Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unblimceq0lem Structured version   Visualization version   GIF version

Theorem unblimceq0lem 34324
Description: Lemma for unblimceq0 34325. (Contributed by Asger C. Ipsen, 12-May-2021.)
Hypotheses
Ref Expression
unblimceq0lem.0 (𝜑𝑆 ⊆ ℂ)
unblimceq0lem.1 (𝜑𝐹:𝑆⟶ℂ)
unblimceq0lem.2 (𝜑𝐴 ∈ ℂ)
unblimceq0lem.3 (𝜑 → ∀𝑏 ∈ ℝ+𝑑 ∈ ℝ+𝑥𝑆 ((abs‘(𝑥𝐴)) < 𝑑𝑏 ≤ (abs‘(𝐹𝑥))))
Assertion
Ref Expression
unblimceq0lem (𝜑 → ∀𝑐 ∈ ℝ+𝑑 ∈ ℝ+𝑦𝑆 (𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑𝑐 ≤ (abs‘(𝐹𝑦))))
Distinct variable groups:   𝐴,𝑏,𝑑,𝑥   𝑦,𝐴,𝑑,𝑥   𝐹,𝑏,𝑑,𝑥   𝑦,𝐹   𝑆,𝑏,𝑑,𝑥   𝑦,𝑆   𝜑,𝑏,𝑐,𝑑,𝑥   𝜑,𝑦,𝑐
Allowed substitution hints:   𝐴(𝑐)   𝑆(𝑐)   𝐹(𝑐)

Proof of Theorem unblimceq0lem
StepHypRef Expression
1 breq1 5033 . . . . . . . 8 (𝑏 = if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) → (𝑏 ≤ (abs‘(𝐹𝑥)) ↔ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))
21anbi2d 632 . . . . . . 7 (𝑏 = if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) → (((abs‘(𝑥𝐴)) < 𝑑𝑏 ≤ (abs‘(𝐹𝑥))) ↔ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥)))))
32rexbidv 3207 . . . . . 6 (𝑏 = if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) → (∃𝑥𝑆 ((abs‘(𝑥𝐴)) < 𝑑𝑏 ≤ (abs‘(𝐹𝑥))) ↔ ∃𝑥𝑆 ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥)))))
43ralbidv 3109 . . . . 5 (𝑏 = if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) → (∀𝑑 ∈ ℝ+𝑥𝑆 ((abs‘(𝑥𝐴)) < 𝑑𝑏 ≤ (abs‘(𝐹𝑥))) ↔ ∀𝑑 ∈ ℝ+𝑥𝑆 ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥)))))
5 unblimceq0lem.3 . . . . . 6 (𝜑 → ∀𝑏 ∈ ℝ+𝑑 ∈ ℝ+𝑥𝑆 ((abs‘(𝑥𝐴)) < 𝑑𝑏 ≤ (abs‘(𝐹𝑥))))
65adantr 484 . . . . 5 ((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → ∀𝑏 ∈ ℝ+𝑑 ∈ ℝ+𝑥𝑆 ((abs‘(𝑥𝐴)) < 𝑑𝑏 ≤ (abs‘(𝐹𝑥))))
7 unblimceq0lem.1 . . . . . . . . . . 11 (𝜑𝐹:𝑆⟶ℂ)
87ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝐴𝑆) → 𝐹:𝑆⟶ℂ)
9 simpr 488 . . . . . . . . . 10 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝐴𝑆) → 𝐴𝑆)
108, 9ffvelrnd 6862 . . . . . . . . 9 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝐴𝑆) → (𝐹𝐴) ∈ ℂ)
1110abscld 14886 . . . . . . . 8 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝐴𝑆) → (abs‘(𝐹𝐴)) ∈ ℝ)
12 simprl 771 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → 𝑐 ∈ ℝ+)
1312rpred 12514 . . . . . . . . 9 ((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → 𝑐 ∈ ℝ)
1413adantr 484 . . . . . . . 8 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝐴𝑆) → 𝑐 ∈ ℝ)
1511, 14readdcld 10748 . . . . . . 7 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝐴𝑆) → ((abs‘(𝐹𝐴)) + 𝑐) ∈ ℝ)
1610absge0d 14894 . . . . . . . 8 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝐴𝑆) → 0 ≤ (abs‘(𝐹𝐴)))
1712rpgt0d 12517 . . . . . . . . 9 ((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → 0 < 𝑐)
1817adantr 484 . . . . . . . 8 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝐴𝑆) → 0 < 𝑐)
1911, 14, 16, 18addgegt0d 11291 . . . . . . 7 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝐴𝑆) → 0 < ((abs‘(𝐹𝐴)) + 𝑐))
2015, 19elrpd 12511 . . . . . 6 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝐴𝑆) → ((abs‘(𝐹𝐴)) + 𝑐) ∈ ℝ+)
21 simplrl 777 . . . . . 6 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ¬ 𝐴𝑆) → 𝑐 ∈ ℝ+)
2220, 21ifclda 4449 . . . . 5 ((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ∈ ℝ+)
234, 6, 22rspcdva 3528 . . . 4 ((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → ∀𝑑 ∈ ℝ+𝑥𝑆 ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))
24 simprr 773 . . . 4 ((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → 𝑑 ∈ ℝ+)
25 rsp 3118 . . . 4 (∀𝑑 ∈ ℝ+𝑥𝑆 ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))) → (𝑑 ∈ ℝ+ → ∃𝑥𝑆 ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥)))))
2623, 24, 25sylc 65 . . 3 ((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → ∃𝑥𝑆 ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))
27 simprl 771 . . . 4 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) → 𝑥𝑆)
28 neeq1 2996 . . . . . 6 (𝑦 = 𝑥 → (𝑦𝐴𝑥𝐴))
29 fvoveq1 7193 . . . . . . 7 (𝑦 = 𝑥 → (abs‘(𝑦𝐴)) = (abs‘(𝑥𝐴)))
3029breq1d 5040 . . . . . 6 (𝑦 = 𝑥 → ((abs‘(𝑦𝐴)) < 𝑑 ↔ (abs‘(𝑥𝐴)) < 𝑑))
31 2fveq3 6679 . . . . . . 7 (𝑦 = 𝑥 → (abs‘(𝐹𝑦)) = (abs‘(𝐹𝑥)))
3231breq2d 5042 . . . . . 6 (𝑦 = 𝑥 → (𝑐 ≤ (abs‘(𝐹𝑦)) ↔ 𝑐 ≤ (abs‘(𝐹𝑥))))
3328, 30, 323anbi123d 1437 . . . . 5 (𝑦 = 𝑥 → ((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑𝑐 ≤ (abs‘(𝐹𝑦))) ↔ (𝑥𝐴 ∧ (abs‘(𝑥𝐴)) < 𝑑𝑐 ≤ (abs‘(𝐹𝑥)))))
3433adantl 485 . . . 4 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝑦 = 𝑥) → ((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑𝑐 ≤ (abs‘(𝐹𝑦))) ↔ (𝑥𝐴 ∧ (abs‘(𝑥𝐴)) < 𝑑𝑐 ≤ (abs‘(𝐹𝑥)))))
3515adantlr 715 . . . . . . . 8 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → ((abs‘(𝐹𝐴)) + 𝑐) ∈ ℝ)
367ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) → 𝐹:𝑆⟶ℂ)
3736, 27ffvelrnd 6862 . . . . . . . . . 10 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) → (𝐹𝑥) ∈ ℂ)
3837abscld 14886 . . . . . . . . 9 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) → (abs‘(𝐹𝑥)) ∈ ℝ)
3938adantr 484 . . . . . . . 8 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → (abs‘(𝐹𝑥)) ∈ ℝ)
40 simpr 488 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → 𝐴𝑆)
4140iftrued 4422 . . . . . . . . . 10 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) = ((abs‘(𝐹𝐴)) + 𝑐))
4241eqcomd 2744 . . . . . . . . 9 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → ((abs‘(𝐹𝐴)) + 𝑐) = if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐))
43 simprrr 782 . . . . . . . . . 10 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) → if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥)))
4443adantr 484 . . . . . . . . 9 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥)))
