
rhmpreimacn.f (πœ‘ β†’ 𝐹 ∈ (𝑅 RingHom 𝑆))
rhmpreimacn.1 (πœ‘ β†’ ran 𝐹 = (Baseβ€˜π‘†))
Assertion
Ref Expression
rhmpreimacn (πœ‘ β†’ 𝐺 ∈ (𝐾 Cn 𝐽))
Distinct variable groups:   𝐴,𝑖   𝐡,𝑖   𝑖,𝐹   𝑖,𝐺   𝑖,𝐽   𝑅,𝑖   𝑆,𝑖   πœ‘,𝑖
Allowed substitution hints:   𝑇(𝑖)   π‘ˆ(𝑖)   𝐾(𝑖)

Proof of Theorem rhmpreimacn
Dummy variables 𝑗 π‘˜ π‘₯ 𝑏 π‘Ž 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rhmpreimacn.s . . 3 (πœ‘ β†’ 𝑆 ∈ CRing)
2 rhmpreimacn.u . . . 4 π‘ˆ = (Specβ€˜π‘†)
3 rhmpreimacn.k . . . 4 𝐾 = (TopOpenβ€˜π‘ˆ)
4 rhmpreimacn.b . . . 4 𝐡 = (PrmIdealβ€˜π‘†)
52, 3, 4zartopon 32857 . . 3 (𝑆 ∈ CRing β†’ 𝐾 ∈ (TopOnβ€˜π΅))
61, 5syl 17 . 2 (πœ‘ β†’ 𝐾 ∈ (TopOnβ€˜π΅))
7 rhmpreimacn.r . . 3 (πœ‘ β†’ 𝑅 ∈ CRing)
8 rhmpreimacn.t . . . 4 𝑇 = (Specβ€˜π‘…)
9 rhmpreimacn.j . . . 4 𝐽 = (TopOpenβ€˜π‘‡)
10 rhmpreimacn.a . . . 4 𝐴 = (PrmIdealβ€˜π‘…)
118, 9, 10zartopon 32857 . . 3 (𝑅 ∈ CRing β†’ 𝐽 ∈ (TopOnβ€˜π΄))
127, 11syl 17 . 2 (πœ‘ β†’ 𝐽 ∈ (TopOnβ€˜π΄))
131adantr 482 . . . 4 ((πœ‘ ∧ 𝑖 ∈ 𝐡) β†’ 𝑆 ∈ CRing)
14 rhmpreimacn.f . . . . 5 (πœ‘ β†’ 𝐹 ∈ (𝑅 RingHom 𝑆))
1514adantr 482 . . . 4 ((πœ‘ ∧ 𝑖 ∈ 𝐡) β†’ 𝐹 ∈ (𝑅 RingHom 𝑆))
16 simpr 486 . . . . 5 ((πœ‘ ∧ 𝑖 ∈ 𝐡) β†’ 𝑖 ∈ 𝐡)
1716, 4eleqtrdi 2844 . . . 4 ((πœ‘ ∧ 𝑖 ∈ 𝐡) β†’ 𝑖 ∈ (PrmIdealβ€˜π‘†))
1810rhmpreimaprmidl 32570 . . . 4 (((𝑆 ∈ CRing ∧ 𝐹 ∈ (𝑅 RingHom 𝑆)) ∧ 𝑖 ∈ (PrmIdealβ€˜π‘†)) β†’ (◑𝐹 β€œ 𝑖) ∈ 𝐴)
1913, 15, 17, 18syl21anc 837 . . 3 ((πœ‘ ∧ 𝑖 ∈ 𝐡) β†’ (◑𝐹 β€œ 𝑖) ∈ 𝐴)
20 rhmpreimacn.g . . 3 𝐺 = (𝑖 ∈ 𝐡 ↦ (◑𝐹 β€œ 𝑖))
2119, 20fmptd 7114 . 2 (πœ‘ β†’ 𝐺:𝐡⟢𝐴)
