Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > unitnegcl | Structured version Visualization version GIF version |
Description: The negative of a unit is a unit. (Contributed by Mario Carneiro, 4-Dec-2014.) |
Ref | Expression |
---|---|
unitnegcl.1 | ⊢ 𝑈 = (Unit‘𝑅) |
unitnegcl.2 | ⊢ 𝑁 = (invg‘𝑅) |
Ref | Expression |
---|---|
unitnegcl | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝑁‘𝑋) ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 486 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → 𝑅 ∈ Ring) | |
2 | ringgrp 19597 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
3 | eqid 2739 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
4 | unitnegcl.1 | . . . . . . 7 ⊢ 𝑈 = (Unit‘𝑅) | |
5 | 3, 4 | unitcl 19707 | . . . . . 6 ⊢ (𝑋 ∈ 𝑈 → 𝑋 ∈ (Base‘𝑅)) |
6 | unitnegcl.2 | . . . . . . 7 ⊢ 𝑁 = (invg‘𝑅) | |
7 | 3, 6 | grpinvcl 18445 | . . . . . 6 ⊢ ((𝑅 ∈ Grp ∧ 𝑋 ∈ (Base‘𝑅)) → (𝑁‘𝑋) ∈ (Base‘𝑅)) |
8 | 2, 5, 7 | syl2an 599 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝑁‘𝑋) ∈ (Base‘𝑅)) |
9 | eqid 2739 | . . . . . 6 ⊢ (∥r‘𝑅) = (∥r‘𝑅) | |
10 | 3, 9, 6 | dvdsrneg 19702 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑁‘𝑋) ∈ (Base‘𝑅)) → (𝑁‘𝑋)(∥r‘𝑅)(𝑁‘(𝑁‘𝑋))) |
11 | 8, 10 | syldan 594 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝑁‘𝑋)(∥r‘𝑅)(𝑁‘(𝑁‘𝑋))) |
12 | 3, 6 | grpinvinv 18460 | . . . . 5 ⊢ ((𝑅 ∈ Grp ∧ 𝑋 ∈ (Base‘𝑅)) → (𝑁‘(𝑁‘𝑋)) = 𝑋) |
13 | 2, 5, 12 | syl2an 599 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝑁‘(𝑁‘𝑋)) = 𝑋) |
14 | 11, 13 | breqtrd 5095 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝑁‘𝑋)(∥r‘𝑅)𝑋) |
15 | simpr 488 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ 𝑈) | |
16 | eqid 2739 | . . . . . 6 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
17 | eqid 2739 | . . . . . 6 ⊢ (oppr‘𝑅) = (oppr‘𝑅) | |
18 | eqid 2739 | . . . . . 6 ⊢ (∥r‘(oppr‘𝑅)) = (∥r‘(oppr‘𝑅)) | |
19 | 4, 16, 9, 17, 18 | isunit 19705 | . . . . 5 ⊢ (𝑋 ∈ 𝑈 ↔ (𝑋(∥r‘𝑅)(1r‘𝑅) ∧ 𝑋(∥r‘(oppr‘𝑅))(1r‘𝑅))) |
20 | 15, 19 | sylib 221 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝑋(∥r‘𝑅)(1r‘𝑅) ∧ 𝑋(∥r‘(oppr‘𝑅))(1r‘𝑅))) |
21 | 20 | simpld 498 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → 𝑋(∥r‘𝑅)(1r‘𝑅)) |
22 | 3, 9 | dvdsrtr 19700 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑁‘𝑋)(∥r‘𝑅)𝑋 ∧ 𝑋(∥r‘𝑅)(1r‘𝑅)) → (𝑁‘𝑋)(∥r‘𝑅)(1r‘𝑅)) |
23 | 1, 14, 21, 22 | syl3anc 1373 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝑁‘𝑋)(∥r‘𝑅)(1r‘𝑅)) |
24 | 17 | opprring 19679 | . . . 4 ⊢ (𝑅 ∈ Ring → (oppr‘𝑅) ∈ Ring) |
25 | 24 | adantr 484 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (oppr‘𝑅) ∈ Ring) |
26 | 17, 3 | opprbas 19677 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘(oppr‘𝑅)) |
27 | 17, 6 | opprneg 19683 | . . . . . 6 ⊢ 𝑁 = (invg‘(oppr‘𝑅)) |
28 | 26, 18, 27 | dvdsrneg 19702 | . . . . 5 ⊢ (((oppr‘𝑅) ∈ Ring ∧ (𝑁‘𝑋) ∈ (Base‘𝑅)) → (𝑁‘𝑋)(∥r‘(oppr‘𝑅))(𝑁‘(𝑁‘𝑋))) |
