Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unblimceq0lem Structured version   Visualization version   GIF version

Theorem unblimceq0lem 34969
Description: Lemma for unblimceq0 34970. (Contributed by Asger C. Ipsen, 12-May-2021.)
Hypotheses
Ref Expression
unblimceq0lem.0 (𝜑𝑆 ⊆ ℂ)
unblimceq0lem.1 (𝜑𝐹:𝑆⟶ℂ)
unblimceq0lem.2 (𝜑𝐴 ∈ ℂ)
unblimceq0lem.3 (𝜑 → ∀𝑏 ∈ ℝ+𝑑 ∈ ℝ+𝑥𝑆 ((abs‘(𝑥𝐴)) < 𝑑𝑏 ≤ (abs‘(𝐹𝑥))))
Assertion
Ref Expression
unblimceq0lem (𝜑 → ∀𝑐 ∈ ℝ+𝑑 ∈ ℝ+𝑦𝑆 (𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑𝑐 ≤ (abs‘(𝐹𝑦))))
Distinct variable groups:   𝐴,𝑏,𝑑,𝑥   𝑦,𝐴,𝑑,𝑥   𝐹,𝑏,𝑑,𝑥   𝑦,𝐹   𝑆,𝑏,𝑑,𝑥   𝑦,𝑆   𝜑,𝑏,𝑐,𝑑,𝑥   𝜑,𝑦,𝑐
Allowed substitution hints:   𝐴(𝑐)   𝑆(𝑐)   𝐹(𝑐)

Proof of Theorem unblimceq0lem
StepHypRef Expression
1 breq1 5108 . . . . . . . 8 (𝑏 = if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) → (𝑏 ≤ (abs‘(𝐹𝑥)) ↔ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))
21anbi2d 629 . . . . . . 7 (𝑏 = if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) → (((abs‘(𝑥𝐴)) < 𝑑𝑏 ≤ (abs‘(𝐹𝑥))) ↔ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥)))))
32rexbidv 3175 . . . . . 6 (𝑏 = if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) → (∃𝑥𝑆 ((abs‘(𝑥𝐴)) < 𝑑𝑏 ≤ (abs‘(𝐹𝑥))) ↔ ∃𝑥𝑆 ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥)))))
43ralbidv 3174 . . . . 5 (𝑏 = if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) → (∀𝑑 ∈ ℝ+𝑥𝑆 ((abs‘(𝑥𝐴)) < 𝑑𝑏 ≤ (abs‘(𝐹𝑥))) ↔ ∀𝑑 ∈ ℝ+𝑥𝑆 ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥)))))
5 unblimceq0lem.3 . . . . . 6 (𝜑 → ∀𝑏 ∈ ℝ+𝑑 ∈ ℝ+𝑥𝑆 ((abs‘(𝑥𝐴)) < 𝑑𝑏 ≤ (abs‘(𝐹𝑥))))
65adantr 481 . . . . 5 ((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → ∀𝑏 ∈ ℝ+𝑑 ∈ ℝ+𝑥𝑆 ((abs‘(𝑥𝐴)) < 𝑑𝑏 ≤ (abs‘(𝐹𝑥))))
7 unblimceq0lem.1 . . . . . . . . . . 11 (𝜑𝐹:𝑆⟶ℂ)
87ad2antrr 724 . . . . . . . . . 10 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝐴𝑆) → 𝐹:𝑆⟶ℂ)
9 simpr 485 . . . . . . . . . 10 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝐴𝑆) → 𝐴𝑆)
108, 9ffvelcdmd 7036 . . . . . . . . 9 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝐴𝑆) → (𝐹𝐴) ∈ ℂ)
1110abscld 15321 . . . . . . . 8 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝐴𝑆) → (abs‘(𝐹𝐴)) ∈ ℝ)
12 simprl 769 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → 𝑐 ∈ ℝ+)
1312rpred 12957 . . . . . . . . 9 ((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → 𝑐 ∈ ℝ)
1413adantr 481 . . . . . . . 8 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝐴𝑆) → 𝑐 ∈ ℝ)
1511, 14readdcld 11184 . . . . . . 7 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝐴𝑆) → ((abs‘(𝐹𝐴)) + 𝑐) ∈ ℝ)
1610absge0d 15329 . . . . . . . 8 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝐴𝑆) → 0 ≤ (abs‘(𝐹𝐴)))
1712rpgt0d 12960 . . . . . . . . 9 ((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → 0 < 𝑐)
1817adantr 481 . . . . . . . 8 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝐴𝑆) → 0 < 𝑐)
1911, 14, 16, 18addgegt0d 11728 . . . . . . 7 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝐴𝑆) → 0 < ((abs‘(𝐹𝐴)) + 𝑐))
2015, 19elrpd 12954 . . . . . 6 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝐴𝑆) → ((abs‘(𝐹𝐴)) + 𝑐) ∈ ℝ+)
21 simplrl 775 . . . . . 6 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ¬ 𝐴𝑆) → 𝑐 ∈ ℝ+)
2220, 21ifclda 4521 . . . . 5 ((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ∈ ℝ+)
234, 6, 22rspcdva 3582 . . . 4 ((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → ∀𝑑 ∈ ℝ+𝑥𝑆 ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))
24 simprr 771 . . . 4 ((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → 𝑑 ∈ ℝ+)