224fvexi 6906 . . . . . . 7 𝐡 ∈ V
2322rabex 5333 . . . . . 6 {π‘˜ ∈ 𝐡 ∣ 𝑗 βŠ† π‘˜} ∈ V
24 sseq1 4008 . . . . . . . 8 (𝑙 = 𝑗 β†’ (𝑙 βŠ† π‘˜ ↔ 𝑗 βŠ† π‘˜))
2524rabbidv 3441 . . . . . . 7 (𝑙 = 𝑗 β†’ {π‘˜ ∈ 𝐡 ∣ 𝑙 βŠ† π‘˜} = {π‘˜ ∈ 𝐡 ∣ 𝑗 βŠ† π‘˜})
2625cbvmptv 5262 . . . . . 6 (𝑙 ∈ (LIdealβ€˜π‘†) ↦ {π‘˜ ∈ 𝐡 ∣ 𝑙 βŠ† π‘˜}) = (𝑗 ∈ (LIdealβ€˜π‘†) ↦ {π‘˜ ∈ 𝐡 ∣ 𝑗 βŠ† π‘˜})
2723, 26fnmpti 6694 . . . . 5 (𝑙 ∈ (LIdealβ€˜π‘†) ↦ {π‘˜ ∈ 𝐡 ∣ 𝑙 βŠ† π‘˜}) Fn (LIdealβ€˜π‘†)
2814ad3antrrr 729 . . . . . . . 8 ((((πœ‘ ∧ π‘₯ ∈ (Clsdβ€˜π½)) ∧ π‘Ž ∈ (LIdealβ€˜π‘…)) ∧ ((𝑙 ∈ (LIdealβ€˜π‘…) ↦ {π‘˜ ∈ 𝐴 ∣ 𝑙 βŠ† π‘˜})β€˜π‘Ž) = π‘₯) β†’ 𝐹 ∈ (𝑅 RingHom 𝑆))
29 rhmpreimacn.1 . . . . . . . . 9 (πœ‘ β†’ ran 𝐹 = (Baseβ€˜π‘†))
3029ad3antrrr 729 . . . . . . . 8 ((((πœ‘ ∧ π‘₯ ∈ (Clsdβ€˜π½)) ∧ π‘Ž ∈ (LIdealβ€˜π‘…)) ∧ ((𝑙 ∈ (LIdealβ€˜π‘…) ↦ {π‘˜ ∈ 𝐴 ∣ 𝑙 βŠ† π‘˜})β€˜π‘Ž) = π‘₯) β†’ ran 𝐹 = (Baseβ€˜π‘†))
31 simplr 768 . . . . . . . 8 ((((πœ‘ ∧ π‘₯ ∈ (Clsdβ€˜π½)) ∧ π‘Ž ∈ (LIdealβ€˜π‘…)) ∧ ((𝑙 ∈ (LIdealβ€˜π‘…) ↦ {π‘˜ ∈ 𝐴 ∣ 𝑙 βŠ† π‘˜})β€˜π‘Ž) = π‘₯) β†’ π‘Ž ∈ (LIdealβ€˜π‘…))
32 eqid 2733 . . . . . . . . 9 (Baseβ€˜π‘†) = (Baseβ€˜π‘†)
33 eqid 2733 . . . . . . . . 9 (LIdealβ€˜π‘…) = (LIdealβ€˜π‘…)
34 eqid 2733 . . . . . . . . 9 (LIdealβ€˜π‘†) = (LIdealβ€˜π‘†)
3532, 33, 34rhmimaidl 32550 . . . . . . . 8 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = (Baseβ€˜π‘†) ∧ π‘Ž ∈ (LIdealβ€˜π‘…)) β†’ (𝐹 β€œ π‘Ž) ∈ (LIdealβ€˜π‘†))
3628, 30, 31, 35syl3anc 1372 . . . . . . 7 ((((πœ‘ ∧ π‘₯ ∈ (Clsdβ€˜π½)) ∧ π‘Ž ∈ (LIdealβ€˜π‘…)) ∧ ((𝑙 ∈ (LIdealβ€˜π‘…) ↦ {π‘˜ ∈ 𝐴 ∣ 𝑙 βŠ† π‘˜})β€˜π‘Ž) = π‘₯) β†’ (𝐹 β€œ π‘Ž) ∈ (LIdealβ€˜π‘†))
