![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltleadd | Structured version Visualization version GIF version |
Description: Adding both sides of two orderings. (Contributed by NM, 23-Dec-2007.) |
Ref | Expression |
---|---|
ltleadd | ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 < 𝐶 ∧ 𝐵 ≤ 𝐷) → (𝐴 + 𝐵) < (𝐶 + 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltadd1 11627 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐶 ↔ (𝐴 + 𝐵) < (𝐶 + 𝐵))) | |
2 | 1 | 3com23 1127 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐶 ↔ (𝐴 + 𝐵) < (𝐶 + 𝐵))) |
3 | 2 | 3expa 1119 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐶 ↔ (𝐴 + 𝐵) < (𝐶 + 𝐵))) |
4 | 3 | adantrr 716 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐴 < 𝐶 ↔ (𝐴 + 𝐵) < (𝐶 + 𝐵))) |
5 | leadd2 11629 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ ∧ 𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 ≤ 𝐷 ↔ (𝐶 + 𝐵) ≤ (𝐶 + 𝐷))) | |
6 | 5 | 3com23 1127 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝐵 ≤ 𝐷 ↔ (𝐶 + 𝐵) ≤ (𝐶 + 𝐷))) |
7 | 6 | 3expb 1121 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐵 ≤ 𝐷 ↔ (𝐶 + 𝐵) ≤ (𝐶 + 𝐷))) |
8 | 7 | adantll 713 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐵 ≤ 𝐷 ↔ (𝐶 + 𝐵) ≤ (𝐶 + 𝐷))) |
9 | 4, 8 | anbi12d 632 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 < 𝐶 ∧ 𝐵 ≤ 𝐷) ↔ ((𝐴 + 𝐵) < (𝐶 + 𝐵) ∧ (𝐶 + 𝐵) ≤ (𝐶 + 𝐷)))) |
10 | readdcl 11139 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) | |
11 | 10 | adantr 482 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐴 + 𝐵) ∈ ℝ) |
12 | readdcl 11139 | . . . . 5 ⊢ ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 + 𝐵) ∈ ℝ) | |
13 | 12 | ancoms 460 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 + 𝐵) ∈ ℝ) |
14 | 13 | ad2ant2lr 747 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐶 + 𝐵) ∈ ℝ) |
15 | readdcl 11139 | . . . 4 ⊢ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝐶 + 𝐷) ∈ ℝ) | |
16 | 15 | adantl 483 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐶 + 𝐷) ∈ ℝ) |
17 | ltletr 11252 | . . 3 ⊢ (((𝐴 + 𝐵) ∈ ℝ ∧ (𝐶 + 𝐵) ∈ ℝ ∧ (𝐶 + 𝐷) ∈ ℝ) → (((𝐴 + 𝐵) < (𝐶 + 𝐵) ∧ (𝐶 + 𝐵) ≤ (𝐶 + 𝐷)) → (𝐴 + 𝐵) < (𝐶 + 𝐷))) | |
18 | 11, 14, 16, 17 | syl3anc 1372 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (((𝐴 + 𝐵) < (𝐶 + 𝐵) ∧ (𝐶 + 𝐵) ≤ (𝐶 + 𝐷)) → (𝐴 + 𝐵) < (𝐶 + 𝐷))) |
19 | 9, 18 | sylbid 239 | 1 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 < 𝐶 ∧ 𝐵 ≤ 𝐷) → (𝐴 + 𝐵) < (𝐶 + 𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∈ wcel 2107 class class class wbr 5106 (class class class)co 7358 ℝcr 11055 + caddc 11059 < clt 11194 ≤ cle 11195 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-resscn 11113 ax-1cn 11114 ax-icn 11115 ax-addcl 11116 ax-addrcl 11117 ax-mulcl 11118 ax-mulrcl 11119 ax-mulcom 11120 ax-addass 11121 ax-mulass 11122 ax-distr 11123 ax-i2m1 11124 ax-1ne0 11125 ax-1rid 11126 ax-rnegex 11127 ax-rrecex 11128 ax-cnre 11129 ax-pre-lttri 11130 ax-pre-lttrn 11131 ax-pre-ltadd 11132 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-po 5546 df-so 5547 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-ov 7361 df-er 8651 df-en 8887 df-dom 8888 df-sdom 8889 df-pnf 11196 df-mnf 11197 df-xr 11198 df-ltxr 11199 df-le 11200 |
This theorem is referenced by: leltadd 11644 addgtge0 11648 ltleaddd 11781 modaddmodup 13845 blcvx 24177 poimirlem29 36153 |
Copyright terms: Public domain | W3C validator |