![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ismhp2 | Structured version Visualization version GIF version |
Description: Deduce a homogeneous polynomial from its properties. (Contributed by SN, 25-May-2024.) |
Ref | Expression |
---|---|
mhpfval.h | ⊢ 𝐻 = (𝐼 mHomP 𝑅) |
mhpfval.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
mhpfval.b | ⊢ 𝐵 = (Base‘𝑃) |
mhpfval.0 | ⊢ 0 = (0g‘𝑅) |
mhpfval.d | ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
mhpfval.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
mhpfval.r | ⊢ (𝜑 → 𝑅 ∈ 𝑊) |
mhpval.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
ismhp2.1 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
ismhp2.2 | ⊢ (𝜑 → (𝑋 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}) |
Ref | Expression |
---|---|
ismhp2 | ⊢ (𝜑 → 𝑋 ∈ (𝐻‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismhp2.1 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
2 | ismhp2.2 | . 2 ⊢ (𝜑 → (𝑋 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}) | |
3 | mhpfval.h | . . 3 ⊢ 𝐻 = (𝐼 mHomP 𝑅) | |
4 | mhpfval.p | . . 3 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
5 | mhpfval.b | . . 3 ⊢ 𝐵 = (Base‘𝑃) | |
6 | mhpfval.0 | . . 3 ⊢ 0 = (0g‘𝑅) | |
7 | mhpfval.d | . . 3 ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
8 | mhpfval.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
9 | mhpfval.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑊) | |
10 | mhpval.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
11 | 3, 4, 5, 6, 7, 8, 9, 10 | ismhp 22137 | . 2 ⊢ (𝜑 → (𝑋 ∈ (𝐻‘𝑁) ↔ (𝑋 ∈ 𝐵 ∧ (𝑋 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}))) |
12 | 1, 2, 11 | mpbir2and 711 | 1 ⊢ (𝜑 → 𝑋 ∈ (𝐻‘𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 {crab 3419 ⊆ wss 3947 ◡ccnv 5683 “ cima 5687 ‘cfv 6556 (class class class)co 7426 supp csupp 8176 ↑m cmap 8857 Fincfn 8976 ℕcn 12266 ℕ0cn0 12526 Basecbs 17215 ↾s cress 17244 0gc0g 17456 Σg cgsu 17457 ℂfldccnfld 21345 mPoly cmpl 21905 mHomP cmhp 22126 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5292 ax-sep 5306 ax-nul 5313 ax-pr 5435 ax-un 7748 ax-cnex 11216 ax-1cn 11218 ax-addcl 11220 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4916 df-iun 5005 df-br 5156 df-opab 5218 df-mpt 5239 df-tr 5273 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5639 df-we 5641 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6314 df-ord 6381 df-on 6382 df-lim 6383 df-suc 6384 df-iota 6508 df-fun 6558 df-fn 6559 df-f 6560 df-f1 6561 df-fo 6562 df-f1o 6563 df-fv 6564 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7879 df-2nd 8006 df-frecs 8298 df-wrecs 8329 df-recs 8403 df-rdg 8442 df-nn 12267 df-n0 12527 df-mhp 22133 |
This theorem is referenced by: mhp0cl 22142 mhpaddcl 22147 mhpinvcl 22148 mhpvscacl 22150 mhpind 42264 |
Copyright terms: Public domain | W3C validator |