MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrhmunit Structured version   Visualization version   GIF version

Theorem elrhmunit 20426
Description: Ring homomorphisms preserve unit elements. (Contributed by Thierry Arnoux, 23-Oct-2017.)
Assertion
Ref Expression
elrhmunit ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹𝐴) ∈ (Unit‘𝑆))

Proof of Theorem elrhmunit
StepHypRef Expression
1 simpl 482 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝐹 ∈ (𝑅 RingHom 𝑆))
2 eqid 2731 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
3 eqid 2731 . . . . . 6 (Unit‘𝑅) = (Unit‘𝑅)
42, 3unitss 20295 . . . . 5 (Unit‘𝑅) ⊆ (Base‘𝑅)
5 simpr 484 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝐴 ∈ (Unit‘𝑅))
64, 5sselid 3932 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝐴 ∈ (Base‘𝑅))
7 rhmrcl1 20395 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring)
8 eqid 2731 . . . . . 6 (1r𝑅) = (1r𝑅)
92, 8ringidcl 20184 . . . . 5 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
101, 7, 93syl 18 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (1r𝑅) ∈ (Base‘𝑅))
11 eqid 2731 . . . . . . 7 (∥r𝑅) = (∥r𝑅)
12 eqid 2731 . . . . . . 7 (oppr𝑅) = (oppr𝑅)
13 eqid 2731 . . . . . . 7 (∥r‘(oppr𝑅)) = (∥r‘(oppr𝑅))
143, 8, 11, 12, 13isunit 20292 . . . . . 6 (𝐴 ∈ (Unit‘𝑅) ↔ (𝐴(∥r𝑅)(1r𝑅) ∧ 𝐴(∥r‘(oppr𝑅))(1r𝑅)))
155, 14sylib 218 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐴(∥r𝑅)(1r𝑅) ∧ 𝐴(∥r‘(oppr𝑅))(1r𝑅)))
1615simpld 494 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝐴(∥r𝑅)(1r𝑅))
17 eqid 2731 . . . . 5 (∥r𝑆) = (∥r𝑆)
182, 11, 17rhmdvdsr 20424 . . . 4 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Base‘𝑅) ∧ (1r𝑅) ∈ (Base‘𝑅)) ∧ 𝐴(∥r𝑅)(1r𝑅)) → (𝐹𝐴)(∥r𝑆)(𝐹‘(1r𝑅)))
191, 6, 10, 16, 18syl31anc 1375 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹𝐴)(∥r𝑆)(𝐹‘(1r𝑅)))
20 eqid 2731 . . . . . 6 (1r𝑆) = (1r𝑆)
218, 20rhm1 20407 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹‘(1r𝑅)) = (1r𝑆))
2221breq2d 5103 . . . 4 (𝐹 ∈ (𝑅 RingHom 𝑆) → ((𝐹𝐴)(∥r𝑆)(𝐹‘(1r𝑅)) ↔ (𝐹𝐴)(∥r𝑆)(1r𝑆)))
2322adantr 480 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → ((𝐹𝐴)(∥r𝑆)(𝐹‘(1r𝑅)) ↔ (𝐹𝐴)(∥r𝑆)(1r𝑆)))
2419, 23mpbid 232 . 2 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹𝐴)(∥r𝑆)(1r𝑆))
25 rhmopp 20425 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ ((oppr𝑅) RingHom (oppr𝑆)))
2625adantr 480 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝐹 ∈ ((oppr𝑅) RingHom (oppr𝑆)))
2715simprd 495 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝐴(∥r‘(oppr𝑅))(1r𝑅))
2812, 2opprbas 20262 . . . . 5 (Base‘𝑅) = (Base‘(oppr𝑅))
29 eqid 2731 . . . . 5 (∥r‘(oppr𝑆)) = (∥r‘(oppr𝑆))
3028, 13, 29rhmdvdsr 20424 . . . 4 (((𝐹 ∈ ((oppr𝑅) RingHom (oppr𝑆)) ∧ 𝐴 ∈ (Base‘𝑅) ∧ (1r𝑅) ∈ (Base‘𝑅)) ∧ 𝐴(∥r‘(oppr𝑅))(1r𝑅)) → (𝐹𝐴)(∥r‘(oppr𝑆))(𝐹‘(1r𝑅)))
3126, 6, 10, 27, 30syl31anc 1375 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹𝐴)(∥r‘(oppr𝑆))(𝐹‘(1r𝑅)))
3221breq2d 5103 . . . 4 (𝐹 ∈ (𝑅 RingHom 𝑆) → ((𝐹𝐴)(∥r‘(oppr𝑆))(𝐹‘(1r𝑅)) ↔ (𝐹𝐴)(∥r‘(oppr𝑆))(1r𝑆)))
3332adantr 480 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → ((𝐹𝐴)(∥r‘(oppr𝑆))(𝐹‘(1r𝑅)) ↔ (𝐹𝐴)(∥r‘(oppr𝑆))(1r𝑆)))
3431, 33mpbid 232 . 2 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹𝐴)(∥r‘(oppr𝑆))(1r𝑆))
35 eqid 2731 . . 3 (Unit‘𝑆) = (Unit‘𝑆)
36 eqid 2731 . . 3 (oppr𝑆) = (oppr𝑆)
3735, 20, 17, 36, 29isunit 20292 . 2 ((𝐹𝐴) ∈ (Unit‘𝑆) ↔ ((𝐹𝐴)(∥r𝑆)(1r𝑆) ∧ (𝐹𝐴)(∥r‘(oppr𝑆))(1r𝑆)))
3824, 34, 37sylanbrc 583 1 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹𝐴) ∈ (Unit‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2111   class class class wbr 5091  cfv 6481  (class class class)co 7346  Basecbs 17120  1rcur 20100  Ringcrg 20152  opprcoppr 20255  rcdsr 20273  Unitcui 20274   RingHom crh 20388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-mulr 17175  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-grp 18849  df-minusg 18850  df-ghm 19126  df-cmn 19695  df-abl 19696  df-mgp 20060  df-rng 20072  df-ur 20101  df-ring 20154  df-oppr 20256  df-dvdsr 20276  df-unit 20277  df-rhm 20391
This theorem is referenced by:  rhmunitinv  20427  imadrhmcl  20713  ply1asclunit  33535  qqhval2lem  33992  fldhmf1  42129
  Copyright terms: Public domain W3C validator