37 fveqeq2 6901 . . . . . . . 8 (𝑏 = (𝐹 β€œ π‘Ž) β†’ (((𝑙 ∈ (LIdealβ€˜π‘†) ↦ {π‘˜ ∈ 𝐡 ∣ 𝑙 βŠ† π‘˜})β€˜π‘) = (◑𝐺 β€œ π‘₯) ↔ ((𝑙 ∈ (LIdealβ€˜π‘†) ↦ {π‘˜ ∈ 𝐡 ∣ 𝑙 βŠ† π‘˜})β€˜(𝐹 β€œ π‘Ž)) = (◑𝐺 β€œ π‘₯)))
3837adantl 483 . . . . . . 7 (((((πœ‘ ∧ π‘₯ ∈ (Clsdβ€˜π½)) ∧ π‘Ž ∈ (LIdealβ€˜π‘…)) ∧ ((𝑙 ∈ (LIdealβ€˜π‘…) ↦ {π‘˜ ∈ 𝐴 ∣ 𝑙 βŠ† π‘˜})β€˜π‘Ž) = π‘₯) ∧ 𝑏 = (𝐹 β€œ π‘Ž)) β†’ (((𝑙 ∈ (LIdealβ€˜π‘†) ↦ {π‘˜ ∈ 𝐡 ∣ 𝑙 βŠ† π‘˜})β€˜π‘) = (◑𝐺 β€œ π‘₯) ↔ ((𝑙 ∈ (LIdealβ€˜π‘†) ↦ {π‘˜ ∈ 𝐡 ∣ 𝑙 βŠ† π‘˜})β€˜(𝐹 β€œ π‘Ž)) = (◑𝐺 β€œ π‘₯)))
397ad3antrrr 729 . . . . . . . . 9 ((((πœ‘ ∧ π‘₯ ∈ (Clsdβ€˜π½)) ∧ π‘Ž ∈ (LIdealβ€˜π‘…)) ∧ ((𝑙 ∈ (LIdealβ€˜π‘…) ↦ {π‘˜ ∈ 𝐴 ∣ 𝑙 βŠ† π‘˜})β€˜π‘Ž) = π‘₯) β†’ 𝑅 ∈ CRing)
401ad3antrrr 729 . . . . . . . . 9 ((((πœ‘ ∧ π‘₯ ∈ (Clsdβ€˜π½)) ∧ π‘Ž ∈ (LIdealβ€˜π‘…)) ∧ ((𝑙 ∈ (LIdealβ€˜π‘…) ↦ {π‘˜ ∈ 𝐴 ∣ 𝑙 βŠ† π‘˜})β€˜π‘Ž) = π‘₯) β†’ 𝑆 ∈ CRing)
4124rabbidv 3441 . . . . . . . . . 10 (𝑙 = 𝑗 β†’ {π‘˜ ∈ 𝐴 ∣ 𝑙 βŠ† π‘˜} = {π‘˜ ∈ 𝐴 ∣ 𝑗 βŠ† π‘˜})
4241cbvmptv 5262 . . . . . . . . 9 (𝑙 ∈ (LIdealβ€˜π‘…) ↦ {π‘˜ ∈ 𝐴 ∣ 𝑙 βŠ† π‘˜}) = (𝑗 ∈ (LIdealβ€˜π‘…) ↦ {π‘˜ ∈ 𝐴 ∣ 𝑗 βŠ† π‘˜})
438, 2, 10, 4, 9, 3, 20, 39, 40, 28, 30, 31, 42, 26rhmpreimacnlem 32864 . . . . . . . 8 ((((πœ‘ ∧ π‘₯ ∈ (Clsdβ€˜π½)) ∧ π‘Ž ∈ (LIdealβ€˜π‘…)) ∧ ((𝑙 ∈ (LIdealβ€˜π‘…) ↦ {π‘˜ ∈ 𝐴 ∣ 𝑙 βŠ† π‘˜})β€˜π‘Ž) = π‘₯) β†’ ((𝑙 ∈ (LIdealβ€˜π‘†) ↦ {π‘˜ ∈ 𝐡 ∣ 𝑙 βŠ† π‘˜})β€˜(𝐹 β€œ π‘Ž)) = (◑𝐺 β€œ ((𝑙 ∈ (LIdealβ€˜π‘…) ↦ {π‘˜ ∈ 𝐴 ∣ 𝑙 βŠ† π‘˜})β€˜π‘Ž)))
