MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mhpmpl Structured version   Visualization version   GIF version

Theorem mhpmpl 20888
Description: A homogeneous polynomial is a polynomial. (Contributed by Steven Nguyen, 25-Aug-2023.)
Hypotheses
Ref Expression
mhpmpl.h 𝐻 = (𝐼 mHomP 𝑅)
mhpmpl.p 𝑃 = (𝐼 mPoly 𝑅)
mhpmpl.b 𝐵 = (Base‘𝑃)
mhpmpl.i (𝜑𝐼𝑉)
mhpmpl.r (𝜑𝑅𝑊)
mhpmpl.n (𝜑𝑁 ∈ ℕ0)
mhpmpl.x (𝜑𝑋 ∈ (𝐻𝑁))
Assertion
Ref Expression
mhpmpl (𝜑𝑋𝐵)

Proof of Theorem mhpmpl
Dummy variables 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhpmpl.x . 2 (𝜑𝑋 ∈ (𝐻𝑁))
2 mhpmpl.h . . . 4 𝐻 = (𝐼 mHomP 𝑅)
3 mhpmpl.p . . . 4 𝑃 = (𝐼 mPoly 𝑅)
4 mhpmpl.b . . . 4 𝐵 = (Base‘𝑃)
5 eqid 2759 . . . 4 (0g𝑅) = (0g𝑅)
6 eqid 2759 . . . 4 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
7 mhpmpl.i . . . 4 (𝜑𝐼𝑉)
8 mhpmpl.r . . . 4 (𝜑𝑅𝑊)
9 mhpmpl.n . . . 4 (𝜑𝑁 ∈ ℕ0)
102, 3, 4, 5, 6, 7, 8, 9ismhp 20885 . . 3 (𝜑 → (𝑋 ∈ (𝐻𝑁) ↔ (𝑋𝐵 ∧ (𝑋 supp (0g𝑅)) ⊆ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁})))
1110simprbda 503 . 2 ((𝜑𝑋 ∈ (𝐻𝑁)) → 𝑋𝐵)
121, 11mpdan 687 1 (𝜑𝑋𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2112  {crab 3075  wss 3859  ccnv 5524  cima 5528  cfv 6336  (class class class)co 7151   supp csupp 7836  m cmap 8417  Fincfn 8528  cn 11675  0cn0 11935  Basecbs 16542  s cress 16543  0gc0g 16772   Σg cgsu 16773  fldccnfld 20167   mPoly cmpl 20669   mHomP cmhp 20873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pr 5299  ax-un 7460  ax-cnex 10632  ax-1cn 10634  ax-addcl 10636
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-ral 3076  df-rex 3077  df-reu 3078  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-tp 4528  df-op 4530  df-uni 4800  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5431  df-eprel 5436  df-po 5444  df-so 5445  df-fr 5484  df-we 5486  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6127  df-ord 6173  df-on 6174  df-lim 6175  df-suc 6176  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7581  df-wrecs 7958  df-recs 8019  df-rdg 8057  df-nn 11676  df-n0 11936  df-mhp 20877
This theorem is referenced by:  mhpmulcl  20893  mhppwdeg  20894  mhpaddcl  20895  mhpinvcl  20896  mhpsubg  20897  mhpvscacl  20898  mhpind  39789  mhphf  39791
  Copyright terms: Public domain W3C validator