MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unitnegcl Structured version   Visualization version   GIF version

Theorem unitnegcl 19420
Description: The negative of a unit is a unit. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
unitnegcl.1 𝑈 = (Unit‘𝑅)
unitnegcl.2 𝑁 = (invg𝑅)
Assertion
Ref Expression
unitnegcl ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (𝑁𝑋) ∈ 𝑈)

Proof of Theorem unitnegcl
StepHypRef Expression
1 simpl 486 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → 𝑅 ∈ Ring)
2 ringgrp 19291 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
3 eqid 2824 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
4 unitnegcl.1 . . . . . . 7 𝑈 = (Unit‘𝑅)
53, 4unitcl 19398 . . . . . 6 (𝑋𝑈𝑋 ∈ (Base‘𝑅))
6 unitnegcl.2 . . . . . . 7 𝑁 = (invg𝑅)
73, 6grpinvcl 18140 . . . . . 6 ((𝑅 ∈ Grp ∧ 𝑋 ∈ (Base‘𝑅)) → (𝑁𝑋) ∈ (Base‘𝑅))
82, 5, 7syl2an 598 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (𝑁𝑋) ∈ (Base‘𝑅))
9 eqid 2824 . . . . . 6 (∥r𝑅) = (∥r𝑅)
103, 9, 6dvdsrneg 19393 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁𝑋) ∈ (Base‘𝑅)) → (𝑁𝑋)(∥r𝑅)(𝑁‘(𝑁𝑋)))
118, 10syldan 594 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (𝑁𝑋)(∥r𝑅)(𝑁‘(𝑁𝑋)))
123, 6grpinvinv 18155 . . . . 5 ((𝑅 ∈ Grp ∧ 𝑋 ∈ (Base‘𝑅)) → (𝑁‘(𝑁𝑋)) = 𝑋)
132, 5, 12syl2an 598 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (𝑁‘(𝑁𝑋)) = 𝑋)
1411, 13breqtrd 5073 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (𝑁𝑋)(∥r𝑅)𝑋)
15 simpr 488 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → 𝑋𝑈)
16 eqid 2824 . . . . . 6 (1r𝑅) = (1r𝑅)
17 eqid 2824 . . . . . 6 (oppr𝑅) = (oppr𝑅)
18 eqid 2824 . . . . . 6 (∥r‘(oppr𝑅)) = (∥r‘(oppr𝑅))
194, 16, 9, 17, 18isunit 19396 . . . . 5 (𝑋𝑈 ↔ (𝑋(∥r𝑅)(1r𝑅) ∧ 𝑋(∥r‘(oppr𝑅))(1r𝑅)))
2015, 19sylib 221 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (𝑋(∥r𝑅)(1r𝑅) ∧ 𝑋(∥r‘(oppr𝑅))(1r𝑅)))
2120simpld 498 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → 𝑋(∥r𝑅)(1r𝑅))
223, 9dvdsrtr 19391 . . 3 ((𝑅 ∈ Ring ∧ (𝑁𝑋)(∥r𝑅)𝑋𝑋(∥r𝑅)(1r𝑅)) → (𝑁𝑋)(∥r𝑅)(1r𝑅))
231, 14, 21, 22syl3anc 1368 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (𝑁𝑋)(∥r𝑅)(1r𝑅))
2417opprring 19370 . . . 4 (𝑅 ∈ Ring → (oppr𝑅) ∈ Ring)
2524adantr 484 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (oppr𝑅) ∈ Ring)
2617, 3opprbas 19368 . . . . . 6 (Base‘𝑅) = (Base‘(oppr𝑅))
2717, 6opprneg 19374 . . . . . 6 𝑁 = (invg‘(oppr𝑅))
2826, 18, 27dvdsrneg 19393 . . . . 5 (((oppr𝑅) ∈ Ring ∧ (𝑁𝑋) ∈ (Base‘𝑅)) → (𝑁𝑋)(∥r‘(oppr𝑅))(𝑁‘(𝑁𝑋)))
2925, 8, 28syl2anc 587 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (𝑁𝑋)(∥r‘(oppr𝑅))(𝑁‘(𝑁𝑋)))
3029, 13breqtrd 5073 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (𝑁𝑋)(∥r‘(oppr𝑅))𝑋)
3120simprd 499 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → 𝑋(∥r‘(oppr𝑅))(1r𝑅))
3226, 18dvdsrtr 19391 . . 3 (((oppr𝑅) ∈ Ring ∧ (𝑁𝑋)(∥r‘(oppr𝑅))𝑋𝑋(∥r‘(oppr𝑅))(1r𝑅)) → (𝑁𝑋)(∥r‘(oppr𝑅))(1r𝑅))
3325, 30, 31, 32syl3anc 1368 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (𝑁𝑋)(∥r‘(oppr𝑅))(1r𝑅))
344, 16, 9, 17, 18isunit 19396 . 2 ((𝑁𝑋) ∈ 𝑈 ↔ ((𝑁𝑋)(∥r𝑅)(1r𝑅) ∧ (𝑁𝑋)(∥r‘(oppr𝑅))(1r𝑅)))
3523, 33, 34sylanbrc 586 1 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (𝑁𝑋) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2115   class class class wbr 5047  cfv 6336  Basecbs 16472  Grpcgrp 18092  invgcminusg 18093  1rcur 19240  Ringcrg 19286  opprcoppr 19361  rcdsr 19377  Unitcui 19378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5171  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311  ax-un 7444  ax-cnex 10578  ax-resscn 10579  ax-1cn 10580  ax-icn 10581  ax-addcl 10582  ax-addrcl 10583  ax-mulcl 10584  ax-mulrcl 10585  ax-mulcom 10586  ax-addass 10587  ax-mulass 10588  ax-distr 10589  ax-i2m1 10590  ax-1ne0 10591  ax-1rid 10592  ax-rnegex 10593  ax-rrecex 10594  ax-cnre 10595  ax-pre-lttri 10596  ax-pre-lttrn 10597  ax-pre-ltadd 10598  ax-pre-mulgt0 10599
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-nel 3118  df-ral 3137  df-rex 3138  df-reu 3139  df-rmo 3140  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-pss 3937  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-tp 4553  df-op 4555  df-uni 4820  df-iun 4902  df-br 5048  df-opab 5110  df-mpt 5128  df-tr 5154  df-id 5441  df-eprel 5446  df-po 5455  df-so 5456  df-fr 5495  df-we 5497  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7096  df-ov 7141  df-oprab 7142  df-mpo 7143  df-om 7564  df-tpos 7875  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10662  df-mnf 10663  df-xr 10664  df-ltxr 10665  df-le 10666  df-sub 10857  df-neg 10858  df-nn 11624  df-2 11686  df-3 11687  df-ndx 16475  df-slot 16476  df-base 16478  df-sets 16479  df-plusg 16567  df-mulr 16568  df-0g 16704  df-mgm 17841  df-sgrp 17890  df-mnd 17901  df-grp 18095  df-minusg 18096  df-mgp 19229  df-ur 19241  df-ring 19288  df-oppr 19362  df-dvdsr 19380  df-unit 19381
This theorem is referenced by:  irredneg  19449  deg1invg  24696  nzrneg1ne0  44335  invginvrid  44610  lincresunit3lem3  44724  lincresunitlem1  44725
  Copyright terms: Public domain W3C validator