Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mhpmpl | Structured version Visualization version GIF version |
Description: A homogeneous polynomial is a polynomial. (Contributed by Steven Nguyen, 25-Aug-2023.) |
Ref | Expression |
---|---|
mhpmpl.h | ⊢ 𝐻 = (𝐼 mHomP 𝑅) |
mhpmpl.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
mhpmpl.b | ⊢ 𝐵 = (Base‘𝑃) |
mhpmpl.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
mhpmpl.r | ⊢ (𝜑 → 𝑅 ∈ 𝑊) |
mhpmpl.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
mhpmpl.x | ⊢ (𝜑 → 𝑋 ∈ (𝐻‘𝑁)) |
Ref | Expression |
---|---|
mhpmpl | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mhpmpl.x | . 2 ⊢ (𝜑 → 𝑋 ∈ (𝐻‘𝑁)) | |
2 | mhpmpl.h | . . . 4 ⊢ 𝐻 = (𝐼 mHomP 𝑅) | |
3 | mhpmpl.p | . . . 4 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
4 | mhpmpl.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
5 | eqid 2759 | . . . 4 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
6 | eqid 2759 | . . . 4 ⊢ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
7 | mhpmpl.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
8 | mhpmpl.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ 𝑊) | |
9 | mhpmpl.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
10 | 2, 3, 4, 5, 6, 7, 8, 9 | ismhp 20885 | . . 3 ⊢ (𝜑 → (𝑋 ∈ (𝐻‘𝑁) ↔ (𝑋 ∈ 𝐵 ∧ (𝑋 supp (0g‘𝑅)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}))) |
11 | 10 | simprbda 503 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝐻‘𝑁)) → 𝑋 ∈ 𝐵) |
12 | 1, 11 | mpdan 687 | 1 ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2112 {crab 3075 ⊆ wss 3859 ◡ccnv 5524 “ cima 5528 ‘cfv 6336 (class class class)co 7151 supp csupp 7836 ↑m cmap 8417 Fincfn 8528 ℕcn 11675 ℕ0cn0 11935 Basecbs 16542 ↾s cress 16543 0gc0g 16772 Σg cgsu 16773 ℂfldccnfld 20167 mPoly cmpl 20669 mHomP cmhp 20873 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5157 ax-sep 5170 ax-nul 5177 ax-pr 5299 ax-un 7460 ax-cnex 10632 ax-1cn 10634 ax-addcl 10636 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-uni 4800 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-ov 7154 df-oprab 7155 df-mpo 7156 df-om 7581 df-wrecs 7958 df-recs 8019 df-rdg 8057 df-nn 11676 df-n0 11936 df-mhp 20877 |
This theorem is referenced by: mhpmulcl 20893 mhppwdeg 20894 mhpaddcl 20895 mhpinvcl 20896 mhpsubg 20897 mhpvscacl 20898 mhpind 39789 mhphf 39791 |
Copyright terms: Public domain | W3C validator |