MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unitnegcl Structured version   Visualization version   GIF version

Theorem unitnegcl 20313
Description: The negative of a unit is a unit. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
unitnegcl.1 𝑈 = (Unit‘𝑅)
unitnegcl.2 𝑁 = (invg𝑅)
Assertion
Ref Expression
unitnegcl ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (𝑁𝑋) ∈ 𝑈)

Proof of Theorem unitnegcl
StepHypRef Expression
1 simpl 482 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → 𝑅 ∈ Ring)
2 ringgrp 20154 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
3 eqid 2730 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
4 unitnegcl.1 . . . . . . 7 𝑈 = (Unit‘𝑅)
53, 4unitcl 20291 . . . . . 6 (𝑋𝑈𝑋 ∈ (Base‘𝑅))
6 unitnegcl.2 . . . . . . 7 𝑁 = (invg𝑅)
73, 6grpinvcl 18926 . . . . . 6 ((𝑅 ∈ Grp ∧ 𝑋 ∈ (Base‘𝑅)) → (𝑁𝑋) ∈ (Base‘𝑅))
82, 5, 7syl2an 596 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (𝑁𝑋) ∈ (Base‘𝑅))
9 eqid 2730 . . . . . 6 (∥r𝑅) = (∥r𝑅)
103, 9, 6dvdsrneg 20286 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁𝑋) ∈ (Base‘𝑅)) → (𝑁𝑋)(∥r𝑅)(𝑁‘(𝑁𝑋)))
118, 10syldan 591 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (𝑁𝑋)(∥r𝑅)(𝑁‘(𝑁𝑋)))
123, 6grpinvinv 18944 . . . . 5 ((𝑅 ∈ Grp ∧ 𝑋 ∈ (Base‘𝑅)) → (𝑁‘(𝑁𝑋)) = 𝑋)
132, 5, 12syl2an 596 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (𝑁‘(𝑁𝑋)) = 𝑋)
1411, 13breqtrd 5136 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (𝑁𝑋)(∥r𝑅)𝑋)
15 simpr 484 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → 𝑋𝑈)
16 eqid 2730 . . . . . 6 (1r𝑅) = (1r𝑅)
17 eqid 2730 . . . . . 6 (oppr𝑅) = (oppr𝑅)
18 eqid 2730 . . . . . 6 (∥r‘(oppr𝑅)) = (∥r‘(oppr𝑅))
194, 16, 9, 17, 18isunit 20289 . . . . 5 (𝑋𝑈 ↔ (𝑋(∥r𝑅)(1r𝑅) ∧ 𝑋(∥r‘(oppr𝑅))(1r𝑅)))
2015, 19sylib 218 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (𝑋(∥r𝑅)(1r𝑅) ∧ 𝑋(∥r‘(oppr𝑅))(1r𝑅)))
2120simpld 494 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → 𝑋(∥r𝑅)(1r𝑅))
223, 9dvdsrtr 20284 . . 3 ((𝑅 ∈ Ring ∧ (𝑁𝑋)(∥r𝑅)𝑋𝑋(∥r𝑅)(1r𝑅)) → (𝑁𝑋)(∥r𝑅)(1r𝑅))
231, 14, 21, 22syl3anc 1373 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (𝑁𝑋)(∥r𝑅)(1r𝑅))
2417opprring 20263 . . . 4 (𝑅 ∈ Ring → (oppr𝑅) ∈ Ring)
2524adantr 480 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (oppr𝑅) ∈ Ring)
2617, 3opprbas 20259 . . . . . 6 (Base‘𝑅) = (Base‘(oppr𝑅))
2717, 6opprneg 20267 . . . . . 6 𝑁 = (invg‘(oppr𝑅))
2826, 18, 27dvdsrneg 20286 . . . . 5 (((oppr𝑅) ∈ Ring ∧ (𝑁𝑋) ∈ (Base‘𝑅)) → (𝑁𝑋)(∥r‘(oppr𝑅))(𝑁‘(𝑁𝑋)))
2925, 8, 28syl2anc 584 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (𝑁𝑋)(∥r‘(oppr𝑅))(𝑁‘(𝑁𝑋)))
3029, 13breqtrd 5136 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (𝑁𝑋)(∥r‘(oppr𝑅))𝑋)
3120simprd 495 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → 𝑋(∥r‘(oppr𝑅))(1r𝑅))
3226, 18dvdsrtr 20284 . . 3 (((oppr𝑅) ∈ Ring ∧ (𝑁𝑋)(∥r‘(oppr𝑅))𝑋𝑋(∥r‘(oppr𝑅))(1r𝑅)) → (𝑁𝑋)(∥r‘(oppr𝑅))(1r𝑅))
3325, 30, 31, 32syl3anc 1373 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (𝑁𝑋)(∥r‘(oppr𝑅))(1r𝑅))
344, 16, 9, 17, 18isunit 20289 . 2 ((𝑁𝑋) ∈ 𝑈 ↔ ((𝑁𝑋)(∥r𝑅)(1r𝑅) ∧ (𝑁𝑋)(∥r‘(oppr𝑅))(1r𝑅)))
3523, 33, 34sylanbrc 583 1 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (𝑁𝑋) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109   class class class wbr 5110  cfv 6514  Basecbs 17186  Grpcgrp 18872  invgcminusg 18873  1rcur 20097  Ringcrg 20149  opprcoppr 20252  rcdsr 20270  Unitcui 20271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-plusg 17240  df-mulr 17241  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-oppr 20253  df-dvdsr 20273  df-unit 20274
This theorem is referenced by:  irredneg  20346  deg1invg  26018  nzrneg1ne0  48222  invginvrid  48359  lincresunit3lem3  48467  lincresunitlem1  48468
  Copyright terms: Public domain W3C validator