MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mhpdeg Structured version   Visualization version   GIF version

Theorem mhpdeg 22097
Description: All nonzero terms of a homogeneous polynomial have degree 𝑁. (Contributed by Steven Nguyen, 25-Aug-2023.)
Hypotheses
Ref Expression
mhpdeg.h 𝐻 = (𝐼 mHomP 𝑅)
mhpdeg.0 0 = (0g𝑅)
mhpdeg.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
mhpdeg.i (𝜑𝐼𝑉)
mhpdeg.r (𝜑𝑅𝑊)
mhpdeg.n (𝜑𝑁 ∈ ℕ0)
mhpdeg.x (𝜑𝑋 ∈ (𝐻𝑁))
Assertion
Ref Expression
mhpdeg (𝜑 → (𝑋 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁})
Distinct variable groups:   𝑔,   𝐷,𝑔   ,𝐼   𝑔,𝑁
Allowed substitution hints:   𝜑(𝑔,)   𝐷()   𝑅(𝑔,)   𝐻(𝑔,)   𝐼(𝑔)   𝑁()   𝑉(𝑔,)   𝑊(𝑔,)   𝑋(𝑔,)   0 (𝑔,)

Proof of Theorem mhpdeg
StepHypRef Expression
1 mhpdeg.x . 2 (𝜑𝑋 ∈ (𝐻𝑁))
2 mhpdeg.h . . . 4 𝐻 = (𝐼 mHomP 𝑅)
3 eqid 2725 . . . 4 (𝐼 mPoly 𝑅) = (𝐼 mPoly 𝑅)
4 eqid 2725 . . . 4 (Base‘(𝐼 mPoly 𝑅)) = (Base‘(𝐼 mPoly 𝑅))
5 mhpdeg.0 . . . 4 0 = (0g𝑅)
6 mhpdeg.d . . . 4 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
7 mhpdeg.i . . . 4 (𝜑𝐼𝑉)
8 mhpdeg.r . . . 4 (𝜑𝑅𝑊)
9 mhpdeg.n . . . 4 (𝜑𝑁 ∈ ℕ0)
102, 3, 4, 5, 6, 7, 8, 9ismhp 22093 . . 3 (𝜑 → (𝑋 ∈ (𝐻𝑁) ↔ (𝑋 ∈ (Base‘(𝐼 mPoly 𝑅)) ∧ (𝑋 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁})))
1110simplbda 498 . 2 ((𝜑𝑋 ∈ (𝐻𝑁)) → (𝑋 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁})
121, 11mpdan 685 1 (𝜑 → (𝑋 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  {crab 3418  wss 3944  ccnv 5677  cima 5681  cfv 6549  (class class class)co 7419   supp csupp 8165  m cmap 8845  Fincfn 8964  cn 12250  0cn0 12510  Basecbs 17188  s cress 17217  0gc0g 17429   Σg cgsu 17430  fldccnfld 21301   mPoly cmpl 21861   mHomP cmhp 22082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pr 5429  ax-un 7741  ax-cnex 11201  ax-1cn 11203  ax-addcl 11205
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-nn 12251  df-n0 12511  df-mhp 22089
This theorem is referenced by:  mhpmulcl  22101  mhpaddcl  22103  mhpinvcl  22104  mhpvscacl  22106  mhpind  41964  evlsmhpvvval  41965
  Copyright terms: Public domain W3C validator