| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ismhp2 | Structured version Visualization version GIF version | ||
| Description: Deduce a homogeneous polynomial from its properties. (Contributed by SN, 25-May-2024.) |
| Ref | Expression |
|---|---|
| ismhp.h | ⊢ 𝐻 = (𝐼 mHomP 𝑅) |
| ismhp.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| ismhp.b | ⊢ 𝐵 = (Base‘𝑃) |
| ismhp.0 | ⊢ 0 = (0g‘𝑅) |
| ismhp.d | ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
| ismhp.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| ismhp2.1 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| ismhp2.2 | ⊢ (𝜑 → (𝑋 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}) |
| Ref | Expression |
|---|---|
| ismhp2 | ⊢ (𝜑 → 𝑋 ∈ (𝐻‘𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismhp2.1 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 2 | ismhp2.2 | . 2 ⊢ (𝜑 → (𝑋 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}) | |
| 3 | ismhp.h | . . 3 ⊢ 𝐻 = (𝐼 mHomP 𝑅) | |
| 4 | ismhp.p | . . 3 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
| 5 | ismhp.b | . . 3 ⊢ 𝐵 = (Base‘𝑃) | |
| 6 | ismhp.0 | . . 3 ⊢ 0 = (0g‘𝑅) | |
| 7 | ismhp.d | . . 3 ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
| 8 | ismhp.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 9 | 3, 4, 5, 6, 7, 8 | ismhp 22083 | . 2 ⊢ (𝜑 → (𝑋 ∈ (𝐻‘𝑁) ↔ (𝑋 ∈ 𝐵 ∧ (𝑋 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}))) |
| 10 | 1, 2, 9 | mpbir2and 713 | 1 ⊢ (𝜑 → 𝑋 ∈ (𝐻‘𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3420 ⊆ wss 3931 ◡ccnv 5658 “ cima 5662 ‘cfv 6536 (class class class)co 7410 supp csupp 8164 ↑m cmap 8845 Fincfn 8964 ℕcn 12245 ℕ0cn0 12506 Basecbs 17233 ↾s cress 17256 0gc0g 17458 Σg cgsu 17459 ℂfldccnfld 21320 mPoly cmpl 21871 mHomP cmhp 22072 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-1cn 11192 ax-addcl 11194 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-nn 12246 df-n0 12507 df-slot 17206 df-ndx 17218 df-base 17234 df-mpl 21876 df-mhp 22079 |
| This theorem is referenced by: mhp0cl 22089 mhpaddcl 22094 mhpinvcl 22095 mhpvscacl 22097 mhpind 42584 |
| Copyright terms: Public domain | W3C validator |