Proof of Theorem elrhmunit
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simpl 482 | . . . 4
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝐹 ∈ (𝑅 RingHom 𝑆)) | 
| 2 |  | eqid 2737 | . . . . . 6
⊢
(Base‘𝑅) =
(Base‘𝑅) | 
| 3 |  | eqid 2737 | . . . . . 6
⊢
(Unit‘𝑅) =
(Unit‘𝑅) | 
| 4 | 2, 3 | unitss 20376 | . . . . 5
⊢
(Unit‘𝑅)
⊆ (Base‘𝑅) | 
| 5 |  | simpr 484 | . . . . 5
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝐴 ∈ (Unit‘𝑅)) | 
| 6 | 4, 5 | sselid 3981 | . . . 4
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝐴 ∈ (Base‘𝑅)) | 
| 7 |  | rhmrcl1 20476 | . . . . 5
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring) | 
| 8 |  | eqid 2737 | . . . . . 6
⊢
(1r‘𝑅) = (1r‘𝑅) | 
| 9 | 2, 8 | ringidcl 20262 | . . . . 5
⊢ (𝑅 ∈ Ring →
(1r‘𝑅)
∈ (Base‘𝑅)) | 
| 10 | 1, 7, 9 | 3syl 18 | . . . 4
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (1r‘𝑅) ∈ (Base‘𝑅)) | 
| 11 |  | eqid 2737 | . . . . . . 7
⊢
(∥r‘𝑅) = (∥r‘𝑅) | 
| 12 |  | eqid 2737 | . . . . . . 7
⊢
(oppr‘𝑅) = (oppr‘𝑅) | 
| 13 |  | eqid 2737 | . . . . . . 7
⊢
(∥r‘(oppr‘𝑅)) =
(∥r‘(oppr‘𝑅)) | 
| 14 | 3, 8, 11, 12, 13 | isunit 20373 | . . . . . 6
⊢ (𝐴 ∈ (Unit‘𝑅) ↔ (𝐴(∥r‘𝑅)(1r‘𝑅) ∧ 𝐴(∥r‘(oppr‘𝑅))(1r‘𝑅))) | 
| 15 | 5, 14 | sylib 218 | . . . . 5
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐴(∥r‘𝑅)(1r‘𝑅) ∧ 𝐴(∥r‘(oppr‘𝑅))(1r‘𝑅))) | 
| 16 | 15 | simpld 494 | . . . 4
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝐴(∥r‘𝑅)(1r‘𝑅)) | 
| 17 |  | eqid 2737 | . . . . 5
⊢
(∥r‘𝑆) = (∥r‘𝑆) | 
| 18 | 2, 11, 17 | rhmdvdsr 20508 | . . . 4
⊢ (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Base‘𝑅) ∧ (1r‘𝑅) ∈ (Base‘𝑅)) ∧ 𝐴(∥r‘𝑅)(1r‘𝑅)) → (𝐹‘𝐴)(∥r‘𝑆)(𝐹‘(1r‘𝑅))) | 
| 19 | 1, 6, 10, 16, 18 | syl31anc 1375 | . . 3
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹‘𝐴)(∥r‘𝑆)(𝐹‘(1r‘𝑅))) | 
| 20 |  | eqid 2737 | . . . . . 6
⊢
(1r‘𝑆) = (1r‘𝑆) | 
| 21 | 8, 20 | rhm1 20489 | . . . . 5
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹‘(1r‘𝑅)) = (1r‘𝑆)) | 
| 22 | 21 | breq2d 5155 | . . . 4
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → ((𝐹‘𝐴)(∥r‘𝑆)(𝐹‘(1r‘𝑅)) ↔ (𝐹‘𝐴)(∥r‘𝑆)(1r‘𝑆))) | 
| 23 | 22 | adantr 480 | . . 3
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → ((𝐹‘𝐴)(∥r‘𝑆)(𝐹‘(1r‘𝑅)) ↔ (𝐹‘𝐴)(∥r‘𝑆)(1r‘𝑆))) | 
| 24 | 19, 23 | mpbid 232 | . 2
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹‘𝐴)(∥r‘𝑆)(1r‘𝑆)) | 
| 25 |  | rhmopp 20509 | . . . . 5
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ ((oppr‘𝑅) RingHom
(oppr‘𝑆))) | 
| 26 | 25 | adantr 480 | . . . 4
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝐹 ∈ ((oppr‘𝑅) RingHom
(oppr‘𝑆))) | 
| 27 | 15 | simprd 495 | . . . 4
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝐴(∥r‘(oppr‘𝑅))(1r‘𝑅)) | 
| 28 | 12, 2 | opprbas 20341 | . . . . 5
⊢
(Base‘𝑅) =
(Base‘(oppr‘𝑅)) | 
| 29 |  | eqid 2737 | . . . . 5
⊢
(∥r‘(oppr‘𝑆)) =
(∥r‘(oppr‘𝑆)) | 
| 30 | 28, 13, 29 | rhmdvdsr 20508 | . . . 4
⊢ (((𝐹 ∈
((oppr‘𝑅) RingHom
(oppr‘𝑆)) ∧ 𝐴 ∈ (Base‘𝑅) ∧ (1r‘𝑅) ∈ (Base‘𝑅)) ∧ 𝐴(∥r‘(oppr‘𝑅))(1r‘𝑅)) → (𝐹‘𝐴)(∥r‘(oppr‘𝑆))(𝐹‘(1r‘𝑅))) | 
| 31 | 26, 6, 10, 27, 30 | syl31anc 1375 | . . 3
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹‘𝐴)(∥r‘(oppr‘𝑆))(𝐹‘(1r‘𝑅))) | 
| 32 | 21 | breq2d 5155 | . . . 4
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → ((𝐹‘𝐴)(∥r‘(oppr‘𝑆))(𝐹‘(1r‘𝑅)) ↔ (𝐹‘𝐴)(∥r‘(oppr‘𝑆))(1r‘𝑆))) | 
| 33 | 32 | adantr 480 | . . 3
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → ((𝐹‘𝐴)(∥r‘(oppr‘𝑆))(𝐹‘(1r‘𝑅)) ↔ (𝐹‘𝐴)(∥r‘(oppr‘𝑆))(1r‘𝑆))) | 
| 34 | 31, 33 | mpbid 232 | . 2
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹‘𝐴)(∥r‘(oppr‘𝑆))(1r‘𝑆)) | 
| 35 |  | eqid 2737 | . . 3
⊢
(Unit‘𝑆) =
(Unit‘𝑆) | 
| 36 |  | eqid 2737 | . . 3
⊢
(oppr‘𝑆) = (oppr‘𝑆) | 
| 37 | 35, 20, 17, 36, 29 | isunit 20373 | . 2
⊢ ((𝐹‘𝐴) ∈ (Unit‘𝑆) ↔ ((𝐹‘𝐴)(∥r‘𝑆)(1r‘𝑆) ∧ (𝐹‘𝐴)(∥r‘(oppr‘𝑆))(1r‘𝑆))) | 
| 38 | 24, 34, 37 | sylanbrc 583 | 1
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹‘𝐴) ∈ (Unit‘𝑆)) |