44 simpr 486 . . . . . . . . 9 ((((πœ‘ ∧ π‘₯ ∈ (Clsdβ€˜π½)) ∧ π‘Ž ∈ (LIdealβ€˜π‘…)) ∧ ((𝑙 ∈ (LIdealβ€˜π‘…) ↦ {π‘˜ ∈ 𝐴 ∣ 𝑙 βŠ† π‘˜})β€˜π‘Ž) = π‘₯) β†’ ((𝑙 ∈ (LIdealβ€˜π‘…) ↦ {π‘˜ ∈ 𝐴 ∣ 𝑙 βŠ† π‘˜})β€˜π‘Ž) = π‘₯)
4544imaeq2d 6060 . . . . . . . 8 ((((πœ‘ ∧ π‘₯ ∈ (Clsdβ€˜π½)) ∧ π‘Ž ∈ (LIdealβ€˜π‘…)) ∧ ((𝑙 ∈ (LIdealβ€˜π‘…) ↦ {π‘˜ ∈ 𝐴 ∣ 𝑙 βŠ† π‘˜})β€˜π‘Ž) = π‘₯) β†’ (◑𝐺 β€œ ((𝑙 ∈ (LIdealβ€˜π‘…) ↦ {π‘˜ ∈ 𝐴 ∣ 𝑙 βŠ† π‘˜})β€˜π‘Ž)) = (◑𝐺 β€œ π‘₯))
4643, 45eqtrd 2773 . . . . . . 7 ((((πœ‘ ∧ π‘₯ ∈ (Clsdβ€˜π½)) ∧ π‘Ž ∈ (LIdealβ€˜π‘…)) ∧ ((𝑙 ∈ (LIdealβ€˜π‘…) ↦ {π‘˜ ∈ 𝐴 ∣ 𝑙 βŠ† π‘˜})β€˜π‘Ž) = π‘₯) β†’ ((𝑙 ∈ (LIdealβ€˜π‘†) ↦ {π‘˜ ∈ 𝐡 ∣ 𝑙 βŠ† π‘˜})β€˜(𝐹 β€œ π‘Ž)) = (◑𝐺 β€œ π‘₯))
4736, 38, 46rspcedvd 3615 . . . . . 6 ((((πœ‘ ∧ π‘₯ ∈ (Clsdβ€˜π½)) ∧ π‘Ž ∈ (LIdealβ€˜π‘…)) ∧ ((𝑙 ∈ (LIdealβ€˜π‘…) ↦ {π‘˜ ∈ 𝐴 ∣ 𝑙 βŠ† π‘˜})β€˜π‘Ž) = π‘₯) β†’ βˆƒπ‘ ∈ (LIdealβ€˜π‘†)((𝑙 ∈ (LIdealβ€˜π‘†) ↦ {π‘˜ ∈ 𝐡 ∣ 𝑙 βŠ† π‘˜})β€˜π‘) = (◑𝐺 β€œ π‘₯))
4810fvexi 6906 . . . . . . . . 9 𝐴 ∈ V
4948rabex 5333 . . . . . . . 8 {π‘˜ ∈ 𝐴 ∣ 𝑗 βŠ† π‘˜} ∈ V
5049, 42fnmpti 6694 . . . . . . 7 (𝑙 ∈ (LIdealβ€˜π‘…) ↦ {π‘˜ ∈ 𝐴 ∣ 𝑙 βŠ† π‘˜}) Fn (LIdealβ€˜π‘…)
51 simpr 486 . . . . . . . 8 ((πœ‘ ∧ π‘₯ ∈ (Clsdβ€˜π½)) β†’ π‘₯ ∈ (Clsdβ€˜π½))
527adantr 482 . . . . . . . . 9 ((πœ‘ ∧ π‘₯ ∈ (Clsdβ€˜π½)) β†’ 𝑅 ∈ CRing)
538, 9, 10, 42zartopn 32855 . . . . . . . . . 10 (𝑅 ∈ CRing β†’ (𝐽 ∈ (TopOnβ€˜π΄) ∧ ran (𝑙 ∈ (LIdealβ€˜π‘…) ↦ {π‘˜ ∈ 𝐴 ∣ 𝑙 βŠ† π‘˜}) = (Clsdβ€˜π½)))
5453simprd 497 . . . . . . . . 9 (𝑅 ∈ CRing β†’ ran (𝑙 ∈ (LIdealβ€˜π‘…) ↦ {π‘˜ ∈ 𝐴 ∣ 𝑙 βŠ† π‘˜}) = (Clsdβ€˜π½))
