MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mhpmpl Structured version   Visualization version   GIF version

Theorem mhpmpl 22038
Description: A homogeneous polynomial is a polynomial. (Contributed by Steven Nguyen, 25-Aug-2023.)
Hypotheses
Ref Expression
mhpmpl.h 𝐻 = (𝐼 mHomP 𝑅)
mhpmpl.p 𝑃 = (𝐼 mPoly 𝑅)
mhpmpl.b 𝐵 = (Base‘𝑃)
mhpmpl.x (𝜑𝑋 ∈ (𝐻𝑁))
Assertion
Ref Expression
mhpmpl (𝜑𝑋𝐵)

Proof of Theorem mhpmpl
Dummy variables 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhpmpl.x . 2 (𝜑𝑋 ∈ (𝐻𝑁))
2 mhpmpl.h . . . 4 𝐻 = (𝐼 mHomP 𝑅)
3 mhpmpl.p . . . 4 𝑃 = (𝐼 mPoly 𝑅)
4 mhpmpl.b . . . 4 𝐵 = (Base‘𝑃)
5 eqid 2730 . . . 4 (0g𝑅) = (0g𝑅)
6 eqid 2730 . . . 4 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
72, 1mhprcl 22037 . . . 4 (𝜑𝑁 ∈ ℕ0)
82, 3, 4, 5, 6, 7ismhp 22034 . . 3 (𝜑 → (𝑋 ∈ (𝐻𝑁) ↔ (𝑋𝐵 ∧ (𝑋 supp (0g𝑅)) ⊆ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁})))
98simprbda 498 . 2 ((𝜑𝑋 ∈ (𝐻𝑁)) → 𝑋𝐵)
101, 9mpdan 687 1 (𝜑𝑋𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {crab 3408  wss 3917  ccnv 5640  cima 5644  cfv 6514  (class class class)co 7390   supp csupp 8142  m cmap 8802  Fincfn 8921  cn 12193  0cn0 12449  Basecbs 17186  s cress 17207  0gc0g 17409   Σg cgsu 17410  fldccnfld 21271   mPoly cmpl 21822   mHomP cmhp 22023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-1cn 11133  ax-addcl 11135
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-nn 12194  df-n0 12450  df-slot 17159  df-ndx 17171  df-base 17187  df-mpl 21827  df-mhp 22030
This theorem is referenced by:  mhpmulcl  22043  mhppwdeg  22044  mhpaddcl  22045  mhpinvcl  22046  mhpsubg  22047  mhpvscacl  22048  mhpind  42589  evlsmhpvvval  42590  mhphf  42592
  Copyright terms: Public domain W3C validator