| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mhpmpl | Structured version Visualization version GIF version | ||
| Description: A homogeneous polynomial is a polynomial. (Contributed by Steven Nguyen, 25-Aug-2023.) |
| Ref | Expression |
|---|---|
| mhpmpl.h | ⊢ 𝐻 = (𝐼 mHomP 𝑅) |
| mhpmpl.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| mhpmpl.b | ⊢ 𝐵 = (Base‘𝑃) |
| mhpmpl.x | ⊢ (𝜑 → 𝑋 ∈ (𝐻‘𝑁)) |
| Ref | Expression |
|---|---|
| mhpmpl | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mhpmpl.x | . 2 ⊢ (𝜑 → 𝑋 ∈ (𝐻‘𝑁)) | |
| 2 | mhpmpl.h | . . . 4 ⊢ 𝐻 = (𝐼 mHomP 𝑅) | |
| 3 | mhpmpl.p | . . . 4 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
| 4 | mhpmpl.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
| 5 | eqid 2733 | . . . 4 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 6 | eqid 2733 | . . . 4 ⊢ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
| 7 | 2, 1 | mhprcl 22059 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| 8 | 2, 3, 4, 5, 6, 7 | ismhp 22056 | . . 3 ⊢ (𝜑 → (𝑋 ∈ (𝐻‘𝑁) ↔ (𝑋 ∈ 𝐵 ∧ (𝑋 supp (0g‘𝑅)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}))) |
| 9 | 8 | simprbda 498 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝐻‘𝑁)) → 𝑋 ∈ 𝐵) |
| 10 | 1, 9 | mpdan 687 | 1 ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 {crab 3396 ⊆ wss 3898 ◡ccnv 5618 “ cima 5622 ‘cfv 6486 (class class class)co 7352 supp csupp 8096 ↑m cmap 8756 Fincfn 8875 ℕcn 12132 ℕ0cn0 12388 Basecbs 17122 ↾s cress 17143 0gc0g 17345 Σg cgsu 17346 ℂfldccnfld 21293 mPoly cmpl 21845 mHomP cmhp 22045 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-1cn 11071 ax-addcl 11073 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-nn 12133 df-n0 12389 df-slot 17095 df-ndx 17107 df-base 17123 df-mpl 21850 df-mhp 22052 |
| This theorem is referenced by: mhpmulcl 22065 mhppwdeg 22066 mhpaddcl 22067 mhpinvcl 22068 mhpsubg 22069 mhpvscacl 22070 mhpind 42712 evlsmhpvvval 42713 mhphf 42715 |
| Copyright terms: Public domain | W3C validator |