Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mhpmpl | Structured version Visualization version GIF version |
Description: A homogeneous polynomial is a polynomial. (Contributed by Steven Nguyen, 25-Aug-2023.) |
Ref | Expression |
---|---|
mhpmpl.h | ⊢ 𝐻 = (𝐼 mHomP 𝑅) |
mhpmpl.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
mhpmpl.b | ⊢ 𝐵 = (Base‘𝑃) |
mhpmpl.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
mhpmpl.r | ⊢ (𝜑 → 𝑅 ∈ 𝑊) |
mhpmpl.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
mhpmpl.x | ⊢ (𝜑 → 𝑋 ∈ (𝐻‘𝑁)) |
Ref | Expression |
---|---|
mhpmpl | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mhpmpl.x | . 2 ⊢ (𝜑 → 𝑋 ∈ (𝐻‘𝑁)) | |
2 | mhpmpl.h | . . . 4 ⊢ 𝐻 = (𝐼 mHomP 𝑅) | |
3 | mhpmpl.p | . . . 4 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
4 | mhpmpl.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
5 | eqid 2738 | . . . 4 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
6 | eqid 2738 | . . . 4 ⊢ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
7 | mhpmpl.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
8 | mhpmpl.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ 𝑊) | |
9 | mhpmpl.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
10 | 2, 3, 4, 5, 6, 7, 8, 9 | ismhp 21241 | . . 3 ⊢ (𝜑 → (𝑋 ∈ (𝐻‘𝑁) ↔ (𝑋 ∈ 𝐵 ∧ (𝑋 supp (0g‘𝑅)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}))) |
11 | 10 | simprbda 498 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝐻‘𝑁)) → 𝑋 ∈ 𝐵) |
12 | 1, 11 | mpdan 683 | 1 ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 {crab 3067 ⊆ wss 3883 ◡ccnv 5579 “ cima 5583 ‘cfv 6418 (class class class)co 7255 supp csupp 7948 ↑m cmap 8573 Fincfn 8691 ℕcn 11903 ℕ0cn0 12163 Basecbs 16840 ↾s cress 16867 0gc0g 17067 Σg cgsu 17068 ℂfldccnfld 20510 mPoly cmpl 21019 mHomP cmhp 21229 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-1cn 10860 ax-addcl 10862 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-nn 11904 df-n0 12164 df-mhp 21233 |
This theorem is referenced by: mhpmulcl 21249 mhppwdeg 21250 mhpaddcl 21251 mhpinvcl 21252 mhpsubg 21253 mhpvscacl 21254 mhpind 40206 mhphf 40208 |
Copyright terms: Public domain | W3C validator |