Proof of Theorem unitmulcl
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simp1 1136 | . . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → 𝑅 ∈ Ring) | 
| 2 |  | simp3 1138 | . . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → 𝑌 ∈ 𝑈) | 
| 3 |  | eqid 2736 | . . . . . . 7
⊢
(Base‘𝑅) =
(Base‘𝑅) | 
| 4 |  | unitmulcl.1 | . . . . . . 7
⊢ 𝑈 = (Unit‘𝑅) | 
| 5 | 3, 4 | unitcl 20376 | . . . . . 6
⊢ (𝑌 ∈ 𝑈 → 𝑌 ∈ (Base‘𝑅)) | 
| 6 | 2, 5 | syl 17 | . . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → 𝑌 ∈ (Base‘𝑅)) | 
| 7 |  | simp2 1137 | . . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → 𝑋 ∈ 𝑈) | 
| 8 |  | eqid 2736 | . . . . . . . 8
⊢
(1r‘𝑅) = (1r‘𝑅) | 
| 9 |  | eqid 2736 | . . . . . . . 8
⊢
(∥r‘𝑅) = (∥r‘𝑅) | 
| 10 |  | eqid 2736 | . . . . . . . 8
⊢
(oppr‘𝑅) = (oppr‘𝑅) | 
| 11 |  | eqid 2736 | . . . . . . . 8
⊢
(∥r‘(oppr‘𝑅)) =
(∥r‘(oppr‘𝑅)) | 
| 12 | 4, 8, 9, 10, 11 | isunit 20374 | . . . . . . 7
⊢ (𝑋 ∈ 𝑈 ↔ (𝑋(∥r‘𝑅)(1r‘𝑅) ∧ 𝑋(∥r‘(oppr‘𝑅))(1r‘𝑅))) | 
| 13 | 7, 12 | sylib 218 | . . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → (𝑋(∥r‘𝑅)(1r‘𝑅) ∧ 𝑋(∥r‘(oppr‘𝑅))(1r‘𝑅))) | 
| 14 | 13 | simpld 494 | . . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → 𝑋(∥r‘𝑅)(1r‘𝑅)) | 
| 15 |  | unitmulcl.2 | . . . . . 6
⊢  · =
(.r‘𝑅) | 
| 16 | 3, 9, 15 | dvdsrmul1 20370 | . . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ (Base‘𝑅) ∧ 𝑋(∥r‘𝑅)(1r‘𝑅)) → (𝑋 · 𝑌)(∥r‘𝑅)((1r‘𝑅) · 𝑌)) | 
| 17 | 1, 6, 14, 16 | syl3anc 1372 | . . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → (𝑋 · 𝑌)(∥r‘𝑅)((1r‘𝑅) · 𝑌)) | 
| 18 | 3, 15, 8 | ringlidm 20267 | . . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ (Base‘𝑅)) →
((1r‘𝑅)
·
𝑌) = 𝑌) | 
| 19 | 1, 6, 18 | syl2anc 584 | . . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → ((1r‘𝑅) · 𝑌) = 𝑌) | 
| 20 | 17, 19 | breqtrd 5168 | . . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → (𝑋 · 𝑌)(∥r‘𝑅)𝑌) | 
| 21 | 4, 8, 9, 10, 11 | isunit 20374 | . . . . 5
⊢ (𝑌 ∈ 𝑈 ↔ (𝑌(∥r‘𝑅)(1r‘𝑅) ∧ 𝑌(∥r‘(oppr‘𝑅))(1r‘𝑅))) | 
| 22 | 2, 21 | sylib 218 | . . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → (𝑌(∥r‘𝑅)(1r‘𝑅) ∧ 𝑌(∥r‘(oppr‘𝑅))(1r‘𝑅))) | 
| 23 | 22 | simpld 494 | . . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → 𝑌(∥r‘𝑅)(1r‘𝑅)) | 
| 24 | 3, 9 | dvdsrtr 20369 | . . 3
⊢ ((𝑅 ∈ Ring ∧ (𝑋 · 𝑌)(∥r‘𝑅)𝑌 ∧ 𝑌(∥r‘𝑅)(1r‘𝑅)) → (𝑋 · 𝑌)(∥r‘𝑅)(1r‘𝑅)) | 
| 25 | 1, 20, 23, 24 | syl3anc 1372 | . 2