5552, 54syl 17 . . . . . . . 8 ((πœ‘ ∧ π‘₯ ∈ (Clsdβ€˜π½)) β†’ ran (𝑙 ∈ (LIdealβ€˜π‘…) ↦ {π‘˜ ∈ 𝐴 ∣ 𝑙 βŠ† π‘˜}) = (Clsdβ€˜π½))
5651, 55eleqtrrd 2837 . . . . . . 7 ((πœ‘ ∧ π‘₯ ∈ (Clsdβ€˜π½)) β†’ π‘₯ ∈ ran (𝑙 ∈ (LIdealβ€˜π‘…) ↦ {π‘˜ ∈ 𝐴 ∣ 𝑙 βŠ† π‘˜}))
57 fvelrnb 6953 . . . . . . . 8 ((𝑙 ∈ (LIdealβ€˜π‘…) ↦ {π‘˜ ∈ 𝐴 ∣ 𝑙 βŠ† π‘˜}) Fn (LIdealβ€˜π‘…) β†’ (π‘₯ ∈ ran (𝑙 ∈ (LIdealβ€˜π‘…) ↦ {π‘˜ ∈ 𝐴 ∣ 𝑙 βŠ† π‘˜}) ↔ βˆƒπ‘Ž ∈ (LIdealβ€˜π‘…)((𝑙 ∈ (LIdealβ€˜π‘…) ↦ {π‘˜ ∈ 𝐴 ∣ 𝑙 βŠ† π‘˜})β€˜π‘Ž) = π‘₯))
5857biimpa 478 . . . . . . 7 (((𝑙 ∈ (LIdealβ€˜π‘…) ↦ {π‘˜ ∈ 𝐴 ∣ 𝑙 βŠ† π‘˜}) Fn (LIdealβ€˜π‘…) ∧ π‘₯ ∈ ran (𝑙 ∈ (LIdealβ€˜π‘…) ↦ {π‘˜ ∈ 𝐴 ∣ 𝑙 βŠ† π‘˜})) β†’ βˆƒπ‘Ž ∈ (LIdealβ€˜π‘…)((𝑙 ∈ (LIdealβ€˜π‘…) ↦ {π‘˜ ∈ 𝐴 ∣ 𝑙 βŠ† π‘˜})β€˜π‘Ž) = π‘₯)
5950, 56, 58sylancr 588 . . . . . 6 ((πœ‘ ∧ π‘₯ ∈ (Clsdβ€˜π½)) β†’ βˆƒπ‘Ž ∈ (LIdealβ€˜π‘…)((𝑙 ∈ (LIdealβ€˜π‘…) ↦ {π‘˜ ∈ 𝐴 ∣ 𝑙 βŠ† π‘˜})β€˜π‘Ž) = π‘₯)
6047, 59r19.29a 3163 . . . . 5 ((πœ‘ ∧ π‘₯ ∈ (Clsdβ€˜π½)) β†’ βˆƒπ‘ ∈ (LIdealβ€˜π‘†)((𝑙 ∈ (LIdealβ€˜π‘†) ↦ {π‘˜ ∈ 𝐡 ∣ 𝑙 βŠ† π‘˜})β€˜π‘) = (◑𝐺 β€œ π‘₯))
61 fvelrnb 6953 . . . . . 6 ((𝑙 ∈ (LIdealβ€˜π‘†) ↦ {π‘˜ ∈ 𝐡 ∣ 𝑙 βŠ† π‘˜}) Fn (LIdealβ€˜π‘†) β†’ ((◑𝐺 β€œ π‘₯) ∈ ran (𝑙 ∈ (LIdealβ€˜π‘†) ↦ {π‘˜ ∈ 𝐡 ∣ 𝑙 βŠ† π‘˜}) ↔ βˆƒπ‘ ∈ (LIdealβ€˜π‘†)((𝑙 ∈ (LIdealβ€˜π‘†) ↦ {π‘˜ ∈ 𝐡 ∣ 𝑙 βŠ† π‘˜})β€˜π‘) = (◑𝐺 β€œ π‘₯)))
6261biimpar 479 . . . . 5 (((𝑙 ∈ (LIdealβ€˜π‘†) ↦ {π‘˜ ∈ 𝐡 ∣ 𝑙 βŠ† π‘˜}) Fn (LIdealβ€˜π‘†) ∧ βˆƒπ‘ ∈ (LIdealβ€˜π‘†)((𝑙 ∈ (LIdealβ€˜π‘†) ↦ {π‘˜ ∈ 𝐡 ∣ 𝑙 βŠ† π‘˜})β€˜π‘) = (◑𝐺 β€œ π‘₯)) β†’ (◑𝐺 β€œ π‘₯) ∈ ran (𝑙 ∈ (LIdealβ€˜π‘†) ↦ {π‘˜ ∈ 𝐡 ∣ 𝑙 βŠ† π‘˜}))
