![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltleadd | Structured version Visualization version GIF version |
Description: Adding both sides of two orderings. (Contributed by NM, 23-Dec-2007.) |
Ref | Expression |
---|---|
ltleadd | ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 < 𝐶 ∧ 𝐵 ≤ 𝐷) → (𝐴 + 𝐵) < (𝐶 + 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltadd1 10820 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐶 ↔ (𝐴 + 𝐵) < (𝐶 + 𝐵))) | |
2 | 1 | 3com23 1162 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐶 ↔ (𝐴 + 𝐵) < (𝐶 + 𝐵))) |
3 | 2 | 3expa 1153 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐶 ↔ (𝐴 + 𝐵) < (𝐶 + 𝐵))) |
4 | 3 | adantrr 710 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐴 < 𝐶 ↔ (𝐴 + 𝐵) < (𝐶 + 𝐵))) |
5 | leadd2 10822 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ ∧ 𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 ≤ 𝐷 ↔ (𝐶 + 𝐵) ≤ (𝐶 + 𝐷))) | |
6 | 5 | 3com23 1162 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝐵 ≤ 𝐷 ↔ (𝐶 + 𝐵) ≤ (𝐶 + 𝐷))) |
7 | 6 | 3expb 1155 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐵 ≤ 𝐷 ↔ (𝐶 + 𝐵) ≤ (𝐶 + 𝐷))) |
8 | 7 | adantll 707 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐵 ≤ 𝐷 ↔ (𝐶 + 𝐵) ≤ (𝐶 + 𝐷))) |
9 | 4, 8 | anbi12d 626 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 < 𝐶 ∧ 𝐵 ≤ 𝐷) ↔ ((𝐴 + 𝐵) < (𝐶 + 𝐵) ∧ (𝐶 + 𝐵) ≤ (𝐶 + 𝐷)))) |
10 | readdcl 10336 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) | |
11 | 10 | adantr 474 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐴 + 𝐵) ∈ ℝ) |
12 | readdcl 10336 | . . . . 5 ⊢ ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 + 𝐵) ∈ ℝ) | |
13 | 12 | ancoms 452 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 + 𝐵) ∈ ℝ) |
14 | 13 | ad2ant2lr 756 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐶 + 𝐵) ∈ ℝ) |
15 | readdcl 10336 | . . . 4 ⊢ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝐶 + 𝐷) ∈ ℝ) | |
16 | 15 | adantl 475 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐶 + 𝐷) ∈ ℝ) |
17 | ltletr 10449 | . . 3 ⊢ (((𝐴 + 𝐵) ∈ ℝ ∧ (𝐶 + 𝐵) ∈ ℝ ∧ (𝐶 + 𝐷) ∈ ℝ) → (((𝐴 + 𝐵) < (𝐶 + 𝐵) ∧ (𝐶 + 𝐵) ≤ (𝐶 + 𝐷)) → (𝐴 + 𝐵) < (𝐶 + 𝐷))) | |
18 | 11, 14, 16, 17 | syl3anc 1496 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (((𝐴 + 𝐵) < (𝐶 + 𝐵) ∧ (𝐶 + 𝐵) ≤ (𝐶 + 𝐷)) → (𝐴 + 𝐵) < (𝐶 + 𝐷))) |
19 | 9, 18 | sylbid 232 | 1 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 < 𝐶 ∧ 𝐵 ≤ 𝐷) → (𝐴 + 𝐵) < (𝐶 + 𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 ∈ wcel 2166 class class class wbr 4874 (class class class)co 6906 ℝcr 10252 + caddc 10256 < clt 10392 ≤ cle 10393 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 ax-sep 5006 ax-nul 5014 ax-pow 5066 ax-pr 5128 ax-un 7210 ax-resscn 10310 ax-1cn 10311 ax-icn 10312 ax-addcl 10313 ax-addrcl 10314 ax-mulcl 10315 ax-mulrcl 10316 ax-mulcom 10317 ax-addass 10318 ax-mulass 10319 ax-distr 10320 ax-i2m1 10321 ax-1ne0 10322 ax-1rid 10323 ax-rnegex 10324 ax-rrecex 10325 ax-cnre 10326 ax-pre-lttri 10327 ax-pre-lttrn 10328 ax-pre-ltadd 10329 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2606 df-eu 2641 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ne 3001 df-nel 3104 df-ral 3123 df-rex 3124 df-rab 3127 df-v 3417 df-sbc 3664 df-csb 3759 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-nul 4146 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4660 df-br 4875 df-opab 4937 df-mpt 4954 df-id 5251 df-po 5264 df-so 5265 df-xp 5349 df-rel 5350 df-cnv 5351 df-co 5352 df-dm 5353 df-rn 5354 df-res 5355 df-ima 5356 df-iota 6087 df-fun 6126 df-fn 6127 df-f 6128 df-f1 6129 df-fo 6130 df-f1o 6131 df-fv 6132 df-ov 6909 df-er 8010 df-en 8224 df-dom 8225 df-sdom 8226 df-pnf 10394 df-mnf 10395 df-xr 10396 df-ltxr 10397 df-le 10398 |
This theorem is referenced by: leltadd 10837 addgtge0 10841 ltleaddd 10974 modaddmodup 13029 blcvx 22972 poimirlem29 33983 |
Copyright terms: Public domain | W3C validator |