Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > unitnegcl | Structured version Visualization version GIF version |
Description: The negative of a unit is a unit. (Contributed by Mario Carneiro, 4-Dec-2014.) |
Ref | Expression |
---|---|
unitnegcl.1 | ⊢ 𝑈 = (Unit‘𝑅) |
unitnegcl.2 | ⊢ 𝑁 = (invg‘𝑅) |
Ref | Expression |
---|---|
unitnegcl | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝑁‘𝑋) ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → 𝑅 ∈ Ring) | |
2 | ringgrp 19703 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
3 | eqid 2738 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
4 | unitnegcl.1 | . . . . . . 7 ⊢ 𝑈 = (Unit‘𝑅) | |
5 | 3, 4 | unitcl 19816 | . . . . . 6 ⊢ (𝑋 ∈ 𝑈 → 𝑋 ∈ (Base‘𝑅)) |
6 | unitnegcl.2 | . . . . . . 7 ⊢ 𝑁 = (invg‘𝑅) | |
7 | 3, 6 | grpinvcl 18542 | . . . . . 6 ⊢ ((𝑅 ∈ Grp ∧ 𝑋 ∈ (Base‘𝑅)) → (𝑁‘𝑋) ∈ (Base‘𝑅)) |
8 | 2, 5, 7 | syl2an 595 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝑁‘𝑋) ∈ (Base‘𝑅)) |
9 | eqid 2738 | . . . . . 6 ⊢ (∥r‘𝑅) = (∥r‘𝑅) | |
10 | 3, 9, 6 | dvdsrneg 19811 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑁‘𝑋) ∈ (Base‘𝑅)) → (𝑁‘𝑋)(∥r‘𝑅)(𝑁‘(𝑁‘𝑋))) |
11 | 8, 10 | syldan 590 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝑁‘𝑋)(∥r‘𝑅)(𝑁‘(𝑁‘𝑋))) |
12 | 3, 6 | grpinvinv 18557 | . . . . 5 ⊢ ((𝑅 ∈ Grp ∧ 𝑋 ∈ (Base‘𝑅)) → (𝑁‘(𝑁‘𝑋)) = 𝑋) |
13 | 2, 5, 12 | syl2an 595 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝑁‘(𝑁‘𝑋)) = 𝑋) |
14 | 11, 13 | breqtrd 5096 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝑁‘𝑋)(∥r‘𝑅)𝑋) |
15 | simpr 484 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ 𝑈) | |
16 | eqid 2738 | . . . . . 6 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
17 | eqid 2738 | . . . . . 6 ⊢ (oppr‘𝑅) = (oppr‘𝑅) | |
18 | eqid 2738 | . . . . . 6 ⊢ (∥r‘(oppr‘𝑅)) = (∥r‘(oppr‘𝑅)) | |
19 | 4, 16, 9, 17, 18 | isunit 19814 | . . . . 5 ⊢ (𝑋 ∈ 𝑈 ↔ (𝑋(∥r‘𝑅)(1r‘𝑅) ∧ 𝑋(∥r‘(oppr‘𝑅))(1r‘𝑅))) |
20 | 15, 19 | sylib 217 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝑋(∥r‘𝑅)(1r‘𝑅) ∧ 𝑋(∥r‘(oppr‘𝑅))(1r‘𝑅))) |
21 | 20 | simpld 494 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → 𝑋(∥r‘𝑅)(1r‘𝑅)) |
22 | 3, 9 | dvdsrtr 19809 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑁‘𝑋)(∥r‘𝑅)𝑋 ∧ 𝑋(∥r‘𝑅)(1r‘𝑅)) → (𝑁‘𝑋)(∥r‘𝑅)(1r‘𝑅)) |
23 | 1, 14, 21, 22 | syl3anc 1369 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝑁‘𝑋)(∥r‘𝑅)(1r‘𝑅)) |
24 | 17 | opprring 19788 | . . . 4 ⊢ (𝑅 ∈ Ring → (oppr‘𝑅) ∈ Ring) |
25 | 24 | adantr 480 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (oppr‘𝑅) ∈ Ring) |
26 | 17, 3 | opprbas 19784 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘(oppr‘𝑅)) |
27 | 17, 6 | opprneg 19792 | . . . . . 6 ⊢ 𝑁 = (invg‘(oppr‘𝑅)) |
28 | 26, 18, 27 | dvdsrneg 19811 | . . . . 5 ⊢ (((oppr‘𝑅) ∈ Ring ∧ (𝑁‘𝑋) ∈ (Base‘𝑅)) → (𝑁‘𝑋)(∥r‘(oppr‘𝑅))(𝑁‘(𝑁‘𝑋))) |
29 | 25, 8, 28 | syl2anc 583 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝑁‘𝑋)(∥r‘(oppr‘𝑅))(𝑁‘(𝑁‘𝑋))) |
30 | 29, 13 | breqtrd 5096 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝑁‘𝑋)(∥r‘(oppr‘𝑅))𝑋) |
31 | 20 | simprd 495 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → 𝑋(∥r‘(oppr‘𝑅))(1r‘𝑅)) |
32 | 26, 18 | dvdsrtr 19809 | . . 3 ⊢ (((oppr‘𝑅) ∈ Ring ∧ (𝑁‘𝑋)(∥r‘(oppr‘𝑅))𝑋 ∧ 𝑋(∥r‘(oppr‘𝑅))(1r‘𝑅)) → (𝑁‘𝑋)(∥r‘(oppr‘𝑅))(1r‘𝑅)) |
33 | 25, 30, 31, 32 | syl3anc 1369 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝑁‘𝑋)(∥r‘(oppr‘𝑅))(1r‘𝑅)) |
34 | 4, 16, 9, 17, 18 | isunit 19814 | . 2 ⊢ ((𝑁‘𝑋) ∈ 𝑈 ↔ ((𝑁‘𝑋)(∥r‘𝑅)(1r‘𝑅) ∧ (𝑁‘𝑋)(∥r‘(oppr‘𝑅))(1r‘𝑅))) |
35 | 23, 33, 34 | sylanbrc 582 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝑁‘𝑋) ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 ‘cfv 6418 Basecbs 16840 Grpcgrp 18492 invgcminusg 18493 1rcur 19652 Ringcrg 19698 opprcoppr 19776 ∥rcdsr 19795 Unitcui 19796 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-tpos 8013 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-plusg 16901 df-mulr 16902 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-minusg 18496 df-mgp 19636 df-ur 19653 df-ring 19700 df-oppr 19777 df-dvdsr 19798 df-unit 19799 |
This theorem is referenced by: irredneg 19867 deg1invg 25176 nzrneg1ne0 45315 invginvrid 45591 lincresunit3lem3 45703 lincresunitlem1 45704 |
Copyright terms: Public domain | W3C validator |