Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unblimceq0lem Structured version   Visualization version   GIF version

Theorem unblimceq0lem 33731
Description: Lemma for unblimceq0 33732. (Contributed by Asger C. Ipsen, 12-May-2021.)
Hypotheses
Ref Expression
unblimceq0lem.0 (𝜑𝑆 ⊆ ℂ)
unblimceq0lem.1 (𝜑𝐹:𝑆⟶ℂ)
unblimceq0lem.2 (𝜑𝐴 ∈ ℂ)
unblimceq0lem.3 (𝜑 → ∀𝑏 ∈ ℝ+𝑑 ∈ ℝ+𝑥𝑆 ((abs‘(𝑥𝐴)) < 𝑑𝑏 ≤ (abs‘(𝐹𝑥))))
Assertion
Ref Expression
unblimceq0lem (𝜑 → ∀𝑐 ∈ ℝ+𝑑 ∈ ℝ+𝑦𝑆 (𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑𝑐 ≤ (abs‘(𝐹𝑦))))
Distinct variable groups:   𝐴,𝑏,𝑑,𝑥   𝑦,𝐴,𝑑,𝑥   𝐹,𝑏,𝑑,𝑥   𝑦,𝐹   𝑆,𝑏,𝑑,𝑥   𝑦,𝑆   𝜑,𝑏,𝑐,𝑑,𝑥   𝜑,𝑦,𝑐
Allowed substitution hints:   𝐴(𝑐)   𝑆(𝑐)   𝐹(𝑐)

Proof of Theorem unblimceq0lem
StepHypRef Expression
1 breq1 5065 . . . . . . . 8 (𝑏 = if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) → (𝑏 ≤ (abs‘(𝐹𝑥)) ↔ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))
21anbi2d 628 . . . . . . 7 (𝑏 = if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) → (((abs‘(𝑥𝐴)) < 𝑑𝑏 ≤ (abs‘(𝐹𝑥))) ↔ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥)))))
32rexbidv 3301 . . . . . 6 (𝑏 = if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) → (∃𝑥𝑆 ((abs‘(𝑥𝐴)) < 𝑑𝑏 ≤ (abs‘(𝐹𝑥))) ↔ ∃𝑥𝑆 ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥)))))
43ralbidv 3201 . . . . 5 (𝑏 = if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) → (∀𝑑 ∈ ℝ+𝑥𝑆 ((abs‘(𝑥𝐴)) < 𝑑𝑏 ≤ (abs‘(𝐹𝑥))) ↔ ∀𝑑 ∈ ℝ+𝑥𝑆 ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥)))))
5 unblimceq0lem.3 . . . . . 6 (𝜑 → ∀𝑏 ∈ ℝ+𝑑 ∈ ℝ+𝑥𝑆 ((abs‘(𝑥𝐴)) < 𝑑𝑏 ≤ (abs‘(𝐹𝑥))))
65adantr 481 . . . . 5 ((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → ∀𝑏 ∈ ℝ+𝑑 ∈ ℝ+𝑥𝑆 ((abs‘(𝑥𝐴)) < 𝑑𝑏 ≤ (abs‘(𝐹𝑥))))
7 unblimceq0lem.1 . . . . . . . . . . 11 (𝜑𝐹:𝑆⟶ℂ)
87ad2antrr 722 . . . . . . . . . 10 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝐴𝑆) → 𝐹:𝑆⟶ℂ)
9 simpr 485 . . . . . . . . . 10 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝐴𝑆) → 𝐴𝑆)
108, 9ffvelrnd 6847 . . . . . . . . 9 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝐴𝑆) → (𝐹𝐴) ∈ ℂ)
1110abscld 14789 . . . . . . . 8 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝐴𝑆) → (abs‘(𝐹𝐴)) ∈ ℝ)
12 simprl 767 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → 𝑐 ∈ ℝ+)
1312rpred 12424 . . . . . . . . 9 ((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → 𝑐 ∈ ℝ)
1413adantr 481 . . . . . . . 8 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝐴𝑆) → 𝑐 ∈ ℝ)
1511, 14readdcld 10662 . . . . . . 7 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝐴𝑆) → ((abs‘(𝐹𝐴)) + 𝑐) ∈ ℝ)
1610absge0d 14797 . . . . . . . 8 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝐴𝑆) → 0 ≤ (abs‘(𝐹𝐴)))
1712rpgt0d 12427 . . . . . . . . 9 ((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → 0 < 𝑐)