29 | 25, 8, 28 | syl2anc 587 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝑁‘𝑋)(∥r‘(oppr‘𝑅))(𝑁‘(𝑁‘𝑋))) |
30 | 29, 13 | breqtrd 5095 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝑁‘𝑋)(∥r‘(oppr‘𝑅))𝑋) |
31 | 20 | simprd 499 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → 𝑋(∥r‘(oppr‘𝑅))(1r‘𝑅)) |
32 | 26, 18 | dvdsrtr 19700 | . . 3 ⊢ (((oppr‘𝑅) ∈ Ring ∧ (𝑁‘𝑋)(∥r‘(oppr‘𝑅))𝑋 ∧ 𝑋(∥r‘(oppr‘𝑅))(1r‘𝑅)) → (𝑁‘𝑋)(∥r‘(oppr‘𝑅))(1r‘𝑅)) |
33 | 25, 30, 31, 32 | syl3anc 1373 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝑁‘𝑋)(∥r‘(oppr‘𝑅))(1r‘𝑅)) |
34 | 4, 16, 9, 17, 18 | isunit 19705 | . 2 ⊢ ((𝑁‘𝑋) ∈ 𝑈 ↔ ((𝑁‘𝑋)(∥r‘𝑅)(1r‘𝑅) ∧ (𝑁‘𝑋)(∥r‘(oppr‘𝑅))(1r‘𝑅))) |
35 | 23, 33, 34 | sylanbrc 586 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝑁‘𝑋) ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2112 class class class wbr 5069 ‘cfv 6400 Basecbs 16790 Grpcgrp 18395 invgcminusg 18396 1rcur 19546 Ringcrg 19592 opprcoppr 19670 ∥rcdsr 19686 Unitcui 19687 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-rep 5195 ax-sep 5208 ax-nul 5215 ax-pow 5274 ax-pr 5338 ax-un 7544 ax-cnex 10812 ax-resscn 10813 ax-1cn 10814 ax-icn 10815 ax-addcl 10816 ax-addrcl 10817 ax-mulcl 10818 ax-mulrcl 10819 ax-mulcom 10820 ax-addass 10821 ax-mulass 10822 ax-distr 10823 ax-i2m1 10824 ax-1ne0 10825 ax-1rid 10826 ax-rnegex 10827 ax-rrecex 10828 ax-cnre 10829 ax-pre-lttri 10830 ax-pre-lttrn 10831 ax-pre-ltadd 10832 ax-pre-mulgt0 10833 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3711 df-csb 3828 df-dif 3885 df-un 3887 df-in 3889 df-ss 3899 df-pss 3901 df-nul 4254 df-if 4456 df-pw 4531 df-sn 4558 df-pr 4560 df-tp 4562 df-op 4564 df-uni 4836 df-iun 4922 df-br 5070 df-opab 5132 df-mpt 5152 df-tr 5178 df-id 5471 df-eprel 5477 df-po 5485 df-so 5486 df-fr 5526 df-we 5528 df-xp 5574 df-rel 5575 df-cnv 5576 df-co 5577 df-dm 5578 df-rn 5579 df-res 5580 df-ima 5581 df-pred 6178 df-ord 6236 df-on 6237 df-lim 6238 df-suc 6239 df-iota 6358 df-fun 6402 df-fn 6403 df-f 6404 df-f1 6405 df-fo 6406 df-f1o 6407 df-fv 6408 df-riota 7191 df-ov 7237 df-oprab 7238 df-mpo 7239 df-om 7666 df-tpos 7991 df-wrecs 8070 df-recs 8131 df-rdg 8169 df-er 8414 df-en 8650 df-dom 8651 df-sdom 8652 df-pnf 10896 df-mnf 10897 df-xr 10898 df-ltxr 10899 df-le 10900 df-sub 11091 df-neg 11092 df-nn 11858 df-2 11920 df-3 11921 df-sets 16747 df-slot 16765 df-ndx 16775 df-base 16791 df-plusg 16845 df-mulr 16846 df-0g 16976 df-mgm 18144 df-sgrp 18193 df-mnd 18204 df-grp 18398 df-minusg 18399 df-mgp 19535 df-ur 19547 df-ring 19594 df-oppr 19671 df-dvdsr 19689 df-unit 19690 |
This theorem is referenced by: irredneg 19758 deg1invg 25033 nzrneg1ne0 45133 invginvrid 45409 lincresunit3lem3 45521 lincresunitlem1 45522 |
Copyright terms: Public domain | W3C validator |