MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismhp2 Structured version   Visualization version   GIF version

Theorem ismhp2 22138
Description: Deduce a homogeneous polynomial from its properties. (Contributed by SN, 25-May-2024.)
Hypotheses
Ref Expression
mhpfval.h 𝐻 = (𝐼 mHomP 𝑅)
mhpfval.p 𝑃 = (𝐼 mPoly 𝑅)
mhpfval.b 𝐵 = (Base‘𝑃)
mhpfval.0 0 = (0g𝑅)
mhpfval.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
mhpfval.i (𝜑𝐼𝑉)
mhpfval.r (𝜑𝑅𝑊)
mhpval.n (𝜑𝑁 ∈ ℕ0)
ismhp2.1 (𝜑𝑋𝐵)
ismhp2.2 (𝜑 → (𝑋 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁})
Assertion
Ref Expression
ismhp2 (𝜑𝑋 ∈ (𝐻𝑁))
Distinct variable groups:   𝑔,   ,𝐼   𝐷,𝑔   𝑔,𝑁
Allowed substitution hints:   𝜑(𝑔,)   𝐵(𝑔,)   𝐷()   𝑃(𝑔,)   𝑅(𝑔,)   𝐻(𝑔,)   𝐼(𝑔)   𝑁()   𝑉(𝑔,)   𝑊(𝑔,)   𝑋(𝑔,)   0 (𝑔,)

Proof of Theorem ismhp2
StepHypRef Expression
1 ismhp2.1 . 2 (𝜑𝑋𝐵)
2 ismhp2.2 . 2 (𝜑 → (𝑋 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁})
3 mhpfval.h . . 3 𝐻 = (𝐼 mHomP 𝑅)
4 mhpfval.p . . 3 𝑃 = (𝐼 mPoly 𝑅)
5 mhpfval.b . . 3 𝐵 = (Base‘𝑃)
6 mhpfval.0 . . 3 0 = (0g𝑅)
7 mhpfval.d . . 3 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
8 mhpfval.i . . 3 (𝜑𝐼𝑉)
9 mhpfval.r . . 3 (𝜑𝑅𝑊)
10 mhpval.n . . 3 (𝜑𝑁 ∈ ℕ0)
113, 4, 5, 6, 7, 8, 9, 10ismhp 22137 . 2 (𝜑 → (𝑋 ∈ (𝐻𝑁) ↔ (𝑋𝐵 ∧ (𝑋 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁})))
121, 2, 11mpbir2and 711 1 (𝜑𝑋 ∈ (𝐻𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  {crab 3419  wss 3947  ccnv 5683  cima 5687  cfv 6556  (class class class)co 7426   supp csupp 8176  m cmap 8857  Fincfn 8976  cn 12266  0cn0 12526  Basecbs 17215  s cress 17244  0gc0g 17456   Σg cgsu 17457  fldccnfld 21345   mPoly cmpl 21905   mHomP cmhp 22126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5292  ax-sep 5306  ax-nul 5313  ax-pr 5435  ax-un 7748  ax-cnex 11216  ax-1cn 11218  ax-addcl 11220
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4916  df-iun 5005  df-br 5156  df-opab 5218  df-mpt 5239  df-tr 5273  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5639  df-we 5641  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6314  df-ord 6381  df-on 6382  df-lim 6383  df-suc 6384  df-iota 6508  df-fun 6558  df-fn 6559  df-f 6560  df-f1 6561  df-fo 6562  df-f1o 6563  df-fv 6564  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7879  df-2nd 8006  df-frecs 8298  df-wrecs 8329  df-recs 8403  df-rdg 8442  df-nn 12267  df-n0 12527  df-mhp 22133
This theorem is referenced by:  mhp0cl  22142  mhpaddcl  22147  mhpinvcl  22148  mhpvscacl  22150  mhpind  42264
  Copyright terms: Public domain W3C validator