MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unitmulcl Structured version   Visualization version   GIF version

Theorem unitmulcl 19414
Description: The product of units is a unit. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
unitmulcl.1 𝑈 = (Unit‘𝑅)
unitmulcl.2 · = (.r𝑅)
Assertion
Ref Expression
unitmulcl ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (𝑋 · 𝑌) ∈ 𝑈)

Proof of Theorem unitmulcl
StepHypRef Expression
1 simp1 1133 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → 𝑅 ∈ Ring)
2 simp3 1135 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → 𝑌𝑈)
3 eqid 2801 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
4 unitmulcl.1 . . . . . . 7 𝑈 = (Unit‘𝑅)
53, 4unitcl 19409 . . . . . 6 (𝑌𝑈𝑌 ∈ (Base‘𝑅))
62, 5syl 17 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → 𝑌 ∈ (Base‘𝑅))
7 simp2 1134 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → 𝑋𝑈)
8 eqid 2801 . . . . . . . 8 (1r𝑅) = (1r𝑅)
9 eqid 2801 . . . . . . . 8 (∥r𝑅) = (∥r𝑅)
10 eqid 2801 . . . . . . . 8 (oppr𝑅) = (oppr𝑅)
11 eqid 2801 . . . . . . . 8 (∥r‘(oppr𝑅)) = (∥r‘(oppr𝑅))
124, 8, 9, 10, 11isunit 19407 . . . . . . 7 (𝑋𝑈 ↔ (𝑋(∥r𝑅)(1r𝑅) ∧ 𝑋(∥r‘(oppr𝑅))(1r𝑅)))
137, 12sylib 221 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (𝑋(∥r𝑅)(1r𝑅) ∧ 𝑋(∥r‘(oppr𝑅))(1r𝑅)))
1413simpld 498 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → 𝑋(∥r𝑅)(1r𝑅))
15 unitmulcl.2 . . . . . 6 · = (.r𝑅)
163, 9, 15dvdsrmul1 19403 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑌 ∈ (Base‘𝑅) ∧ 𝑋(∥r𝑅)(1r𝑅)) → (𝑋 · 𝑌)(∥r𝑅)((1r𝑅) · 𝑌))
171, 6, 14, 16syl3anc 1368 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (𝑋 · 𝑌)(∥r𝑅)((1r𝑅) · 𝑌))
183, 15, 8ringlidm 19321 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑌 ∈ (Base‘𝑅)) → ((1r𝑅) · 𝑌) = 𝑌)
191, 6, 18syl2anc 587 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → ((1r𝑅) · 𝑌) = 𝑌)
2017, 19breqtrd 5059 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (𝑋 · 𝑌)(∥r𝑅)𝑌)
214, 8, 9, 10, 11isunit 19407 . . . . 5 (𝑌𝑈 ↔ (𝑌(∥r𝑅)(1r𝑅) ∧ 𝑌(∥r‘(oppr𝑅))(1r𝑅)))
222, 21sylib 221 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (𝑌(∥r𝑅)(1r𝑅) ∧ 𝑌(∥r‘(oppr𝑅))(1r𝑅)))
2322simpld 498 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → 𝑌(∥r𝑅)(1r𝑅))
243, 9dvdsrtr 19402 . . 3 ((𝑅 ∈ Ring ∧ (𝑋 · 𝑌)(∥r𝑅)𝑌𝑌(∥r𝑅)(1r𝑅)) → (𝑋 · 𝑌)(∥r𝑅)(1r𝑅))
251, 20, 23, 24syl3anc 1368 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (𝑋 · 𝑌)(∥r𝑅)(1r𝑅))
2610opprring 19381 . . . 4 (𝑅 ∈ Ring → (oppr𝑅) ∈ Ring)
271, 26syl 17 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (oppr𝑅) ∈ Ring)
28 eqid 2801 . . . . 5 (.r‘(oppr𝑅)) = (.r‘(oppr𝑅))
