MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismhp2 Structured version   Visualization version   GIF version

Theorem ismhp2 22026
Description: Deduce a homogeneous polynomial from its properties. (Contributed by SN, 25-May-2024.)
Hypotheses
Ref Expression
ismhp.h 𝐻 = (𝐼 mHomP 𝑅)
ismhp.p 𝑃 = (𝐼 mPoly 𝑅)
ismhp.b 𝐵 = (Base‘𝑃)
ismhp.0 0 = (0g𝑅)
ismhp.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
ismhp.n (𝜑𝑁 ∈ ℕ0)
ismhp2.1 (𝜑𝑋𝐵)
ismhp2.2 (𝜑 → (𝑋 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁})
Assertion
Ref Expression
ismhp2 (𝜑𝑋 ∈ (𝐻𝑁))
Distinct variable groups:   ,𝐼   𝐷,𝑔   𝑔,𝑁   𝑔,
Allowed substitution hints:   𝜑(𝑔,)   𝐵(𝑔,)   𝐷()   𝑃(𝑔,)   𝑅(𝑔,)   𝐻(𝑔,)   𝐼(𝑔)   𝑁()   𝑋(𝑔,)   0 (𝑔,)

Proof of Theorem ismhp2
StepHypRef Expression
1 ismhp2.1 . 2 (𝜑𝑋𝐵)
2 ismhp2.2 . 2 (𝜑 → (𝑋 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁})
3 ismhp.h . . 3 𝐻 = (𝐼 mHomP 𝑅)
4 ismhp.p . . 3 𝑃 = (𝐼 mPoly 𝑅)
5 ismhp.b . . 3 𝐵 = (Base‘𝑃)
6 ismhp.0 . . 3 0 = (0g𝑅)
7 ismhp.d . . 3 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
8 ismhp.n . . 3 (𝜑𝑁 ∈ ℕ0)
93, 4, 5, 6, 7, 8ismhp 22025 . 2 (𝜑 → (𝑋 ∈ (𝐻𝑁) ↔ (𝑋𝐵 ∧ (𝑋 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁})))
101, 2, 9mpbir2and 713 1 (𝜑𝑋 ∈ (𝐻𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {crab 3394  wss 3903  ccnv 5618  cima 5622  cfv 6482  (class class class)co 7349   supp csupp 8093  m cmap 8753  Fincfn 8872  cn 12128  0cn0 12384  Basecbs 17120  s cress 17141  0gc0g 17343   Σg cgsu 17344  fldccnfld 21261   mPoly cmpl 21813   mHomP cmhp 22014
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-1cn 11067  ax-addcl 11069
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-nn 12129  df-n0 12385  df-slot 17093  df-ndx 17105  df-base 17121  df-mpl 21818  df-mhp 22021
This theorem is referenced by:  mhp0cl  22031  mhpaddcl  22036  mhpinvcl  22037  mhpvscacl  22039  mhpind  42567
  Copyright terms: Public domain W3C validator