Proof of Theorem lhpmcvr6N
Step | Hyp | Ref
| Expression |
1 | | lhpmcvr2.b |
. . 3
⊢ 𝐵 = (Base‘𝐾) |
2 | | lhpmcvr2.l |
. . 3
⊢ ≤ =
(le‘𝐾) |
3 | | lhpmcvr2.j |
. . 3
⊢ ∨ =
(join‘𝐾) |
4 | | lhpmcvr2.m |
. . 3
⊢ ∧ =
(meet‘𝐾) |
5 | | lhpmcvr2.a |
. . 3
⊢ 𝐴 = (Atoms‘𝐾) |
6 | | lhpmcvr2.h |
. . 3
⊢ 𝐻 = (LHyp‘𝐾) |
7 | 1, 2, 3, 4, 5, 6 | lhpmcvr5N 37596 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) → ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑝 ≤ 𝑌 ∧ (𝑝 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) |
8 | | simp31 1207 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) ∧ 𝑝 ∈ 𝐴 ∧ (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑝 ≤ 𝑌 ∧ (𝑝 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → ¬ 𝑝 ≤ 𝑊) |
9 | | simp32 1208 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) ∧ 𝑝 ∈ 𝐴 ∧ (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑝 ≤ 𝑌 ∧ (𝑝 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → ¬ 𝑝 ≤ 𝑌) |
10 | | simp11l 1282 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) ∧ 𝑝 ∈ 𝐴 ∧ (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑝 ≤ 𝑌 ∧ (𝑝 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → 𝐾 ∈ HL) |
11 | 10 | hllatd 36933 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) ∧ 𝑝 ∈ 𝐴 ∧ (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑝 ≤ 𝑌 ∧ (𝑝 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → 𝐾 ∈ Lat) |
12 | 1, 5 | atbase 36858 |
. . . . . . . 8
⊢ (𝑝 ∈ 𝐴 → 𝑝 ∈ 𝐵) |
13 | 12 | 3ad2ant2 1132 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) ∧ 𝑝 ∈ 𝐴 ∧ (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑝 ≤ 𝑌 ∧ (𝑝 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → 𝑝 ∈ 𝐵) |
14 | | simp12l 1284 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) ∧ 𝑝 ∈ 𝐴 ∧ (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑝 ≤ 𝑌 ∧ (𝑝 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → 𝑋 ∈ 𝐵) |
15 | | simp11r 1283 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) ∧ 𝑝 ∈ 𝐴 ∧ (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑝 ≤ 𝑌 ∧ (𝑝 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → 𝑊 ∈ 𝐻) |
16 | 1, 6 | lhpbase 37567 |
. . . . . . . . 9
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵) |
17 | 15, 16 | syl 17 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) ∧ 𝑝 ∈ 𝐴 ∧ (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑝 ≤ 𝑌 ∧ (𝑝 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → 𝑊 ∈ 𝐵) |
18 | 1, 4 | latmcl 17721 |
. . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑋 ∧ 𝑊) ∈ 𝐵) |
19 | 11, 14, 17, 18 | syl3anc 1369 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) ∧ 𝑝 ∈ 𝐴 ∧ (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑝 ≤ 𝑌 ∧ (𝑝 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (𝑋 ∧ 𝑊) ∈ 𝐵) |
20 | 1, 2, 3 | latlej1 17729 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ 𝑝 ∈ 𝐵 ∧ (𝑋 ∧ 𝑊) ∈ 𝐵) → 𝑝 ≤ (𝑝 ∨ (𝑋 ∧ 𝑊))) |
21 | 11, 13, 19, 20 | syl3anc 1369 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) ∧ 𝑝 ∈ 𝐴 ∧ (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑝 ≤ 𝑌 ∧ (𝑝 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → 𝑝 ≤ (𝑝 ∨ (𝑋 ∧ 𝑊))) |
22 | | simp33 1209 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) ∧ 𝑝 ∈ 𝐴 ∧ (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑝 ≤ 𝑌 ∧ (𝑝 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (𝑝 ∨ (𝑋 ∧ 𝑊)) = 𝑋) |
23 | 21, 22 | breqtrd 5059 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) ∧ 𝑝 ∈ 𝐴 ∧ (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑝 ≤ 𝑌 ∧ (𝑝 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → 𝑝 ≤ 𝑋) |
24 | 8, 9, 23 | 3jca 1126 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) ∧ 𝑝 ∈ 𝐴 ∧ (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑝 ≤ 𝑌 ∧ (𝑝 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑝 ≤ 𝑌 ∧ 𝑝 ≤ 𝑋)) |
25 | 24 | 3expia 1119 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) ∧ 𝑝 ∈ 𝐴) → ((¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑝 ≤ 𝑌 ∧ (𝑝 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑝 ≤ 𝑌 ∧ 𝑝 ≤ 𝑋))) |
26 | 25 | reximdva 3199 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) → (∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑝 ≤ 𝑌 ∧ (𝑝 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑝 ≤ 𝑌 ∧ 𝑝 ≤ 𝑋))) |
27 | 7, 26 | mpd 15 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) → ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑝 ≤ 𝑌 ∧ 𝑝 ≤ 𝑋)) |