MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unitmulcl Structured version   Visualization version   GIF version

Theorem unitmulcl 20283
Description: The product of units is a unit. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
unitmulcl.1 𝑈 = (Unit‘𝑅)
unitmulcl.2 · = (.r𝑅)
Assertion
Ref Expression
unitmulcl ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (𝑋 · 𝑌) ∈ 𝑈)

Proof of Theorem unitmulcl
StepHypRef Expression
1 simp1 1136 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → 𝑅 ∈ Ring)
2 simp3 1138 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → 𝑌𝑈)
3 eqid 2729 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
4 unitmulcl.1 . . . . . . 7 𝑈 = (Unit‘𝑅)
53, 4unitcl 20278 . . . . . 6 (𝑌𝑈𝑌 ∈ (Base‘𝑅))
62, 5syl 17 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → 𝑌 ∈ (Base‘𝑅))
7 simp2 1137 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → 𝑋𝑈)
8 eqid 2729 . . . . . . . 8 (1r𝑅) = (1r𝑅)
9 eqid 2729 . . . . . . . 8 (∥r𝑅) = (∥r𝑅)
10 eqid 2729 . . . . . . . 8 (oppr𝑅) = (oppr𝑅)
11 eqid 2729 . . . . . . . 8 (∥r‘(oppr𝑅)) = (∥r‘(oppr𝑅))
124, 8, 9, 10, 11isunit 20276 . . . . . . 7 (𝑋𝑈 ↔ (𝑋(∥r𝑅)(1r𝑅) ∧ 𝑋(∥r‘(oppr𝑅))(1r𝑅)))
137, 12sylib 218 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (𝑋(∥r𝑅)(1r𝑅) ∧ 𝑋(∥r‘(oppr𝑅))(1r𝑅)))
1413simpld 494 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → 𝑋(∥r𝑅)(1r𝑅))
15 unitmulcl.2 . . . . . 6 · = (.r𝑅)
163, 9, 15dvdsrmul1 20272 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑌 ∈ (Base‘𝑅) ∧ 𝑋(∥r𝑅)(1r𝑅)) → (𝑋 · 𝑌)(∥r𝑅)((1r𝑅) · 𝑌))
171, 6, 14, 16syl3anc 1373 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (𝑋 · 𝑌)(∥r𝑅)((1r𝑅) · 𝑌))
183, 15, 8ringlidm 20172 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑌 ∈ (Base‘𝑅)) → ((1r𝑅) · 𝑌) = 𝑌)
191, 6, 18syl2anc 584 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → ((1r𝑅) · 𝑌) = 𝑌)
2017, 19breqtrd 5121 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (𝑋 · 𝑌)(∥r𝑅)𝑌)
214, 8, 9, 10, 11isunit 20276 . . . . 5 (𝑌𝑈 ↔ (𝑌(∥r𝑅)(1r𝑅) ∧ 𝑌(∥r‘(oppr𝑅))(1r𝑅)))
222, 21sylib 218 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (𝑌(∥r𝑅)(1r𝑅) ∧ 𝑌(∥r‘(oppr𝑅))(1r𝑅)))
2322simpld 494 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → 𝑌(∥r𝑅)(1r𝑅))
243, 9dvdsrtr 20271 . . 3 ((𝑅 ∈ Ring ∧ (𝑋 · 𝑌)(∥r𝑅)𝑌𝑌(∥r𝑅)(1r𝑅)) → (𝑋 · 𝑌)(∥r𝑅)(1r𝑅))
251, 20, 23, 24syl3anc 1373 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (𝑋 · 𝑌)(∥r𝑅)(1r𝑅))
2610opprring 20250 . . . 4 (𝑅 ∈ Ring → (oppr𝑅) ∈ Ring)
271, 26syl 17 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (oppr𝑅) ∈ Ring)
28 eqid 2729 . . . . 5 (.r‘(oppr𝑅)) = (.r‘(oppr𝑅))
293, 15, 10, 28opprmul 20243 . . . 4 (𝑌(.r‘(oppr𝑅))𝑋) = (𝑋 · 𝑌)
303, 4unitcl 20278 . . . . . . 7 (𝑋𝑈𝑋 ∈ (Base‘𝑅))
317, 30syl 17 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → 𝑋 ∈ (Base‘𝑅))
3222simprd 495 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → 𝑌(∥r‘(oppr𝑅))(1r𝑅))
3310, 3opprbas 20246 . . . . . . 7 (Base‘𝑅) = (Base‘(oppr𝑅))
3433, 11, 28dvdsrmul1 20272 . . . . . 6 (((oppr𝑅) ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅) ∧ 𝑌(∥r‘(oppr𝑅))(1r𝑅)) → (𝑌(.r‘(oppr𝑅))𝑋)(∥r‘(oppr𝑅))((1r𝑅)(.r‘(oppr𝑅))𝑋))
3527, 31, 32, 34syl3anc 1373 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (𝑌(.r‘(oppr𝑅))𝑋)(∥r‘(oppr𝑅))((1r𝑅)(.r‘(oppr𝑅))𝑋))
363, 15, 10, 28opprmul 20243 . . . . . 6 ((1r𝑅)(.r‘(oppr𝑅))𝑋) = (𝑋 · (1r𝑅))
373, 15, 8ringridm 20173 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅)) → (𝑋 · (1r𝑅)) = 𝑋)
381, 31, 37syl2anc 584 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (𝑋 · (1r𝑅)) = 𝑋)
3936, 38eqtrid 2776 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → ((1r𝑅)(.r‘(oppr𝑅))𝑋) = 𝑋)
4035, 39breqtrd 5121 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (𝑌(.r‘(oppr𝑅))𝑋)(∥r‘(oppr𝑅))𝑋)
4129, 40eqbrtrrid 5131 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (𝑋 · 𝑌)(∥r‘(oppr𝑅))𝑋)
4213simprd 495 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → 𝑋(∥r‘(oppr𝑅))(1r𝑅))
4333, 11dvdsrtr 20271 . . 3 (((oppr𝑅) ∈ Ring ∧ (𝑋 · 𝑌)(∥r‘(oppr𝑅))𝑋𝑋(∥r‘(oppr𝑅))(1r𝑅)) → (𝑋 · 𝑌)(∥r‘(oppr𝑅))(1r𝑅))
4427, 41, 42, 43syl3anc 1373 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (𝑋 · 𝑌)(∥r‘(oppr𝑅))(1r𝑅))
454, 8, 9, 10, 11isunit 20276 . 2 ((𝑋 · 𝑌) ∈ 𝑈 ↔ ((𝑋 · 𝑌)(∥r𝑅)(1r𝑅) ∧ (𝑋 · 𝑌)(∥r‘(oppr𝑅))(1r𝑅)))
4625, 44, 45sylanbrc 583 1 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (𝑋 · 𝑌) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5095  cfv 6486  (class class class)co 7353  Basecbs 17138  .rcmulr 17180  1rcur 20084  Ringcrg 20136  opprcoppr 20239  rcdsr 20257  Unitcui 20258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-tpos 8166  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-plusg 17192  df-mulr 17193  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-grp 18833  df-minusg 18834  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-oppr 20240  df-dvdsr 20260  df-unit 20261
This theorem is referenced by:  unitmulclb  20284  unitgrp  20286  unitdvcl  20308  rdivmuldivd  20316  irredrmul  20330  lringuplu  20447  subrgugrp  20494  dchrelbasd  27166  dchrptlem2  27192  dvrcan5  33186  1arithidomlem1  33482  qqhghm  33954  qqhrhm  33955
  Copyright terms: Public domain W3C validator