MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mhpdeg Structured version   Visualization version   GIF version

Theorem mhpdeg 22032
Description: All nonzero terms of a homogeneous polynomial have degree 𝑁. (Contributed by Steven Nguyen, 25-Aug-2023.)
Hypotheses
Ref Expression
mhpdeg.h 𝐻 = (𝐼 mHomP 𝑅)
mhpdeg.0 0 = (0g𝑅)
mhpdeg.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
mhpdeg.x (𝜑𝑋 ∈ (𝐻𝑁))
Assertion
Ref Expression
mhpdeg (𝜑 → (𝑋 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁})
Distinct variable groups:   𝑔,   𝐷,𝑔   ,𝐼   𝑔,𝑁
Allowed substitution hints:   𝜑(𝑔,)   𝐷()   𝑅(𝑔,)   𝐻(𝑔,)   𝐼(𝑔)   𝑁()   𝑋(𝑔,)   0 (𝑔,)

Proof of Theorem mhpdeg
StepHypRef Expression
1 mhpdeg.x . 2 (𝜑𝑋 ∈ (𝐻𝑁))
2 mhpdeg.h . . . 4 𝐻 = (𝐼 mHomP 𝑅)
3 eqid 2729 . . . 4 (𝐼 mPoly 𝑅) = (𝐼 mPoly 𝑅)
4 eqid 2729 . . . 4 (Base‘(𝐼 mPoly 𝑅)) = (Base‘(𝐼 mPoly 𝑅))
5 mhpdeg.0 . . . 4 0 = (0g𝑅)
6 mhpdeg.d . . . 4 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
72, 1mhprcl 22030 . . . 4 (𝜑𝑁 ∈ ℕ0)
82, 3, 4, 5, 6, 7ismhp 22027 . . 3 (𝜑 → (𝑋 ∈ (𝐻𝑁) ↔ (𝑋 ∈ (Base‘(𝐼 mPoly 𝑅)) ∧ (𝑋 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁})))
98simplbda 499 . 2 ((𝜑𝑋 ∈ (𝐻𝑁)) → (𝑋 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁})
101, 9mpdan 687 1 (𝜑 → (𝑋 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {crab 3405  wss 3914  ccnv 5637  cima 5641  cfv 6511  (class class class)co 7387   supp csupp 8139  m cmap 8799  Fincfn 8918  cn 12186  0cn0 12442  Basecbs 17179  s cress 17200  0gc0g 17402   Σg cgsu 17403  fldccnfld 21264   mPoly cmpl 21815   mHomP cmhp 22016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-1cn 11126  ax-addcl 11128
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-nn 12187  df-n0 12443  df-slot 17152  df-ndx 17164  df-base 17180  df-mpl 21820  df-mhp 22023
This theorem is referenced by:  mhpmulcl  22036  mhpaddcl  22038  mhpinvcl  22039  mhpvscacl  22041  mhpind  42582  evlsmhpvvval  42583
  Copyright terms: Public domain W3C validator