| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unitnegcl | Structured version Visualization version GIF version | ||
| Description: The negative of a unit is a unit. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| Ref | Expression |
|---|---|
| unitnegcl.1 | ⊢ 𝑈 = (Unit‘𝑅) |
| unitnegcl.2 | ⊢ 𝑁 = (invg‘𝑅) |
| Ref | Expression |
|---|---|
| unitnegcl | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝑁‘𝑋) ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → 𝑅 ∈ Ring) | |
| 2 | ringgrp 20154 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 3 | eqid 2731 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 4 | unitnegcl.1 | . . . . . . 7 ⊢ 𝑈 = (Unit‘𝑅) | |
| 5 | 3, 4 | unitcl 20291 | . . . . . 6 ⊢ (𝑋 ∈ 𝑈 → 𝑋 ∈ (Base‘𝑅)) |
| 6 | unitnegcl.2 | . . . . . . 7 ⊢ 𝑁 = (invg‘𝑅) | |
| 7 | 3, 6 | grpinvcl 18897 | . . . . . 6 ⊢ ((𝑅 ∈ Grp ∧ 𝑋 ∈ (Base‘𝑅)) → (𝑁‘𝑋) ∈ (Base‘𝑅)) |
| 8 | 2, 5, 7 | syl2an 596 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝑁‘𝑋) ∈ (Base‘𝑅)) |
| 9 | eqid 2731 | . . . . . 6 ⊢ (∥r‘𝑅) = (∥r‘𝑅) | |
| 10 | 3, 9, 6 | dvdsrneg 20286 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑁‘𝑋) ∈ (Base‘𝑅)) → (𝑁‘𝑋)(∥r‘𝑅)(𝑁‘(𝑁‘𝑋))) |
| 11 | 8, 10 | syldan 591 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝑁‘𝑋)(∥r‘𝑅)(𝑁‘(𝑁‘𝑋))) |
| 12 | 3, 6 | grpinvinv 18915 | . . . . 5 ⊢ ((𝑅 ∈ Grp ∧ 𝑋 ∈ (Base‘𝑅)) → (𝑁‘(𝑁‘𝑋)) = 𝑋) |
| 13 | 2, 5, 12 | syl2an 596 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝑁‘(𝑁‘𝑋)) = 𝑋) |
| 14 | 11, 13 | breqtrd 5117 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝑁‘𝑋)(∥r‘𝑅)𝑋) |
| 15 | simpr 484 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ 𝑈) | |
| 16 | eqid 2731 | . . . . . 6 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 17 | eqid 2731 | . . . . . 6 ⊢ (oppr‘𝑅) = (oppr‘𝑅) | |
| 18 | eqid 2731 | . . . . . 6 ⊢ (∥r‘(oppr‘𝑅)) = (∥r‘(oppr‘𝑅)) | |
| 19 | 4, 16, 9, 17, 18 | isunit 20289 | . . . . 5 ⊢ (𝑋 ∈ 𝑈 ↔ (𝑋(∥r‘𝑅)(1r‘𝑅) ∧ 𝑋(∥r‘(oppr‘𝑅))(1r‘𝑅))) |
| 20 | 15, 19 | sylib 218 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝑋(∥r‘𝑅)(1r‘𝑅) ∧ 𝑋(∥r‘(oppr‘𝑅))(1r‘𝑅))) |
| 21 | 20 | simpld 494 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → 𝑋(∥r‘𝑅)(1r‘𝑅)) |
| 22 | 3, 9 | dvdsrtr 20284 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑁‘𝑋)(∥r‘𝑅)𝑋 ∧ 𝑋(∥r‘𝑅)(1r‘𝑅)) → (𝑁‘𝑋)(∥r‘𝑅)(1r‘𝑅)) |
| 23 | 1, 14, 21, 22 | syl3anc 1373 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝑁‘𝑋)(∥r‘𝑅)(1r‘𝑅)) |
| 24 | 17 | opprring 20263 | . . . 4 ⊢ (𝑅 ∈ Ring → (oppr‘𝑅) ∈ Ring) |
| 25 | 24 | adantr 480 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (oppr‘𝑅) ∈ Ring) |
| 26 | 17, 3 | opprbas 20259 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘(oppr‘𝑅)) |
| 27 | 17, 6 | opprneg 20267 | . . . . . 6 ⊢ 𝑁 = (invg‘(oppr‘𝑅)) |
| 28 | 26, 18, 27 | dvdsrneg 20286 | . . . . 5 ⊢ (((oppr‘𝑅) ∈ Ring ∧ (𝑁‘𝑋) ∈ (Base‘𝑅)) → (𝑁‘𝑋)(∥r‘(oppr‘𝑅))(𝑁‘(𝑁‘𝑋))) |
| 29 | 25, 8, 28 | syl2anc 584 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝑁‘𝑋)(∥r‘(oppr‘𝑅))(𝑁‘(𝑁‘𝑋))) |
| 30 | 29, 13 | breqtrd 5117 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝑁‘𝑋)(∥r‘(oppr‘𝑅))𝑋) |
| 31 | 20 | simprd 495 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → 𝑋(∥r‘(oppr‘𝑅))(1r‘𝑅)) |
| 32 | 26, 18 | dvdsrtr 20284 | . . 3 ⊢ (((oppr‘𝑅) ∈ Ring ∧ (𝑁‘𝑋)(∥r‘(oppr‘𝑅))𝑋 ∧ 𝑋(∥r‘(oppr‘𝑅))(1r‘𝑅)) → (𝑁‘𝑋)(∥r‘(oppr‘𝑅))(1r‘𝑅)) |
| 33 | 25, 30, 31, 32 | syl3anc 1373 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝑁‘𝑋)(∥r‘(oppr‘𝑅))(1r‘𝑅)) |
| 34 | 4, 16, 9, 17, 18 | isunit 20289 | . 2 ⊢ ((𝑁‘𝑋) ∈ 𝑈 ↔ ((𝑁‘𝑋)(∥r‘𝑅)(1r‘𝑅) ∧ (𝑁‘𝑋)(∥r‘(oppr‘𝑅))(1r‘𝑅))) |
| 35 | 23, 33, 34 | sylanbrc 583 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝑁‘𝑋) ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 class class class wbr 5091 ‘cfv 6481 Basecbs 17117 Grpcgrp 18843 invgcminusg 18844 1rcur 20097 Ringcrg 20149 opprcoppr 20252 ∥rcdsr 20270 Unitcui 20271 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-3 12186 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-plusg 17171 df-mulr 17172 df-0g 17342 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-grp 18846 df-minusg 18847 df-cmn 19692 df-abl 19693 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-oppr 20253 df-dvdsr 20273 df-unit 20274 |
| This theorem is referenced by: irredneg 20346 deg1invg 26036 nzrneg1ne0 48260 invginvrid 48397 lincresunit3lem3 48505 lincresunitlem1 48506 |
| Copyright terms: Public domain | W3C validator |