293, 15, 10, 28opprmul 19376 . . . 4 (𝑌(.r‘(oppr𝑅))𝑋) = (𝑋 · 𝑌)
303, 4unitcl 19409 . . . . . . 7 (𝑋𝑈𝑋 ∈ (Base‘𝑅))
317, 30syl 17 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → 𝑋 ∈ (Base‘𝑅))
3222simprd 499 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → 𝑌(∥r‘(oppr𝑅))(1r𝑅))
3310, 3opprbas 19379 . . . . . . 7 (Base‘𝑅) = (Base‘(oppr𝑅))
3433, 11, 28dvdsrmul1 19403 . . . . . 6 (((oppr𝑅) ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅) ∧ 𝑌(∥r‘(oppr𝑅))(1r𝑅)) → (𝑌(.r‘(oppr𝑅))𝑋)(∥r‘(oppr𝑅))((1r𝑅)(.r‘(oppr𝑅))𝑋))
3527, 31, 32, 34syl3anc 1368 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (𝑌(.r‘(oppr𝑅))𝑋)(∥r‘(oppr𝑅))((1r𝑅)(.r‘(oppr𝑅))𝑋))
363, 15, 10, 28opprmul 19376 . . . . . 6 ((1r𝑅)(.r‘(oppr𝑅))𝑋) = (𝑋 · (1r𝑅))
373, 15, 8ringridm 19322 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅)) → (𝑋 · (1r𝑅)) = 𝑋)
381, 31, 37syl2anc 587 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (𝑋 · (1r𝑅)) = 𝑋)
3936, 38syl5eq 2848 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → ((1r𝑅)(.r‘(oppr𝑅))𝑋) = 𝑋)
4035, 39breqtrd 5059 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (𝑌(.r‘(oppr𝑅))𝑋)(∥r‘(oppr𝑅))𝑋)
4129, 40eqbrtrrid 5069 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (𝑋 · 𝑌)(∥r‘(oppr𝑅))𝑋)
4213simprd 499 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → 𝑋(∥r‘(oppr𝑅))(1r𝑅))
4333, 11dvdsrtr 19402 . . 3 (((oppr𝑅) ∈ Ring ∧ (𝑋 · 𝑌)(∥r‘(oppr𝑅))𝑋𝑋(∥r‘(oppr𝑅))(1r𝑅)) → (𝑋 · 𝑌)(∥r‘(oppr𝑅))(1r𝑅))
4427, 41, 42, 43syl3anc 1368 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (𝑋 · 𝑌)(∥r‘(oppr𝑅))(1r𝑅))
454, 8, 9, 10, 11isunit 19407 . 2 ((𝑋 · 𝑌) ∈ 𝑈 ↔ ((𝑋 · 𝑌)(∥r𝑅)(1r𝑅) ∧ (𝑋 · 𝑌)(∥r‘(oppr𝑅))(1r𝑅)))
4625, 44, 45sylanbrc 586 1 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (𝑋 · 𝑌) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2112   class class class wbr 5033  cfv 6328  (class class class)co 7139  Basecbs 16479  .rcmulr 16562  1rcur 19248  Ringcrg 19294  opprcoppr 19372  rcdsr 19388  Unitcui 19389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-tpos 7879  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-2 11692  df-3 11693  df-ndx 16482  df-slot 16483  df-base 16485  df-sets 16486  df-plusg 16574  df-mulr 16575  df-0g 16711  df-mgm 17848  df-sgrp 17897  df-mnd 17908  df-grp 18102  df-mgp 19237  df-ur 19249  df-ring 19296  df-oppr 19373  df-dvdsr 19391  df-unit 19392
This theorem is referenced by:  unitmulclb  19415  unitgrp  19417  unitdvcl  19437  irredrmul  19457  subrgugrp  19551  dchrelbasd  25827  dchrptlem2  25853  rdivmuldivd  30917  dvrcan5  30919  qqhghm  31343  qqhrhm  31344
  Copyright terms: Public domain W3C validator