![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mhpdeg | Structured version Visualization version GIF version |
Description: All nonzero terms of a homogeneous polynomial have degree 𝑁. (Contributed by Steven Nguyen, 25-Aug-2023.) |
Ref | Expression |
---|---|
mhpdeg.h | ⊢ 𝐻 = (𝐼 mHomP 𝑅) |
mhpdeg.0 | ⊢ 0 = (0g‘𝑅) |
mhpdeg.d | ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
mhpdeg.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
mhpdeg.r | ⊢ (𝜑 → 𝑅 ∈ 𝑊) |
mhpdeg.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
mhpdeg.x | ⊢ (𝜑 → 𝑋 ∈ (𝐻‘𝑁)) |
Ref | Expression |
---|---|
mhpdeg | ⊢ (𝜑 → (𝑋 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mhpdeg.x | . 2 ⊢ (𝜑 → 𝑋 ∈ (𝐻‘𝑁)) | |
2 | mhpdeg.h | . . . 4 ⊢ 𝐻 = (𝐼 mHomP 𝑅) | |
3 | eqid 2725 | . . . 4 ⊢ (𝐼 mPoly 𝑅) = (𝐼 mPoly 𝑅) | |
4 | eqid 2725 | . . . 4 ⊢ (Base‘(𝐼 mPoly 𝑅)) = (Base‘(𝐼 mPoly 𝑅)) | |
5 | mhpdeg.0 | . . . 4 ⊢ 0 = (0g‘𝑅) | |
6 | mhpdeg.d | . . . 4 ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
7 | mhpdeg.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
8 | mhpdeg.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ 𝑊) | |
9 | mhpdeg.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
10 | 2, 3, 4, 5, 6, 7, 8, 9 | ismhp 22093 | . . 3 ⊢ (𝜑 → (𝑋 ∈ (𝐻‘𝑁) ↔ (𝑋 ∈ (Base‘(𝐼 mPoly 𝑅)) ∧ (𝑋 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}))) |
11 | 10 | simplbda 498 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝐻‘𝑁)) → (𝑋 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}) |
12 | 1, 11 | mpdan 685 | 1 ⊢ (𝜑 → (𝑋 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 {crab 3418 ⊆ wss 3944 ◡ccnv 5677 “ cima 5681 ‘cfv 6549 (class class class)co 7419 supp csupp 8165 ↑m cmap 8845 Fincfn 8964 ℕcn 12250 ℕ0cn0 12510 Basecbs 17188 ↾s cress 17217 0gc0g 17429 Σg cgsu 17430 ℂfldccnfld 21301 mPoly cmpl 21861 mHomP cmhp 22082 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pr 5429 ax-un 7741 ax-cnex 11201 ax-1cn 11203 ax-addcl 11205 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-nn 12251 df-n0 12511 df-mhp 22089 |
This theorem is referenced by: mhpmulcl 22101 mhpaddcl 22103 mhpinvcl 22104 mhpvscacl 22106 mhpind 41964 evlsmhpvvval 41965 |
Copyright terms: Public domain | W3C validator |