![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mhpdeg | Structured version Visualization version GIF version |
Description: All nonzero terms of a homogeneous polynomial have degree 𝑁. (Contributed by Steven Nguyen, 25-Aug-2023.) |
Ref | Expression |
---|---|
mhpdeg.h | ⊢ 𝐻 = (𝐼 mHomP 𝑅) |
mhpdeg.0 | ⊢ 0 = (0g‘𝑅) |
mhpdeg.d | ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
mhpdeg.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
mhpdeg.r | ⊢ (𝜑 → 𝑅 ∈ 𝑊) |
mhpdeg.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
mhpdeg.x | ⊢ (𝜑 → 𝑋 ∈ (𝐻‘𝑁)) |
Ref | Expression |
---|---|
mhpdeg | ⊢ (𝜑 → (𝑋 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mhpdeg.x | . 2 ⊢ (𝜑 → 𝑋 ∈ (𝐻‘𝑁)) | |
2 | mhpdeg.h | . . . 4 ⊢ 𝐻 = (𝐼 mHomP 𝑅) | |
3 | eqid 2733 | . . . 4 ⊢ (𝐼 mPoly 𝑅) = (𝐼 mPoly 𝑅) | |
4 | eqid 2733 | . . . 4 ⊢ (Base‘(𝐼 mPoly 𝑅)) = (Base‘(𝐼 mPoly 𝑅)) | |
5 | mhpdeg.0 | . . . 4 ⊢ 0 = (0g‘𝑅) | |
6 | mhpdeg.d | . . . 4 ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
7 | mhpdeg.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
8 | mhpdeg.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ 𝑊) | |
9 | mhpdeg.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
10 | 2, 3, 4, 5, 6, 7, 8, 9 | ismhp 21684 | . . 3 ⊢ (𝜑 → (𝑋 ∈ (𝐻‘𝑁) ↔ (𝑋 ∈ (Base‘(𝐼 mPoly 𝑅)) ∧ (𝑋 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}))) |
11 | 10 | simplbda 501 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝐻‘𝑁)) → (𝑋 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}) |
12 | 1, 11 | mpdan 686 | 1 ⊢ (𝜑 → (𝑋 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 {crab 3433 ⊆ wss 3949 ◡ccnv 5676 “ cima 5680 ‘cfv 6544 (class class class)co 7409 supp csupp 8146 ↑m cmap 8820 Fincfn 8939 ℕcn 12212 ℕ0cn0 12472 Basecbs 17144 ↾s cress 17173 0gc0g 17385 Σg cgsu 17386 ℂfldccnfld 20944 mPoly cmpl 21459 mHomP cmhp 21672 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-1cn 11168 ax-addcl 11170 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-nn 12213 df-n0 12473 df-mhp 21676 |
This theorem is referenced by: mhpmulcl 21692 mhpaddcl 21694 mhpinvcl 21695 mhpvscacl 21697 mhpind 41166 evlsmhpvvval 41167 |
Copyright terms: Public domain | W3C validator |