MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mhpmpl Structured version   Visualization version   GIF version

Theorem mhpmpl 22171
Description: A homogeneous polynomial is a polynomial. (Contributed by Steven Nguyen, 25-Aug-2023.) Remove hypotheses using reverse closure. (Revised by SN, 4-Aug-2025.)
Hypotheses
Ref Expression
mhpmpl.h 𝐻 = (𝐼 mHomP 𝑅)
mhpmpl.p 𝑃 = (𝐼 mPoly 𝑅)
mhpmpl.b 𝐵 = (Base‘𝑃)
mhpmpl.x (𝜑𝑋 ∈ (𝐻𝑁))
Assertion
Ref Expression
mhpmpl (𝜑𝑋𝐵)

Proof of Theorem mhpmpl
Dummy variables 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhpmpl.x . 2 (𝜑𝑋 ∈ (𝐻𝑁))
2 mhpmpl.h . . . 4 𝐻 = (𝐼 mHomP 𝑅)
3 mhpmpl.p . . . 4 𝑃 = (𝐼 mPoly 𝑅)
4 mhpmpl.b . . . 4 𝐵 = (Base‘𝑃)
5 eqid 2740 . . . 4 (0g𝑅) = (0g𝑅)
6 eqid 2740 . . . 4 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
7 reldmmhp 22164 . . . . 5 Rel dom mHomP
87, 2, 1elfvov1 7490 . . . 4 (𝜑𝐼 ∈ V)
97, 2, 1elfvov2 7491 . . . 4 (𝜑𝑅 ∈ V)
102, 1mhprcl 22170 . . . 4 (𝜑𝑁 ∈ ℕ0)
112, 3, 4, 5, 6, 8, 9, 10ismhp 22167 . . 3 (𝜑 → (𝑋 ∈ (𝐻𝑁) ↔ (𝑋𝐵 ∧ (𝑋 supp (0g𝑅)) ⊆ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁})))
1211simprbda 498 . 2 ((𝜑𝑋 ∈ (𝐻𝑁)) → 𝑋𝐵)
131, 12mpdan 686 1 (𝜑𝑋𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  {crab 3443  Vcvv 3488  wss 3976  ccnv 5699  cima 5703  cfv 6573  (class class class)co 7448   supp csupp 8201  m cmap 8884  Fincfn 9003  cn 12293  0cn0 12553  Basecbs 17258  s cress 17287  0gc0g 17499   Σg cgsu 17500  fldccnfld 21387   mPoly cmpl 21949   mHomP cmhp 22156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-1cn 11242  ax-addcl 11244
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-nn 12294  df-n0 12554  df-mhp 22163
This theorem is referenced by:  mhpmulcl  22176  mhppwdeg  22177  mhpaddcl  22178  mhpinvcl  22179  mhpsubg  22180  mhpvscacl  22181  mhpind  42549  evlsmhpvvval  42550  mhphf  42552
  Copyright terms: Public domain W3C validator