| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mhpmpl | Structured version Visualization version GIF version | ||
| Description: A homogeneous polynomial is a polynomial. (Contributed by Steven Nguyen, 25-Aug-2023.) |
| Ref | Expression |
|---|---|
| mhpmpl.h | ⊢ 𝐻 = (𝐼 mHomP 𝑅) |
| mhpmpl.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| mhpmpl.b | ⊢ 𝐵 = (Base‘𝑃) |
| mhpmpl.x | ⊢ (𝜑 → 𝑋 ∈ (𝐻‘𝑁)) |
| Ref | Expression |
|---|---|
| mhpmpl | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mhpmpl.x | . 2 ⊢ (𝜑 → 𝑋 ∈ (𝐻‘𝑁)) | |
| 2 | mhpmpl.h | . . . 4 ⊢ 𝐻 = (𝐼 mHomP 𝑅) | |
| 3 | mhpmpl.p | . . . 4 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
| 4 | mhpmpl.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
| 5 | eqid 2731 | . . . 4 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 6 | eqid 2731 | . . . 4 ⊢ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
| 7 | 2, 1 | mhprcl 22056 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| 8 | 2, 3, 4, 5, 6, 7 | ismhp 22053 | . . 3 ⊢ (𝜑 → (𝑋 ∈ (𝐻‘𝑁) ↔ (𝑋 ∈ 𝐵 ∧ (𝑋 supp (0g‘𝑅)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}))) |
| 9 | 8 | simprbda 498 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝐻‘𝑁)) → 𝑋 ∈ 𝐵) |
| 10 | 1, 9 | mpdan 687 | 1 ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 {crab 3395 ⊆ wss 3902 ◡ccnv 5615 “ cima 5619 ‘cfv 6481 (class class class)co 7346 supp csupp 8090 ↑m cmap 8750 Fincfn 8869 ℕcn 12122 ℕ0cn0 12378 Basecbs 17117 ↾s cress 17138 0gc0g 17340 Σg cgsu 17341 ℂfldccnfld 21289 mPoly cmpl 21841 mHomP cmhp 22042 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-1cn 11061 ax-addcl 11063 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-nn 12123 df-n0 12379 df-slot 17090 df-ndx 17102 df-base 17118 df-mpl 21846 df-mhp 22049 |
| This theorem is referenced by: mhpmulcl 22062 mhppwdeg 22063 mhpaddcl 22064 mhpinvcl 22065 mhpsubg 22066 mhpvscacl 22067 mhpind 42626 evlsmhpvvval 42627 mhphf 42629 |
| Copyright terms: Public domain | W3C validator |