MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unitnegcl Structured version   Visualization version   GIF version

Theorem unitnegcl 19034
Description: The negative of a unit is a unit. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
unitnegcl.1 𝑈 = (Unit‘𝑅)
unitnegcl.2 𝑁 = (invg𝑅)
Assertion
Ref Expression
unitnegcl ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (𝑁𝑋) ∈ 𝑈)

Proof of Theorem unitnegcl
StepHypRef Expression
1 simpl 476 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → 𝑅 ∈ Ring)
2 ringgrp 18905 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
3 eqid 2824 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
4 unitnegcl.1 . . . . . . 7 𝑈 = (Unit‘𝑅)
53, 4unitcl 19012 . . . . . 6 (𝑋𝑈𝑋 ∈ (Base‘𝑅))
6 unitnegcl.2 . . . . . . 7 𝑁 = (invg𝑅)
73, 6grpinvcl 17820 . . . . . 6 ((𝑅 ∈ Grp ∧ 𝑋 ∈ (Base‘𝑅)) → (𝑁𝑋) ∈ (Base‘𝑅))
82, 5, 7syl2an 591 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (𝑁𝑋) ∈ (Base‘𝑅))
9 eqid 2824 . . . . . 6 (∥r𝑅) = (∥r𝑅)
103, 9, 6dvdsrneg 19007 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁𝑋) ∈ (Base‘𝑅)) → (𝑁𝑋)(∥r𝑅)(𝑁‘(𝑁𝑋)))
118, 10syldan 587 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (𝑁𝑋)(∥r𝑅)(𝑁‘(𝑁𝑋)))
123, 6grpinvinv 17835 . . . . 5 ((𝑅 ∈ Grp ∧ 𝑋 ∈ (Base‘𝑅)) → (𝑁‘(𝑁𝑋)) = 𝑋)
132, 5, 12syl2an 591 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (𝑁‘(𝑁𝑋)) = 𝑋)
1411, 13breqtrd 4898 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (𝑁𝑋)(∥r𝑅)𝑋)
15 simpr 479 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → 𝑋𝑈)
16 eqid 2824 . . . . . 6 (1r𝑅) = (1r𝑅)
17 eqid 2824 . . . . . 6 (oppr𝑅) = (oppr𝑅)
18 eqid 2824 . . . . . 6 (∥r‘(oppr𝑅)) = (∥r‘(oppr𝑅))
194, 16, 9, 17, 18isunit 19010 . . . . 5 (𝑋𝑈 ↔ (𝑋(∥r𝑅)(1r𝑅) ∧ 𝑋(∥r‘(oppr𝑅))(1r𝑅)))
2015, 19sylib 210 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (𝑋(∥r𝑅)(1r𝑅) ∧ 𝑋(∥r‘(oppr𝑅))(1r𝑅)))
2120simpld 490 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → 𝑋(∥r𝑅)(1r𝑅))
223, 9dvdsrtr 19005 . . 3 ((𝑅 ∈ Ring ∧ (𝑁𝑋)(∥r𝑅)𝑋𝑋(∥r𝑅)(1r𝑅)) → (𝑁𝑋)(∥r𝑅)(1r𝑅))
231, 14, 21, 22syl3anc 1496 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (𝑁𝑋)(∥r𝑅)(1r𝑅))
2417opprring 18984 . . . 4 (𝑅 ∈ Ring → (oppr𝑅) ∈ Ring)
2524adantr 474 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (oppr𝑅) ∈ Ring)
2617, 3opprbas 18982 . . . . . 6 (Base‘𝑅) = (Base‘(oppr𝑅))
2717, 6opprneg 18988 . . . . . 6 𝑁 = (invg‘(oppr𝑅))
2826, 18, 27dvdsrneg 19007 . . . . 5 (((oppr𝑅) ∈ Ring ∧ (𝑁𝑋) ∈ (Base‘𝑅)) → (𝑁𝑋)(∥r‘(oppr𝑅))(𝑁‘(𝑁𝑋)))
2925, 8, 28syl2anc 581 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (𝑁𝑋)(∥r‘(oppr𝑅))(𝑁‘(𝑁𝑋)))
3029, 13breqtrd 4898 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (𝑁𝑋)(∥r‘(oppr𝑅))𝑋)
3120simprd 491 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → 𝑋(∥r‘(oppr𝑅))(1r𝑅))