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → (𝑋 · 𝑌)(∥r‘𝑅)(1r‘𝑅)) | 
| 26 | 10 | opprring 20348 | . . . 4
⊢ (𝑅 ∈ Ring →
(oppr‘𝑅) ∈ Ring) | 
| 27 | 1, 26 | syl 17 | . . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → (oppr‘𝑅) ∈ Ring) | 
| 28 |  | eqid 2736 | . . . . 5
⊢
(.r‘(oppr‘𝑅)) =
(.r‘(oppr‘𝑅)) | 
| 29 | 3, 15, 10, 28 | opprmul 20338 | . . . 4
⊢ (𝑌(.r‘(oppr‘𝑅))𝑋) = (𝑋 · 𝑌) | 
| 30 | 3, 4 | unitcl 20376 | . . . . . . 7
⊢ (𝑋 ∈ 𝑈 → 𝑋 ∈ (Base‘𝑅)) | 
| 31 | 7, 30 | syl 17 | . . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → 𝑋 ∈ (Base‘𝑅)) | 
| 32 | 22 | simprd 495 | . . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → 𝑌(∥r‘(oppr‘𝑅))(1r‘𝑅)) | 
| 33 | 10, 3 | opprbas 20342 | . . . . . . 7
⊢
(Base‘𝑅) =
(Base‘(oppr‘𝑅)) | 
| 34 | 33, 11, 28 | dvdsrmul1 20370 | . . . . . 6
⊢
(((oppr‘𝑅) ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅) ∧ 𝑌(∥r‘(oppr‘𝑅))(1r‘𝑅)) → (𝑌(.r‘(oppr‘𝑅))𝑋)(∥r‘(oppr‘𝑅))((1r‘𝑅)(.r‘(oppr‘𝑅))𝑋)) | 
| 35 | 27, 31, 32, 34 | syl3anc 1372 | . . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → (𝑌(.r‘(oppr‘𝑅))𝑋)(∥r‘(oppr‘𝑅))((1r‘𝑅)(.r‘(oppr‘𝑅))𝑋)) | 
| 36 | 3, 15, 10, 28 | opprmul 20338 | . . . . . 6
⊢
((1r‘𝑅)(.r‘(oppr‘𝑅))𝑋) = (𝑋 · (1r‘𝑅)) | 
| 37 | 3, 15, 8 | ringridm 20268 | . . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅)) → (𝑋 ·
(1r‘𝑅)) =
𝑋) | 
| 38 | 1, 31, 37 | syl2anc 584 | . . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → (𝑋 ·
(1r‘𝑅)) =
𝑋) | 
| 39 | 36, 38 | eqtrid 2788 | . . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → ((1r‘𝑅)(.r‘(oppr‘𝑅))𝑋) = 𝑋) | 
| 40 | 35, 39 | breqtrd 5168 | . . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → (𝑌(.r‘(oppr‘𝑅))𝑋)(∥r‘(oppr‘𝑅))𝑋) | 
| 41 | 29, 40 | eqbrtrrid 5178 | . . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → (𝑋 · 𝑌)(∥r‘(oppr‘𝑅))𝑋) | 
| 42 | 13 | simprd 495 | . . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → 𝑋(∥r‘(oppr‘𝑅))(1r‘𝑅)) | 
| 43 | 33, 11 | dvdsrtr 20369 | . . 3
⊢
(((oppr‘𝑅) ∈ Ring ∧ (𝑋 · 𝑌)(∥r‘(oppr‘𝑅))𝑋 ∧ 𝑋(∥r‘(oppr‘𝑅))(1r‘𝑅)) → (𝑋 · 𝑌)(∥r‘(oppr‘𝑅))(1r‘𝑅)) | 
| 44 | 27, 41, 42, 43 | syl3anc 1372 | . 2
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → (𝑋 · 𝑌)(∥r‘(oppr‘𝑅))(1r‘𝑅)) | 
| 45 | 4, 8, 9, 10, 11 | isunit 20374 | . 2
⊢ ((𝑋 · 𝑌) ∈ 𝑈 ↔ ((𝑋 · 𝑌)(∥r‘𝑅)(1r‘𝑅) ∧ (𝑋 · 𝑌)(∥r‘(oppr‘𝑅))(1r‘𝑅))) | 
| 46 | 25, 44, 45 | sylanbrc 583 | 1
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → (𝑋 · 𝑌) ∈ 𝑈) |