6327, 60, 62sylancr 588 . . . 4 ((πœ‘ ∧ π‘₯ ∈ (Clsdβ€˜π½)) β†’ (◑𝐺 β€œ π‘₯) ∈ ran (𝑙 ∈ (LIdealβ€˜π‘†) ↦ {π‘˜ ∈ 𝐡 ∣ 𝑙 βŠ† π‘˜}))
642, 3, 4, 26zartopn 32855 . . . . . . 7 (𝑆 ∈ CRing β†’ (𝐾 ∈ (TopOnβ€˜π΅) ∧ ran (𝑙 ∈ (LIdealβ€˜π‘†) ↦ {π‘˜ ∈ 𝐡 ∣ 𝑙 βŠ† π‘˜}) = (Clsdβ€˜πΎ)))
6564simprd 497 . . . . . 6 (𝑆 ∈ CRing β†’ ran (𝑙 ∈ (LIdealβ€˜π‘†) ↦ {π‘˜ ∈ 𝐡 ∣ 𝑙 βŠ† π‘˜}) = (Clsdβ€˜πΎ))
661, 65syl 17 . . . . 5 (πœ‘ β†’ ran (𝑙 ∈ (LIdealβ€˜π‘†) ↦ {π‘˜ ∈ 𝐡 ∣ 𝑙 βŠ† π‘˜}) = (Clsdβ€˜πΎ))
6766adantr 482 . . . 4 ((πœ‘ ∧ π‘₯ ∈ (Clsdβ€˜π½)) β†’ ran (𝑙 ∈ (LIdealβ€˜π‘†) ↦ {π‘˜ ∈ 𝐡 ∣ 𝑙 βŠ† π‘˜}) = (Clsdβ€˜πΎ))
6863, 67eleqtrd 2836 . . 3 ((πœ‘ ∧ π‘₯ ∈ (Clsdβ€˜π½)) β†’ (◑𝐺 β€œ π‘₯) ∈ (Clsdβ€˜πΎ))
6968ralrimiva 3147 . 2 (πœ‘ β†’ βˆ€π‘₯ ∈ (Clsdβ€˜π½)(◑𝐺 β€œ π‘₯) ∈ (Clsdβ€˜πΎ))
70 iscncl 22773 . . 3 ((𝐾 ∈ (TopOnβ€˜π΅) ∧ 𝐽 ∈ (TopOnβ€˜π΄)) β†’ (𝐺 ∈ (𝐾 Cn 𝐽) ↔ (𝐺:𝐡⟢𝐴 ∧ βˆ€π‘₯ ∈ (Clsdβ€˜π½)(◑𝐺 β€œ π‘₯) ∈ (Clsdβ€˜πΎ))))
7170biimpar 479 . 2 (((𝐾 ∈ (TopOnβ€˜π΅) ∧ 𝐽 ∈ (TopOnβ€˜π΄)) ∧ (𝐺:𝐡⟢𝐴 ∧ βˆ€π‘₯ ∈ (Clsdβ€˜π½)(◑𝐺 β€œ π‘₯) ∈ (Clsdβ€˜πΎ))) β†’ 𝐺 ∈ (𝐾 Cn 𝐽))
726, 12, 21, 69, 71syl22anc 838 1 (πœ‘ β†’ 𝐺 ∈ (𝐾 Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   = wceq 1542   ∈ wcel 2107  βˆ€wral 3062  βˆƒwrex 3071  {crab 3433   βŠ† wss 3949   ↦ cmpt 5232  β—‘ccnv 5676  ran crn 5678   β€œ cima 5680   Fn wfn 6539  βŸΆwf 6540  β€˜cfv 6544  (class class class)co 7409  Basecbs 17144  TopOpenctopn 17367  CRingccrg 20057   RingHom crh 20248  LIdealclidl 20783  TopOnctopon 22412  