Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpmcvr6N Structured version   Visualization version   GIF version

Theorem lhpmcvr6N 39412
Description: Specialization of lhpmcvr2 39408. (Contributed by NM, 6-Apr-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
lhpmcvr2.b 𝐡 = (Baseβ€˜πΎ)
lhpmcvr2.l ≀ = (leβ€˜πΎ)
lhpmcvr2.j ∨ = (joinβ€˜πΎ)
lhpmcvr2.m ∧ = (meetβ€˜πΎ)
lhpmcvr2.a 𝐴 = (Atomsβ€˜πΎ)
lhpmcvr2.h 𝐻 = (LHypβ€˜πΎ)
Assertion
Ref Expression
lhpmcvr6N (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐡 ∧ (𝑋 ∧ π‘Œ) ≀ π‘Š)) β†’ βˆƒπ‘ ∈ 𝐴 (Β¬ 𝑝 ≀ π‘Š ∧ Β¬ 𝑝 ≀ π‘Œ ∧ 𝑝 ≀ 𝑋))
Distinct variable groups:   𝐴,𝑝   𝐡,𝑝   𝐾,𝑝   ≀ ,𝑝   ∧ ,𝑝   𝑋,𝑝   π‘Š,𝑝   𝐻,𝑝   π‘Œ,𝑝
Allowed substitution hint:   ∨ (𝑝)

Proof of Theorem lhpmcvr6N
StepHypRef Expression
1 lhpmcvr2.b . . 3 𝐡 = (Baseβ€˜πΎ)
2 lhpmcvr2.l . . 3 ≀ = (leβ€˜πΎ)
3 lhpmcvr2.j . . 3 ∨ = (joinβ€˜πΎ)
4 lhpmcvr2.m . . 3 ∧ = (meetβ€˜πΎ)
5 lhpmcvr2.a . . 3 𝐴 = (Atomsβ€˜πΎ)
6 lhpmcvr2.h . . 3 𝐻 = (LHypβ€˜πΎ)
71, 2, 3, 4, 5, 6lhpmcvr5N 39411 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐡 ∧ (𝑋 ∧ π‘Œ) ≀ π‘Š)) β†’ βˆƒπ‘ ∈ 𝐴 (Β¬ 𝑝 ≀ π‘Š ∧ Β¬ 𝑝 ≀ π‘Œ ∧ (𝑝 ∨ (𝑋 ∧ π‘Š)) = 𝑋))
8 simp31 1206 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐡 ∧ (𝑋 ∧ π‘Œ) ≀ π‘Š)) ∧ 𝑝 ∈ 𝐴 ∧ (Β¬ 𝑝 ≀ π‘Š ∧ Β¬ 𝑝 ≀ π‘Œ ∧ (𝑝 ∨ (𝑋 ∧ π‘Š)) = 𝑋)) β†’ Β¬ 𝑝 ≀ π‘Š)
9 simp32 1207 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐡 ∧ (𝑋 ∧ π‘Œ) ≀ π‘Š)) ∧ 𝑝 ∈ 𝐴 ∧ (Β¬ 𝑝 ≀ π‘Š ∧ Β¬ 𝑝 ≀ π‘Œ ∧ (𝑝 ∨ (𝑋 ∧ π‘Š)) = 𝑋)) β†’ Β¬ 𝑝 ≀ π‘Œ)
10 simp11l 1281 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐡 ∧ (𝑋 ∧ π‘Œ) ≀ π‘Š)) ∧ 𝑝 ∈ 𝐴 ∧ (Β¬ 𝑝 ≀ π‘Š ∧ Β¬ 𝑝 ≀ π‘Œ ∧ (𝑝 ∨ (𝑋 ∧ π‘Š)) = 𝑋)) β†’ 𝐾 ∈ HL)
1110hllatd 38747 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐡 ∧ (𝑋 ∧ π‘Œ) ≀ π‘Š)) ∧ 𝑝 ∈ 𝐴 ∧ (Β¬ 𝑝 ≀ π‘Š ∧ Β¬ 𝑝 ≀ π‘Œ ∧ (𝑝 ∨ (𝑋 ∧ π‘Š)) = 𝑋)) β†’ 𝐾 ∈ Lat)
121, 5atbase 38672 . . . . . . . 8 (𝑝 ∈ 𝐴 β†’ 𝑝 ∈ 𝐡)
13123ad2ant2 1131 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐡 ∧ (𝑋 ∧ π‘Œ) ≀ π‘Š)) ∧ 𝑝 ∈ 𝐴 ∧ (Β¬ 𝑝 ≀ π‘Š ∧ Β¬ 𝑝 ≀ π‘Œ ∧ (𝑝 ∨ (𝑋 ∧ π‘Š)) = 𝑋)) β†’ 𝑝 ∈ 𝐡)
14 simp12l 1283 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐡 ∧ (𝑋 ∧ π‘Œ) ≀ π‘Š)) ∧ 𝑝 ∈ 𝐴 ∧ (Β¬ 𝑝 ≀ π‘Š ∧ Β¬ 𝑝 ≀ π‘Œ ∧ (𝑝 ∨ (𝑋 ∧ π‘Š)) = 𝑋)) β†’ 𝑋 ∈ 𝐡)
15 simp11r 1282 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐡 ∧ (𝑋 ∧ π‘Œ) ≀ π‘Š)) ∧ 𝑝 ∈ 𝐴 ∧ (Β¬ 𝑝 ≀ π‘Š ∧ Β¬ 𝑝 ≀ π‘Œ ∧ (𝑝 ∨ (𝑋 ∧ π‘Š)) = 𝑋)) β†’ π‘Š ∈ 𝐻)
161, 6lhpbase 39382 . . . . . . . . 9 (π‘Š ∈ 𝐻 β†’ π‘Š ∈ 𝐡)