1817adantr 481 . . . . . . . 8 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝐴𝑆) → 0 < 𝑐)
1911, 14, 16, 18addgegt0d 11205 . . . . . . 7 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝐴𝑆) → 0 < ((abs‘(𝐹𝐴)) + 𝑐))
2015, 19elrpd 12421 . . . . . 6 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝐴𝑆) → ((abs‘(𝐹𝐴)) + 𝑐) ∈ ℝ+)
21 simplrl 773 . . . . . 6 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ¬ 𝐴𝑆) → 𝑐 ∈ ℝ+)
2220, 21ifclda 4503 . . . . 5 ((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ∈ ℝ+)
234, 6, 22rspcdva 3628 . . . 4 ((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → ∀𝑑 ∈ ℝ+𝑥𝑆 ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))
24 simprr 769 . . . 4 ((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → 𝑑 ∈ ℝ+)
25 rsp 3209 . . . 4 (∀𝑑 ∈ ℝ+𝑥𝑆 ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))) → (𝑑 ∈ ℝ+ → ∃𝑥𝑆 ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥)))))
2623, 24, 25sylc 65 . . 3 ((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → ∃𝑥𝑆 ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))
27 simprl 767 . . . 4 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) → 𝑥𝑆)
28 neeq1 3082 . . . . . 6 (𝑦 = 𝑥 → (𝑦𝐴𝑥𝐴))
29 fvoveq1 7174 . . . . . . 7 (𝑦 = 𝑥 → (abs‘(𝑦𝐴)) = (abs‘(𝑥𝐴)))
3029breq1d 5072 . . . . . 6 (𝑦 = 𝑥 → ((abs‘(𝑦𝐴)) < 𝑑 ↔ (abs‘(𝑥𝐴)) < 𝑑))
31 2fveq3 6671 . . . . . . 7 (𝑦 = 𝑥 → (abs‘(𝐹𝑦)) = (abs‘(𝐹𝑥)))
3231breq2d 5074 . . . . . 6 (𝑦 = 𝑥 → (𝑐 ≤ (abs‘(𝐹𝑦)) ↔ 𝑐 ≤ (abs‘(𝐹𝑥))))
3328, 30, 323anbi123d 1429 . . . . 5 (𝑦 = 𝑥 → ((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑𝑐 ≤ (abs‘(𝐹𝑦))) ↔ (𝑥𝐴 ∧ (abs‘(𝑥𝐴)) < 𝑑𝑐 ≤ (abs‘(𝐹𝑥)))))
3433adantl 482 . . . 4 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝑦 = 𝑥) → ((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑𝑐 ≤ (abs‘(𝐹𝑦))) ↔ (𝑥𝐴 ∧ (abs‘(𝑥𝐴)) < 𝑑𝑐 ≤ (abs‘(𝐹𝑥)))))
3515adantlr 711 . . . . . . . 8 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → ((abs‘(𝐹𝐴)) + 𝑐) ∈ ℝ)
367ad2antrr 722 . . . . . . . . . . 11 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) → 𝐹:𝑆⟶ℂ)
3736, 27ffvelrnd 6847 . . . . . . . . . 10 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) → (𝐹𝑥) ∈ ℂ)
3837abscld 14789 . . . . . . . . 9 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) → (abs‘(𝐹𝑥)) ∈ ℝ)
3938adantr 481 . . . . . . . 8 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → (abs‘(𝐹𝑥)) ∈ ℝ)
40 simpr 485 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → 𝐴𝑆)
4140iftrued 4477 . . . . . . . . . 10 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) = ((abs‘(𝐹𝐴)) + 𝑐))
4241eqcomd 2831 . . . . . . . . 9 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → ((abs‘(𝐹𝐴)) + 𝑐) = if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐))
43 simprrr 778 . . . . . . . . . 10 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) → if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥)))
4443adantr 481 . . . . . . . . 9 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥)))
4542, 44eqbrtrd 5084 . . . . . . . 8 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → ((abs‘(𝐹𝐴)) + 𝑐) ≤ (abs‘(𝐹𝑥)))
4635, 39, 45lensymd 10783 . . . . . . 7 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → ¬ (abs‘(𝐹𝑥)) < ((abs‘(𝐹𝐴)) + 𝑐))
47 2fveq3 6671 . . . . . . . . . . . 12 (𝑥 = 𝐴 → (abs‘(𝐹𝑥)) = (abs‘(𝐹𝐴)))
4847adantl 482 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝐴𝑆) ∧ 𝑥 = 𝐴) → (abs‘(𝐹𝑥)) = (abs‘(𝐹𝐴)))
4914, 11ltaddposd 11216 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝐴𝑆) → (0 < 𝑐 ↔ (abs‘(𝐹𝐴)) < ((abs‘(𝐹𝐴)) + 𝑐)))
5018, 49mpbid 233 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝐴𝑆) → (abs‘(𝐹𝐴)) < ((abs‘(𝐹𝐴)) + 𝑐))
5150adantr 481 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝐴𝑆) ∧ 𝑥 = 𝐴) → (abs‘(𝐹𝐴)) < ((abs‘(𝐹𝐴)) + 𝑐))
5248, 51eqbrtrd 5084 . . . . . . . . . 10 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝐴𝑆) ∧ 𝑥 = 𝐴) → (abs‘(𝐹𝑥)) < ((abs‘(𝐹𝐴)) + 𝑐))
5352ex 413 . . . . . . . . 9 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝐴𝑆) → (𝑥 = 𝐴 → (abs‘(𝐹𝑥)) < ((abs‘(𝐹𝐴)) + 𝑐)))
5453adantlr 711 . . . . . . . 8 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → (𝑥 = 𝐴 → (abs‘(𝐹𝑥)) < ((abs‘(𝐹𝐴)) + 𝑐)))
5554necon3bd 3034 . . . . . . 7 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → (¬ (abs‘(𝐹𝑥)) < ((abs‘(𝐹𝐴)) + 𝑐) → 𝑥𝐴))
5646, 55mpd 15 . . . . . 6 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → 𝑥𝐴)
57 simprrl 777 . . . . . . 7 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) → (abs‘(𝑥𝐴)) < 𝑑)
5857adantr 481 . . . . . 6 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → (abs‘(𝑥𝐴)) < 𝑑)
5914adantlr 711 . . . . . . 7 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → 𝑐 ∈ ℝ)
6010adantlr 711 . . . . . . . . 9 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → (𝐹𝐴) ∈ ℂ)
6160absge0d 14797 . . . . . . . 8 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → 0 ≤ (abs‘(𝐹𝐴)))
6211adantlr 711 . . . . . . . . 9 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → (abs‘(𝐹𝐴)) ∈ ℝ)
6359, 62addge02d 11221 . . . . . . . 8 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → (0 ≤ (abs‘(𝐹𝐴)) ↔ 𝑐 ≤ ((abs‘(𝐹𝐴)) + 𝑐)))
6461, 63mpbid 233 . . . . . . 7 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → 𝑐 ≤ ((abs‘(𝐹𝐴)) + 𝑐))
6559, 35, 39, 64, 45letrd 10789 . . . . . 6 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → 𝑐 ≤ (abs‘(𝐹𝑥)))
6656, 58, 653jca 1122 . . . . 5 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → (𝑥𝐴 ∧ (abs‘(𝑥𝐴)) < 𝑑𝑐 ≤ (abs‘(𝐹𝑥))))
67 simpr 485 . . . . . . 7 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ ¬ 𝐴𝑆) → ¬ 𝐴𝑆)
68 simpr 485 . . . . . . . . . 10 (((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ ¬ 𝐴𝑆) ∧ 𝑥 = 𝐴) → 𝑥 = 𝐴)
6927adantr 481 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ ¬ 𝐴𝑆) → 𝑥𝑆)
7069adantr 481 . . . . . . . . . 10 (((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ ¬ 𝐴𝑆) ∧ 𝑥 = 𝐴) → 𝑥𝑆)
7168, 70eqeltrrd 2918 . . . . . . . . 9 (((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ ¬ 𝐴𝑆) ∧ 𝑥 = 𝐴) → 𝐴𝑆)
7271ex 413 . . . . . . . 8 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ ¬ 𝐴𝑆) → (𝑥 = 𝐴𝐴𝑆))
7372necon3bd 3034 . . . . . . 7 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ ¬ 𝐴𝑆) → (¬ 𝐴𝑆𝑥𝐴))
7467, 73mpd 15 . . . . . 6 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ ¬ 𝐴𝑆) → 𝑥𝐴)
7557adantr 481 . . . . . 6 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ ¬ 𝐴𝑆) → (abs‘(𝑥𝐴)) < 𝑑)
7667iffalsed 4480 . . . . . . . 8 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ ¬ 𝐴𝑆) → if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) = 𝑐)
7776eqcomd 2831 . . . . . . 7 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ ¬ 𝐴𝑆) → 𝑐 = if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐))
7843adantr 481 . . . . . . 7 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ ¬ 𝐴𝑆) → if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥)))
7977, 78eqbrtrd 5084 . . . . . 6 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ ¬ 𝐴𝑆) → 𝑐 ≤ (abs‘(𝐹𝑥)))
8074, 75, 793jca 1122 . . . . 5 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ ¬ 𝐴𝑆) → (𝑥𝐴 ∧ (abs‘(𝑥𝐴)) < 𝑑𝑐 ≤ (abs‘(𝐹𝑥))))
8166, 80pm2.61dan 809 . . . 4 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) → (𝑥𝐴 ∧ (abs‘(𝑥𝐴)) < 𝑑𝑐 ≤ (abs‘(𝐹𝑥))))
8227, 34, 81rspcedvd 3629 . . 3 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) → ∃𝑦𝑆 (𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑𝑐 ≤ (abs‘(𝐹𝑦))))
8326, 82rexlimddv 3295 . 2 ((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → ∃𝑦𝑆 (𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑𝑐 ≤ (abs‘(𝐹𝑦))))
8483ralrimivva 3195 1 (𝜑 → ∀𝑐 ∈ ℝ+𝑑 ∈ ℝ+𝑦𝑆 (𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑𝑐 ≤ (abs‘(𝐹𝑦))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1081   = wceq 1530  wcel 2107  wne 3020  wral 3142  wrex 3143  wss 3939  ifcif 4469   class class class wbr 5062  wf 6347  cfv 6351  (class class class)co 7151  cc 10527  cr 10528  0cc0 10529   + caddc 10532   < clt 10667  cle 10668  cmin 10862  +crp 12382  abscabs 14586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8282  df-en 8502  df-dom 8503  df-sdom 8504  df-sup 8898  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12383  df-seq 13363  df-exp 13423  df-cj 14451  df-re 14452  df-im 14453  df-sqrt 14587  df-abs 14588
This theorem is referenced by:  unblimceq0  33732
  Copyright terms: Public domain W3C validator