3226, 18dvdsrtr 19005 . . 3 (((oppr𝑅) ∈ Ring ∧ (𝑁𝑋)(∥r‘(oppr𝑅))𝑋𝑋(∥r‘(oppr𝑅))(1r𝑅)) → (𝑁𝑋)(∥r‘(oppr𝑅))(1r𝑅))
3325, 30, 31, 32syl3anc 1496 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (𝑁𝑋)(∥r‘(oppr𝑅))(1r𝑅))
344, 16, 9, 17, 18isunit 19010 . 2 ((𝑁𝑋) ∈ 𝑈 ↔ ((𝑁𝑋)(∥r𝑅)(1r𝑅) ∧ (𝑁𝑋)(∥r‘(oppr𝑅))(1r𝑅)))
3523, 33, 34sylanbrc 580 1 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (𝑁𝑋) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1658  wcel 2166   class class class wbr 4872  cfv 6122  Basecbs 16221  Grpcgrp 17775  invgcminusg 17776  1rcur 18854  Ringcrg 18900  opprcoppr 18975  rcdsr 18991  Unitcui 18992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2390  ax-ext 2802  ax-rep 4993  ax-sep 5004  ax-nul 5012  ax-pow 5064  ax-pr 5126  ax-un 7208  ax-cnex 10307  ax-resscn 10308  ax-1cn 10309  ax-icn 10310  ax-addcl 10311  ax-addrcl 10312  ax-mulcl 10313  ax-mulrcl 10314  ax-mulcom 10315  ax-addass 10316  ax-mulass 10317  ax-distr 10318  ax-i2m1 10319  ax-1ne0 10320  ax-1rid 10321  ax-rnegex 10322  ax-rrecex 10323  ax-cnre 10324  ax-pre-lttri 10325  ax-pre-lttrn 10326  ax-pre-ltadd 10327  ax-pre-mulgt0 10328
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2604  df-eu 2639  df-clab 2811  df-cleq 2817  df-clel 2820  df-nfc 2957  df-ne 2999  df-nel 3102  df-ral 3121  df-rex 3122  df-reu 3123  df-rmo 3124  df-rab 3125  df-v 3415  df-sbc 3662  df-csb 3757  df-dif 3800  df-un 3802  df-in 3804  df-ss 3811  df-pss 3813  df-nul 4144  df-if 4306  df-pw 4379  df-sn 4397  df-pr 4399  df-tp 4401  df-op 4403  df-uni 4658  df-iun 4741  df-br 4873  df-opab 4935  df-mpt 4952  df-tr 4975  df-id 5249  df-eprel 5254  df-po 5262  df-so 5263  df-fr 5300  df-we 5302  df-xp 5347  df-rel 5348  df-cnv 5349  df-co 5350  df-dm 5351  df-rn 5352  df-res 5353  df-ima 5354  df-pred 5919  df-ord 5965  df-on 5966  df-lim 5967  df-suc 5968  df-iota 6085  df-fun 6124  df-fn 6125  df-f 6126  df-f1 6127  df-fo 6128  df-f1o 6129  df-fv 6130  df-riota 6865  df-ov 6907  df-oprab 6908  df-mpt2 6909  df-om 7326  df-tpos 7616  df-wrecs 7671  df-recs 7733  df-rdg 7771  df-er 8008  df-en 8222  df-dom 8223  df-sdom 8224  df-pnf 10392  df-mnf 10393  df-xr 10394  df-ltxr 10395  df-le 10396  df-sub 10586  df-neg 10587  df-nn 11350  df-2 11413  df-3 11414  df-ndx 16224  df-slot 16225  df-base 16227  df-sets 16228  df-plusg 16317  df-mulr 16318  df-0g 16454  df-mgm 17594  df-sgrp 17636  df-mnd 17647  df-grp 17778  df-minusg 17779  df-mgp 18843  df-ur 18855  df-ring 18902  df-oppr 18976  df-dvdsr 18994  df-unit 18995
This theorem is referenced by:  irredneg  19063  deg1invg  24264  nzrneg1ne0  42715  invginvrid  42994  lincresunit3lem3  43109  lincresunitlem1  43110
  Copyright terms: Public domain W3C validator