25 rsp 3230 . . . 4 (∀𝑑 ∈ ℝ+𝑥𝑆 ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))) → (𝑑 ∈ ℝ+ → ∃𝑥𝑆 ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥)))))
2623, 24, 25sylc 65 . . 3 ((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → ∃𝑥𝑆 ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))
27 simprl 769 . . . 4 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) → 𝑥𝑆)
28 neeq1 3006 . . . . . 6 (𝑦 = 𝑥 → (𝑦𝐴𝑥𝐴))
29 fvoveq1 7380 . . . . . . 7 (𝑦 = 𝑥 → (abs‘(𝑦𝐴)) = (abs‘(𝑥𝐴)))
3029breq1d 5115 . . . . . 6 (𝑦 = 𝑥 → ((abs‘(𝑦𝐴)) < 𝑑 ↔ (abs‘(𝑥𝐴)) < 𝑑))
31 2fveq3 6847 . . . . . . 7 (𝑦 = 𝑥 → (abs‘(𝐹𝑦)) = (abs‘(𝐹𝑥)))
3231breq2d 5117 . . . . . 6 (𝑦 = 𝑥 → (𝑐 ≤ (abs‘(𝐹𝑦)) ↔ 𝑐 ≤ (abs‘(𝐹𝑥))))
3328, 30, 323anbi123d 1436 . . . . 5 (𝑦 = 𝑥 → ((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑𝑐 ≤ (abs‘(𝐹𝑦))) ↔ (𝑥𝐴 ∧ (abs‘(𝑥𝐴)) < 𝑑𝑐 ≤ (abs‘(𝐹𝑥)))))
3433adantl 482 . . . 4 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝑦 = 𝑥) → ((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑𝑐 ≤ (abs‘(𝐹𝑦))) ↔ (𝑥𝐴 ∧ (abs‘(𝑥𝐴)) < 𝑑𝑐 ≤ (abs‘(𝐹𝑥)))))
3515adantlr 713 . . . . . . . 8 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → ((abs‘(𝐹𝐴)) + 𝑐) ∈ ℝ)
367ad2antrr 724 . . . . . . . . . . 11 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) → 𝐹:𝑆⟶ℂ)
3736, 27ffvelcdmd 7036 . . . . . . . . . 10 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) → (𝐹𝑥) ∈ ℂ)
3837abscld 15321 . . . . . . . . 9 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) → (abs‘(𝐹𝑥)) ∈ ℝ)
3938adantr 481 . . . . . . . 8 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → (abs‘(𝐹𝑥)) ∈ ℝ)
40 simpr 485 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → 𝐴𝑆)
4140iftrued 4494 . . . . . . . . . 10 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) = ((abs‘(𝐹𝐴)) + 𝑐))
4241eqcomd 2742 . . . . . . . . 9 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → ((abs‘(𝐹𝐴)) + 𝑐) = if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐))
43 simprrr 780 . . . . . . . . . 10 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) → if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥)))
4443adantr 481 . . . . . . . . 9 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥)))
4542, 44eqbrtrd 5127 . . . . . . . 8 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → ((abs‘(𝐹𝐴)) + 𝑐) ≤ (abs‘(𝐹𝑥)))
4635, 39, 45lensymd 11306 . . . . . . 7 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → ¬ (abs‘(𝐹𝑥)) < ((abs‘(𝐹𝐴)) + 𝑐))
47 2fveq3 6847 . . . . . . . . . . . 12 (𝑥 = 𝐴 → (abs‘(𝐹𝑥)) = (abs‘(𝐹𝐴)))
4847adantl 482 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝐴𝑆) ∧ 𝑥 = 𝐴) → (abs‘(𝐹𝑥)) = (abs‘(𝐹𝐴)))
4914, 11ltaddposd 11739 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝐴𝑆) → (0 < 𝑐 ↔ (abs‘(𝐹𝐴)) < ((abs‘(𝐹𝐴)) + 𝑐)))
5018, 49mpbid 231 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝐴𝑆) → (abs‘(𝐹𝐴)) < ((abs‘(𝐹𝐴)) + 𝑐))
5150adantr 481 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝐴𝑆) ∧ 𝑥 = 𝐴) → (abs‘(𝐹𝐴)) < ((abs‘(𝐹𝐴)) + 𝑐))
5248, 51eqbrtrd 5127 . . . . . . . . . 10 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝐴𝑆) ∧ 𝑥 = 𝐴) → (abs‘(𝐹𝑥)) < ((abs‘(𝐹𝐴)) + 𝑐))
5352ex 413 . . . . . . . . 9 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝐴𝑆) → (𝑥 = 𝐴 → (abs‘(𝐹𝑥)) < ((abs‘(𝐹𝐴)) + 𝑐)))
5453adantlr 713 . . . . . . . 8 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → (𝑥 = 𝐴 → (abs‘(𝐹𝑥)) < ((abs‘(𝐹𝐴)) + 𝑐)))
5554necon3bd 2957 . . . . . . 7 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → (¬ (abs‘(𝐹𝑥)) < ((abs‘(𝐹𝐴)) + 𝑐) → 𝑥𝐴))
5646, 55mpd 15 . . . . . 6 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → 𝑥𝐴)
57 simprrl 779 . . . . . . 7 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) → (abs‘(𝑥𝐴)) < 𝑑)