1715, 16syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐡 ∧ (𝑋 ∧ π‘Œ) ≀ π‘Š)) ∧ 𝑝 ∈ 𝐴 ∧ (Β¬ 𝑝 ≀ π‘Š ∧ Β¬ 𝑝 ≀ π‘Œ ∧ (𝑝 ∨ (𝑋 ∧ π‘Š)) = 𝑋)) β†’ π‘Š ∈ 𝐡)
181, 4latmcl 18405 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐡 ∧ π‘Š ∈ 𝐡) β†’ (𝑋 ∧ π‘Š) ∈ 𝐡)
1911, 14, 17, 18syl3anc 1368 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐡 ∧ (𝑋 ∧ π‘Œ) ≀ π‘Š)) ∧ 𝑝 ∈ 𝐴 ∧ (Β¬ 𝑝 ≀ π‘Š ∧ Β¬ 𝑝 ≀ π‘Œ ∧ (𝑝 ∨ (𝑋 ∧ π‘Š)) = 𝑋)) β†’ (𝑋 ∧ π‘Š) ∈ 𝐡)
201, 2, 3latlej1 18413 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑝 ∈ 𝐡 ∧ (𝑋 ∧ π‘Š) ∈ 𝐡) β†’ 𝑝 ≀ (𝑝 ∨ (𝑋 ∧ π‘Š)))
2111, 13, 19, 20syl3anc 1368 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐡 ∧ (𝑋 ∧ π‘Œ) ≀ π‘Š)) ∧ 𝑝 ∈ 𝐴 ∧ (Β¬ 𝑝 ≀ π‘Š ∧ Β¬ 𝑝 ≀ π‘Œ ∧ (𝑝 ∨ (𝑋 ∧ π‘Š)) = 𝑋)) β†’ 𝑝 ≀ (𝑝 ∨ (𝑋 ∧ π‘Š)))
22 simp33 1208 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐡 ∧ (𝑋 ∧ π‘Œ) ≀ π‘Š)) ∧ 𝑝 ∈ 𝐴 ∧ (Β¬ 𝑝 ≀ π‘Š ∧ Β¬ 𝑝 ≀ π‘Œ ∧ (𝑝 ∨ (𝑋 ∧ π‘Š)) = 𝑋)) β†’ (𝑝 ∨ (𝑋 ∧ π‘Š)) = 𝑋)
2321, 22breqtrd 5167 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐡 ∧ (𝑋 ∧ π‘Œ) ≀ π‘Š)) ∧ 𝑝 ∈ 𝐴 ∧ (Β¬ 𝑝 ≀ π‘Š ∧ Β¬ 𝑝 ≀ π‘Œ ∧ (𝑝 ∨ (𝑋 ∧ π‘Š)) = 𝑋)) β†’ 𝑝 ≀ 𝑋)
248, 9, 233jca 1125 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐡 ∧ (𝑋 ∧ π‘Œ) ≀ π‘Š)) ∧ 𝑝 ∈ 𝐴 ∧ (Β¬ 𝑝 ≀ π‘Š ∧ Β¬ 𝑝 ≀ π‘Œ ∧ (𝑝 ∨ (𝑋 ∧ π‘Š)) = 𝑋)) β†’ (Β¬ 𝑝 ≀ π‘Š ∧ Β¬ 𝑝 ≀ π‘Œ ∧ 𝑝 ≀ 𝑋))
25243expia 1118 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐡 ∧ (𝑋 ∧ π‘Œ) ≀ π‘Š)) ∧ 𝑝 ∈ 𝐴) β†’ ((Β¬ 𝑝 ≀ π‘Š ∧ Β¬ 𝑝 ≀ π‘Œ ∧ (𝑝 ∨ (𝑋 ∧ π‘Š)) = 𝑋) β†’ (Β¬ 𝑝 ≀ π‘Š ∧ Β¬ 𝑝 ≀ π‘Œ ∧ 𝑝 ≀ 𝑋)))
2625reximdva 3162 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐡 ∧ (𝑋 ∧ π‘Œ) ≀ π‘Š)) β†’ (βˆƒπ‘ ∈ 𝐴 (Β¬ 𝑝 ≀ π‘Š ∧ Β¬ 𝑝 ≀ π‘Œ ∧ (𝑝 ∨ (𝑋 ∧ π‘Š)) = 𝑋) β†’ βˆƒπ‘ ∈ 𝐴 (Β¬ 𝑝 ≀ π‘Š ∧ Β¬ 𝑝 ≀ π‘Œ ∧ 𝑝 ≀ 𝑋)))
277, 26mpd 15 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐡 ∧ (𝑋 ∧ π‘Œ) ≀ π‘Š)) β†’ βˆƒπ‘ ∈ 𝐴 (Β¬ 𝑝 ≀ π‘Š ∧ Β¬ 𝑝 ≀ π‘Œ ∧ 𝑝 ≀ 𝑋))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098  βˆƒwrex 3064   class class class wbr 5141  β€˜cfv 6537  (class class class)co 7405  Basecbs 17153  lecple 17213  joincjn 18276  meetcmee 18277  Latclat 18396  Atomscatm 38646  HLchlt 38733  LHypclh 39368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-proset 18260  df-poset 18278  df-plt 18295  df-lub 18311  df-glb 18312  df-join 18313  df-meet 18314  df-p0 18390  df-p1 18391  df-lat 18397  df-clat 18464  df-oposet 38559  df-ol 38561  df-oml 38562  df-covers 38649  df-ats 38650  df-atl 38681  df-cvlat 38705  df-hlat 38734  df-lhyp 39372
This theorem is referenced by:  dihmeetlem20N  40710
  Copyright terms: Public domain W3C validator