Clsdccld 22520   Cn ccn 22728  PrmIdealcprmidl 32553  Speccrspec 32842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-ac2 10458  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-iin 5001  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-rpss 7713  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-oadd 8470  df-er 8703  df-map 8822  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-dju 9896  df-card 9934  df-ac 10111  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-2 12275  df-3 12276  df-4 12277  df-5 12278  df-6 12279  df-7 12280  df-8 12281  df-9 12282  df-n0 12473  df-z 12559  df-dec 12678  df-uz 12823  df-fz 13485  df-struct 17080  df-sets 17097  df-slot 17115  df-ndx 17127  df-base 17145  df-ress 17174  df-plusg 17210  df-mulr 17211  df-sca 17213  df-vsca 17214  df-ip 17215  df-tset 17216  df-ple 17217  df-rest 17368  df-topn 17369  df-0g 17387  df-mre 17530  df-mgm 18561  df-sgrp 18610  df-mnd 18626  df-mhm 18671  df-submnd 18672  df-grp 18822  df-minusg 18823  df-sbg 18824  df-subg 19003  df-ghm 19090  df-cntz 19181  df-lsm 19504  df-cmn 19650  df-abl 19651  df-mgp 19988  df-ur 20005  df-ring 20058  df-cring 20059  df-rnghom 20251  df-subrg 20317  df-lmod 20473  df-lss 20543  df-lsp 20583  df-sra 20785  df-rgmod 20786  df-lidl 20787  df-rsp 20788  df-lpidl 20881  df-top 22396  df-topon 22413  df-cld 22523  df-cn 22731  df-prmidl 32554  df-mxidl 32576  df-idlsrg 32615  df-rspec 32843
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator