Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unblimceq0lem Structured version   Visualization version   GIF version

Theorem unblimceq0lem 36501
Description: Lemma for unblimceq0 36502. (Contributed by Asger C. Ipsen, 12-May-2021.)
Hypotheses
Ref Expression
unblimceq0lem.0 (𝜑𝑆 ⊆ ℂ)
unblimceq0lem.1 (𝜑𝐹:𝑆⟶ℂ)
unblimceq0lem.2 (𝜑𝐴 ∈ ℂ)
unblimceq0lem.3 (𝜑 → ∀𝑏 ∈ ℝ+𝑑 ∈ ℝ+𝑥𝑆 ((abs‘(𝑥𝐴)) < 𝑑𝑏 ≤ (abs‘(𝐹𝑥))))
Assertion
Ref Expression
unblimceq0lem (𝜑 → ∀𝑐 ∈ ℝ+𝑑 ∈ ℝ+𝑦𝑆 (𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑𝑐 ≤ (abs‘(𝐹𝑦))))
Distinct variable groups:   𝐴,𝑏,𝑑,𝑥   𝑦,𝐴,𝑑,𝑥   𝐹,𝑏,𝑑,𝑥   𝑦,𝐹   𝑆,𝑏,𝑑,𝑥   𝑦,𝑆   𝜑,𝑏,𝑐,𝑑,𝑥   𝜑,𝑦,𝑐
Allowed substitution hints:   𝐴(𝑐)   𝑆(𝑐)   𝐹(𝑐)

Proof of Theorem unblimceq0lem
StepHypRef Expression
1 breq1 5113 . . . . . . . 8 (𝑏 = if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) → (𝑏 ≤ (abs‘(𝐹𝑥)) ↔ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))
21anbi2d 630 . . . . . . 7 (𝑏 = if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) → (((abs‘(𝑥𝐴)) < 𝑑𝑏 ≤ (abs‘(𝐹𝑥))) ↔ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥)))))
32rexbidv 3158 . . . . . 6 (𝑏 = if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) → (∃𝑥𝑆 ((abs‘(𝑥𝐴)) < 𝑑𝑏 ≤ (abs‘(𝐹𝑥))) ↔ ∃𝑥𝑆 ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥)))))
43ralbidv 3157 . . . . 5 (𝑏 = if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) → (∀𝑑 ∈ ℝ+𝑥𝑆 ((abs‘(𝑥𝐴)) < 𝑑𝑏 ≤ (abs‘(𝐹𝑥))) ↔ ∀𝑑 ∈ ℝ+𝑥𝑆 ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥)))))
5 unblimceq0lem.3 . . . . . 6 (𝜑 → ∀𝑏 ∈ ℝ+𝑑 ∈ ℝ+𝑥𝑆 ((abs‘(𝑥𝐴)) < 𝑑𝑏 ≤ (abs‘(𝐹𝑥))))
65adantr 480 . . . . 5 ((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → ∀𝑏 ∈ ℝ+𝑑 ∈ ℝ+𝑥𝑆 ((abs‘(𝑥𝐴)) < 𝑑𝑏 ≤ (abs‘(𝐹𝑥))))
7 unblimceq0lem.1 . . . . . . . . . . 11 (𝜑𝐹:𝑆⟶ℂ)
87ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝐴𝑆) → 𝐹:𝑆⟶ℂ)
9 simpr 484 . . . . . . . . . 10 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝐴𝑆) → 𝐴𝑆)
108, 9ffvelcdmd 7060 . . . . . . . . 9 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝐴𝑆) → (𝐹𝐴) ∈ ℂ)
1110abscld 15412 . . . . . . . 8 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝐴𝑆) → (abs‘(𝐹𝐴)) ∈ ℝ)
12 simprl 770 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → 𝑐 ∈ ℝ+)
1312rpred 13002 . . . . . . . . 9 ((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → 𝑐 ∈ ℝ)
1413adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝐴𝑆) → 𝑐 ∈ ℝ)
1511, 14readdcld 11210 . . . . . . 7 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝐴𝑆) → ((abs‘(𝐹𝐴)) + 𝑐) ∈ ℝ)
1610absge0d 15420 . . . . . . . 8 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝐴𝑆) → 0 ≤ (abs‘(𝐹𝐴)))
1712rpgt0d 13005 . . . . . . . . 9 ((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → 0 < 𝑐)
1817adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝐴𝑆) → 0 < 𝑐)
1911, 14, 16, 18addgegt0d 11758 . . . . . . 7 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝐴𝑆) → 0 < ((abs‘(𝐹𝐴)) + 𝑐))
2015, 19elrpd 12999 . . . . . 6 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝐴𝑆) → ((abs‘(𝐹𝐴)) + 𝑐) ∈ ℝ+)
21 simplrl 776 . . . . . 6 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ¬ 𝐴𝑆) → 𝑐 ∈ ℝ+)
2220, 21ifclda 4527 . . . . 5 ((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ∈ ℝ+)
234, 6, 22rspcdva 3592 . . . 4 ((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → ∀𝑑 ∈ ℝ+𝑥𝑆 ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))
24 simprr 772 . . . 4 ((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → 𝑑 ∈ ℝ+)
25 rsp 3226 . . . 4 (∀𝑑 ∈ ℝ+𝑥𝑆 ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))) → (𝑑 ∈ ℝ+ → ∃𝑥𝑆 ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥)))))
2623, 24, 25sylc 65 . . 3 ((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → ∃𝑥𝑆 ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))
27 simprl 770 . . . 4 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) → 𝑥𝑆)
28 neeq1 2988 . . . . . 6 (𝑦 = 𝑥 → (𝑦𝐴𝑥𝐴))
29 fvoveq1 7413 . . . . . . 7 (𝑦 = 𝑥 → (abs‘(𝑦𝐴)) = (abs‘(𝑥𝐴)))
3029breq1d 5120 . . . . . 6 (𝑦 = 𝑥 → ((abs‘(𝑦𝐴)) < 𝑑 ↔ (abs‘(𝑥𝐴)) < 𝑑))
31 2fveq3 6866 . . . . . . 7 (𝑦 = 𝑥 → (abs‘(𝐹𝑦)) = (abs‘(𝐹𝑥)))
3231breq2d 5122 . . . . . 6 (𝑦 = 𝑥 → (𝑐 ≤ (abs‘(𝐹𝑦)) ↔ 𝑐 ≤ (abs‘(𝐹𝑥))))
3328, 30, 323anbi123d 1438 . . . . 5 (𝑦 = 𝑥 → ((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑𝑐 ≤ (abs‘(𝐹𝑦))) ↔ (𝑥𝐴 ∧ (abs‘(𝑥𝐴)) < 𝑑𝑐 ≤ (abs‘(𝐹𝑥)))))
3433adantl 481 . . . 4 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝑦 = 𝑥) → ((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑𝑐 ≤ (abs‘(𝐹𝑦))) ↔ (𝑥𝐴 ∧ (abs‘(𝑥𝐴)) < 𝑑𝑐 ≤ (abs‘(𝐹𝑥)))))
3515adantlr 715 . . . . . . . 8 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → ((abs‘(𝐹𝐴)) + 𝑐) ∈ ℝ)
367ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) → 𝐹:𝑆⟶ℂ)
3736, 27ffvelcdmd 7060 . . . . . . . . . 10 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) → (𝐹𝑥) ∈ ℂ)
3837abscld 15412 . . . . . . . . 9 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) → (abs‘(𝐹𝑥)) ∈ ℝ)
3938adantr 480 . . . . . . . 8 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → (abs‘(𝐹𝑥)) ∈ ℝ)
40 simpr 484 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → 𝐴𝑆)
4140iftrued 4499 . . . . . . . . . 10 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) = ((abs‘(𝐹𝐴)) + 𝑐))
4241eqcomd 2736 . . . . . . . . 9 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → ((abs‘(𝐹𝐴)) + 𝑐) = if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐))
43 simprrr 781 . . . . . . . . . 10 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) → if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥)))
4443adantr 480 . . . . . . . . 9 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥)))
4542, 44eqbrtrd 5132 . . . . . . . 8 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → ((abs‘(𝐹𝐴)) + 𝑐) ≤ (abs‘(𝐹𝑥)))
4635, 39, 45lensymd 11332 . . . . . . 7 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → ¬ (abs‘(𝐹𝑥)) < ((abs‘(𝐹𝐴)) + 𝑐))
47 2fveq3 6866 . . . . . . . . . . . 12 (𝑥 = 𝐴 → (abs‘(𝐹𝑥)) = (abs‘(𝐹𝐴)))
4847adantl 481 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝐴𝑆) ∧ 𝑥 = 𝐴) → (abs‘(𝐹𝑥)) = (abs‘(𝐹𝐴)))
4914, 11ltaddposd 11769 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝐴𝑆) → (0 < 𝑐 ↔ (abs‘(𝐹𝐴)) < ((abs‘(𝐹𝐴)) + 𝑐)))
5018, 49mpbid 232 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝐴𝑆) → (abs‘(𝐹𝐴)) < ((abs‘(𝐹𝐴)) + 𝑐))
5150adantr 480 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝐴𝑆) ∧ 𝑥 = 𝐴) → (abs‘(𝐹𝐴)) < ((abs‘(𝐹𝐴)) + 𝑐))
5248, 51eqbrtrd 5132 . . . . . . . . . 10 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝐴𝑆) ∧ 𝑥 = 𝐴) → (abs‘(𝐹𝑥)) < ((abs‘(𝐹𝐴)) + 𝑐))
5352ex 412 . . . . . . . . 9 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ 𝐴𝑆) → (𝑥 = 𝐴 → (abs‘(𝐹𝑥)) < ((abs‘(𝐹𝐴)) + 𝑐)))
5453adantlr 715 . . . . . . . 8 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → (𝑥 = 𝐴 → (abs‘(𝐹𝑥)) < ((abs‘(𝐹𝐴)) + 𝑐)))
5554necon3bd 2940 . . . . . . 7 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → (¬ (abs‘(𝐹𝑥)) < ((abs‘(𝐹𝐴)) + 𝑐) → 𝑥𝐴))
5646, 55mpd 15 . . . . . 6 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → 𝑥𝐴)
57 simprrl 780 . . . . . . 7 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) → (abs‘(𝑥𝐴)) < 𝑑)
5857adantr 480 . . . . . 6 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → (abs‘(𝑥𝐴)) < 𝑑)
5914adantlr 715 . . . . . . 7 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → 𝑐 ∈ ℝ)
6010adantlr 715 . . . . . . . . 9 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → (𝐹𝐴) ∈ ℂ)
6160absge0d 15420 . . . . . . . 8 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → 0 ≤ (abs‘(𝐹𝐴)))
6211adantlr 715 . . . . . . . . 9 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → (abs‘(𝐹𝐴)) ∈ ℝ)
6359, 62addge02d 11774 . . . . . . . 8 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → (0 ≤ (abs‘(𝐹𝐴)) ↔ 𝑐 ≤ ((abs‘(𝐹𝐴)) + 𝑐)))
6461, 63mpbid 232 . . . . . . 7 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → 𝑐 ≤ ((abs‘(𝐹𝐴)) + 𝑐))
6559, 35, 39, 64, 45letrd 11338 . . . . . 6 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → 𝑐 ≤ (abs‘(𝐹𝑥)))
6656, 58, 653jca 1128 . . . . 5 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ 𝐴𝑆) → (𝑥𝐴 ∧ (abs‘(𝑥𝐴)) < 𝑑𝑐 ≤ (abs‘(𝐹𝑥))))
67 simpr 484 . . . . . . 7 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ ¬ 𝐴𝑆) → ¬ 𝐴𝑆)
68 simpr 484 . . . . . . . . . 10 (((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ ¬ 𝐴𝑆) ∧ 𝑥 = 𝐴) → 𝑥 = 𝐴)
6927adantr 480 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ ¬ 𝐴𝑆) → 𝑥𝑆)
7069adantr 480 . . . . . . . . . 10 (((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ ¬ 𝐴𝑆) ∧ 𝑥 = 𝐴) → 𝑥𝑆)
7168, 70eqeltrrd 2830 . . . . . . . . 9 (((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ ¬ 𝐴𝑆) ∧ 𝑥 = 𝐴) → 𝐴𝑆)
7271ex 412 . . . . . . . 8 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ ¬ 𝐴𝑆) → (𝑥 = 𝐴𝐴𝑆))
7372necon3bd 2940 . . . . . . 7 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ ¬ 𝐴𝑆) → (¬ 𝐴𝑆𝑥𝐴))
7467, 73mpd 15 . . . . . 6 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ ¬ 𝐴𝑆) → 𝑥𝐴)
7557adantr 480 . . . . . 6 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ ¬ 𝐴𝑆) → (abs‘(𝑥𝐴)) < 𝑑)
7667iffalsed 4502 . . . . . . . 8 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ ¬ 𝐴𝑆) → if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) = 𝑐)
7776eqcomd 2736 . . . . . . 7 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ ¬ 𝐴𝑆) → 𝑐 = if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐))
7843adantr 480 . . . . . . 7 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ ¬ 𝐴𝑆) → if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥)))
7977, 78eqbrtrd 5132 . . . . . 6 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ ¬ 𝐴𝑆) → 𝑐 ≤ (abs‘(𝐹𝑥)))
8074, 75, 793jca 1128 . . . . 5 ((((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) ∧ ¬ 𝐴𝑆) → (𝑥𝐴 ∧ (abs‘(𝑥𝐴)) < 𝑑𝑐 ≤ (abs‘(𝐹𝑥))))
8166, 80pm2.61dan 812 . . . 4 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) → (𝑥𝐴 ∧ (abs‘(𝑥𝐴)) < 𝑑𝑐 ≤ (abs‘(𝐹𝑥))))
8227, 34, 81rspcedvd 3593 . . 3 (((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑆 ∧ ((abs‘(𝑥𝐴)) < 𝑑 ∧ if(𝐴𝑆, ((abs‘(𝐹𝐴)) + 𝑐), 𝑐) ≤ (abs‘(𝐹𝑥))))) → ∃𝑦𝑆 (𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑𝑐 ≤ (abs‘(𝐹𝑦))))
8326, 82rexlimddv 3141 . 2 ((𝜑 ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → ∃𝑦𝑆 (𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑𝑐 ≤ (abs‘(𝐹𝑦))))
8483ralrimivva 3181 1 (𝜑 → ∀𝑐 ∈ ℝ+𝑑 ∈ ℝ+𝑦𝑆 (𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑𝑐 ≤ (abs‘(𝐹𝑦))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  wss 3917  ifcif 4491   class class class wbr 5110  wf 6510  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075   + caddc 11078   < clt 11215  cle 11216  cmin 11412  +crp 12958  abscabs 15207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209
This theorem is referenced by:  unblimceq0  36502
  Copyright terms: Public domain W3C validator