4542, 44eqbrtrd 5052 . . . . . . . 8 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → ((abs‘(𝐹𝐴)) + 𝑐) ≤ (abs‘(𝐹𝑥)))
4635, 39, 45lensymd 10869 . . . . . . 7 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → ¬ (abs‘(𝐹𝑥)) < ((abs‘(𝐹𝐴)) + 𝑐))
47 2fveq3 6679 . . . . . . . . . . . 12 (𝑥 = 𝐴 → (abs‘(𝐹𝑥)) = (abs‘(𝐹𝐴)))
4847adantl 485 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝐴𝑆) ∧ 𝑥 = 𝐴) → (abs‘(𝐹𝑥)) = (abs‘(𝐹𝐴)))
4914, 11ltaddposd 11302 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝐴𝑆) → (0 < 𝑐 ↔ (abs‘(𝐹𝐴)) < ((abs‘(𝐹𝐴)) + 𝑐)))
5018, 49mpbid 235 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝐴𝑆) → (abs‘(𝐹𝐴)) < ((abs‘(𝐹𝐴)) + 𝑐))
5150adantr 484 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝐴𝑆) ∧ 𝑥 = 𝐴) → (abs‘(𝐹𝐴)) < ((abs‘(𝐹𝐴)) + 𝑐))
5248, 51eqbrtrd 5052 . . . . . . . . . 10 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝐴𝑆) ∧ 𝑥 = 𝐴) → (abs‘(𝐹𝑥)) < ((abs‘(𝐹𝐴)) + 𝑐))
5352ex 416 . . . . . . . . 9 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝐴𝑆) → (𝑥 = 𝐴 → (abs‘(𝐹𝑥)) < ((abs‘(𝐹𝐴)) + 𝑐)))
5453adantlr 715 . . . . . . . 8 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → (𝑥 = 𝐴 → (abs‘(𝐹𝑥)) < ((abs‘(𝐹𝐴)) + 𝑐)))
5554necon3bd 2948 . . . . . . 7 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → (¬ (abs‘(𝐹𝑥)) < ((abs‘(𝐹𝐴)) + 𝑐) → 𝑥𝐴))
5646, 55mpd 15 . . . . . 6 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → 𝑥𝐴)
57 simprrl 781 . . . . . . 7 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) → (abs‘(𝑥𝐴)) < 𝑑)
5857adantr 484 . . . . . 6 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → (abs‘(𝑥𝐴)) < 𝑑)
5914adantlr 715 . . . . . . 7 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → 𝑐 ∈ ℝ)
6010adantlr 715 . . . . . . . . 9 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → (𝐹𝐴) ∈ ℂ)
6160absge0d 14894 . . . . . . . 8 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → 0 ≤ (abs‘(𝐹𝐴)))
6211adantlr 715 . . . . . . . . 9 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → (abs‘(𝐹𝐴)) ∈ ℝ)
6359, 62addge02d 11307 . . . . . . . 8 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → (0 ≤ (abs‘(𝐹𝐴)) ↔ 𝑐 ≤ ((abs‘(𝐹𝐴)) + 𝑐)))
6461, 63mpbid 235 . . . . . . 7 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → 𝑐 ≤ ((abs‘(𝐹𝐴)) + 𝑐))
6559, 35, 39, 64, 45letrd 10875 . . . . . 6 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → 𝑐 ≤ (abs‘(𝐹𝑥)))
6656, 58, 653jca 1129 . . . . 5 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → (𝑥𝐴 ∧ (abs‘(𝑥𝐴)) < 𝑑𝑐 ≤ (abs‘(𝐹𝑥))))
67 simpr 488 . . . . . . 7 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ ¬ 𝐴𝑆) → ¬ 𝐴𝑆)
68 simpr 488 . . . . . . . . . 10 (((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ ¬ 𝐴𝑆) ∧ 𝑥 = 𝐴) → 𝑥 = 𝐴)
6927adantr 484 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ ¬ 𝐴𝑆) → 𝑥𝑆)
7069adantr 484 . . . . . . . . . 10 (((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ ¬ 𝐴𝑆) ∧ 𝑥 = 𝐴) → 𝑥𝑆)
7168, 70eqeltrrd 2834 . . . . . . . . 9 (((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ ¬ 𝐴𝑆) ∧ 𝑥 = 𝐴) → 𝐴𝑆)
7271ex 416 . . . . . . . 8 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ ¬ 𝐴𝑆) → (𝑥 = 𝐴𝐴𝑆))
7372necon3bd 2948 . . . . . . 7 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ ¬ 𝐴𝑆) → (¬ 𝐴𝑆𝑥𝐴))
7467, 73mpd 15 . . . . . 6 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ ¬ 𝐴𝑆) → 𝑥𝐴)
7557adantr 484 . . . . . 6 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ ¬ 𝐴𝑆) → (abs‘(𝑥𝐴)) < 𝑑)
7667iffalsed 4425 . . . . . . . 8 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ ¬ 𝐴𝑆) → if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) = 𝑐)
7776eqcomd 2744 . . . . . . 7 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ ¬ 𝐴𝑆) → 𝑐 = if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐))
7843adantr 484 . . . . . . 7 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ ¬ 𝐴𝑆) → if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥)))
7977, 78eqbrtrd 5052 . . . . . 6 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ ¬ 𝐴𝑆) → 𝑐 ≤ (abs‘(𝐹𝑥)))
8074, 75, 793jca 1129 . . . . 5 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ ¬ 𝐴𝑆) → (𝑥𝐴 ∧ (abs‘(𝑥𝐴)) < 𝑑𝑐 ≤ (abs‘(𝐹𝑥))))
8166, 80pm2.61dan 813 . . . 4 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) → (𝑥𝐴 ∧ (abs‘(𝑥𝐴)) < 𝑑𝑐 ≤ (abs‘(𝐹𝑥))))
8227, 34, 81rspcedvd 3529 . . 3 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) → ∃𝑦𝑆 (𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑𝑐 ≤ (abs‘(𝐹𝑦))))
8326, 82rexlimddv 3201 . 2 ((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → ∃𝑦𝑆 (𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑𝑐 ≤ (abs‘(𝐹𝑦))))
8483ralrimivva 3103 1 (𝜑 → ∀𝑐 ∈ ℝ+𝑑 ∈ ℝ+𝑦𝑆 (𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑𝑐 ≤ (abs‘(𝐹𝑦))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1088   = wceq 1542  wcel 2114  wne 2934  wral 3053  wrex 3054  wss 3843  ifcif 4414   class class class wbr 5030  wf 6335  cfv 6339  (class class class)co 7170  cc 10613  cr 10614  0cc0 10615   + caddc 10618   < clt 10753  cle 10754  cmin 10948  +crp 12472  abscabs 14683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692  ax-pre-sup 10693
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-om 7600  df-2nd 7715  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-er 8320  df-en 8556  df-dom 8557  df-sdom 8558  df-sup 8979  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-div 11376  df-nn 11717  df-2 11779  df-3 11780  df-n0 11977  df-z 12063  df-uz 12325  df-rp 12473  df-seq 13461  df-exp 13522  df-cj 14548  df-re 14549  df-im 14550  df-sqrt 14684  df-abs 14685
This theorem is referenced by:  unblimceq0  34325
  Copyright terms: Public domain W3C validator