![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mhpmpl | Structured version Visualization version GIF version |
Description: A homogeneous polynomial is a polynomial. (Contributed by Steven Nguyen, 25-Aug-2023.) |
Ref | Expression |
---|---|
mhpmpl.h | ⊢ 𝐻 = (𝐼 mHomP 𝑅) |
mhpmpl.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
mhpmpl.b | ⊢ 𝐵 = (Base‘𝑃) |
mhpmpl.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
mhpmpl.r | ⊢ (𝜑 → 𝑅 ∈ 𝑊) |
mhpmpl.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
mhpmpl.x | ⊢ (𝜑 → 𝑋 ∈ (𝐻‘𝑁)) |
Ref | Expression |
---|---|
mhpmpl | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mhpmpl.x | . 2 ⊢ (𝜑 → 𝑋 ∈ (𝐻‘𝑁)) | |
2 | mhpmpl.h | . . . 4 ⊢ 𝐻 = (𝐼 mHomP 𝑅) | |
3 | mhpmpl.p | . . . 4 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
4 | mhpmpl.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
5 | eqid 2730 | . . . 4 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
6 | eqid 2730 | . . . 4 ⊢ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
7 | mhpmpl.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
8 | mhpmpl.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ 𝑊) | |
9 | mhpmpl.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
10 | 2, 3, 4, 5, 6, 7, 8, 9 | ismhp 21903 | . . 3 ⊢ (𝜑 → (𝑋 ∈ (𝐻‘𝑁) ↔ (𝑋 ∈ 𝐵 ∧ (𝑋 supp (0g‘𝑅)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}))) |
11 | 10 | simprbda 497 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝐻‘𝑁)) → 𝑋 ∈ 𝐵) |
12 | 1, 11 | mpdan 683 | 1 ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2104 {crab 3430 ⊆ wss 3947 ◡ccnv 5674 “ cima 5678 ‘cfv 6542 (class class class)co 7411 supp csupp 8148 ↑m cmap 8822 Fincfn 8941 ℕcn 12216 ℕ0cn0 12476 Basecbs 17148 ↾s cress 17177 0gc0g 17389 Σg cgsu 17390 ℂfldccnfld 21144 mPoly cmpl 21678 mHomP cmhp 21891 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-1cn 11170 ax-addcl 11172 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-nn 12217 df-n0 12477 df-mhp 21895 |
This theorem is referenced by: mhpmulcl 21911 mhppwdeg 21912 mhpaddcl 21913 mhpinvcl 21914 mhpsubg 21915 mhpvscacl 21916 mhpind 41468 evlsmhpvvval 41469 mhphf 41471 |
Copyright terms: Public domain | W3C validator |