5857adantr 481 . . . . . 6 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → (abs‘(𝑥𝐴)) < 𝑑)
5914adantlr 713 . . . . . . 7 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → 𝑐 ∈ ℝ)
6010adantlr 713 . . . . . . . . 9 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → (𝐹𝐴) ∈ ℂ)
6160absge0d 15329 . . . . . . . 8 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → 0 ≤ (abs‘(𝐹𝐴)))
6211adantlr 713 . . . . . . . . 9 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → (abs‘(𝐹𝐴)) ∈ ℝ)
6359, 62addge02d 11744 . . . . . . . 8 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → (0 ≤ (abs‘(𝐹𝐴)) ↔ 𝑐 ≤ ((abs‘(𝐹𝐴)) + 𝑐)))
6461, 63mpbid 231 . . . . . . 7 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → 𝑐 ≤ ((abs‘(𝐹𝐴)) + 𝑐))
6559, 35, 39, 64, 45letrd 11312 . . . . . 6 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → 𝑐 ≤ (abs‘(𝐹𝑥)))
6656, 58, 653jca 1128 . . . . 5 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → (𝑥𝐴 ∧ (abs‘(𝑥𝐴)) < 𝑑𝑐 ≤ (abs‘(𝐹𝑥))))
67 simpr 485 . . . . . . 7 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ ¬ 𝐴𝑆) → ¬ 𝐴𝑆)
68 simpr 485 . . . . . . . . . 10 (((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ ¬ 𝐴𝑆) ∧ 𝑥 = 𝐴) → 𝑥 = 𝐴)
6927adantr 481 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ ¬ 𝐴𝑆) → 𝑥𝑆)
7069adantr 481 . . . . . . . . . 10 (((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ ¬ 𝐴𝑆) ∧ 𝑥 = 𝐴) → 𝑥𝑆)
7168, 70eqeltrrd 2839 . . . . . . . . 9 (((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ ¬ 𝐴𝑆) ∧ 𝑥 = 𝐴) → 𝐴𝑆)
7271ex 413 . . . . . . . 8 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ ¬ 𝐴𝑆) → (𝑥 = 𝐴𝐴𝑆))
7372necon3bd 2957 . . . . . . 7 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ ¬ 𝐴𝑆) → (¬ 𝐴𝑆𝑥𝐴))
7467, 73mpd 15 . . . . . 6 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ ¬ 𝐴𝑆) → 𝑥𝐴)
7557adantr 481 . . . . . 6 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ ¬ 𝐴𝑆) → (abs‘(𝑥𝐴)) < 𝑑)
7667iffalsed 4497 . . . . . . . 8 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ ¬ 𝐴𝑆) → if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) = 𝑐)
7776eqcomd 2742 . . . . . . 7 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ ¬ 𝐴𝑆) → 𝑐 = if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐))
7843adantr 481 . . . . . . 7 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ ¬ 𝐴𝑆) → if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥)))
7977, 78eqbrtrd 5127 . . . . . 6 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ ¬ 𝐴𝑆) → 𝑐 ≤ (abs‘(𝐹𝑥)))
8074, 75, 793jca 1128 . . . . 5 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ ¬ 𝐴𝑆) → (𝑥𝐴 ∧ (abs‘(𝑥𝐴)) < 𝑑𝑐 ≤ (abs‘(𝐹𝑥))))
8166, 80pm2.61dan 811 . . . 4 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) → (𝑥𝐴 ∧ (abs‘(𝑥𝐴)) < 𝑑𝑐 ≤ (abs‘(𝐹𝑥))))
8227, 34, 81rspcedvd 3583 . . 3 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) → ∃𝑦𝑆 (𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑𝑐 ≤ (abs‘(𝐹𝑦))))
8326, 82rexlimddv 3158 . 2 ((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → ∃𝑦𝑆 (𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑𝑐 ≤ (abs‘(𝐹𝑦))))
8483ralrimivva 3197 1 (𝜑 → ∀𝑐 ∈ ℝ+𝑑 ∈ ℝ+𝑦𝑆 (𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑𝑐 ≤ (abs‘(𝐹𝑦))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wral 3064  wrex 3073  wss 3910  ifcif 4486   class class class wbr 5105  wf 6492  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051   + caddc 11054   < clt 11189  cle 11190  cmin 11385  +crp 12915  abscabs 15119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121
This theorem is referenced by:  unblimceq0  34970
  Copyright terms: Public domain W3C validator