MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismhp2 Structured version   Visualization version   GIF version

Theorem ismhp2 22028
Description: Deduce a homogeneous polynomial from its properties. (Contributed by SN, 25-May-2024.)
Hypotheses
Ref Expression
ismhp.h 𝐻 = (𝐼 mHomP 𝑅)
ismhp.p 𝑃 = (𝐼 mPoly 𝑅)
ismhp.b 𝐵 = (Base‘𝑃)
ismhp.0 0 = (0g𝑅)
ismhp.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
ismhp.n (𝜑𝑁 ∈ ℕ0)
ismhp2.1 (𝜑𝑋𝐵)
ismhp2.2 (𝜑 → (𝑋 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁})
Assertion
Ref Expression
ismhp2 (𝜑𝑋 ∈ (𝐻𝑁))
Distinct variable groups:   ,𝐼   𝐷,𝑔   𝑔,𝑁   𝑔,
Allowed substitution hints:   𝜑(𝑔,)   𝐵(𝑔,)   𝐷()   𝑃(𝑔,)   𝑅(𝑔,)   𝐻(𝑔,)   𝐼(𝑔)   𝑁()   𝑋(𝑔,)   0 (𝑔,)

Proof of Theorem ismhp2
StepHypRef Expression
1 ismhp2.1 . 2 (𝜑𝑋𝐵)
2 ismhp2.2 . 2 (𝜑 → (𝑋 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁})
3 ismhp.h . . 3 𝐻 = (𝐼 mHomP 𝑅)
4 ismhp.p . . 3 𝑃 = (𝐼 mPoly 𝑅)
5 ismhp.b . . 3 𝐵 = (Base‘𝑃)
6 ismhp.0 . . 3 0 = (0g𝑅)
7 ismhp.d . . 3 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
8 ismhp.n . . 3 (𝜑𝑁 ∈ ℕ0)
93, 4, 5, 6, 7, 8ismhp 22027 . 2 (𝜑 → (𝑋 ∈ (𝐻𝑁) ↔ (𝑋𝐵 ∧ (𝑋 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁})))
101, 2, 9mpbir2and 713 1 (𝜑𝑋 ∈ (𝐻𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {crab 3405  wss 3914  ccnv 5637  cima 5641  cfv 6511  (class class class)co 7387   supp csupp 8139  m cmap 8799  Fincfn 8918  cn 12186  0cn0 12442  Basecbs 17179  s cress 17200  0gc0g 17402   Σg cgsu 17403  fldccnfld 21264   mPoly cmpl 21815   mHomP cmhp 22016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-1cn 11126  ax-addcl 11128
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-nn 12187  df-n0 12443  df-slot 17152  df-ndx 17164  df-base 17180  df-mpl 21820  df-mhp 22023
This theorem is referenced by:  mhp0cl  22033  mhpaddcl  22038  mhpinvcl  22039  mhpvscacl  22041  mhpind  42582
  Copyright terms: Public domain W3C validator