Proof of Theorem r1pwcl
| Step | Hyp | Ref
| Expression |
| 1 | | r1elwf 9815 |
. . . 4
⊢ (𝐴 ∈
(𝑅1‘𝐵) → 𝐴 ∈ ∪
(𝑅1 “ On)) |
| 2 | | elfvdm 6918 |
. . . 4
⊢ (𝐴 ∈
(𝑅1‘𝐵) → 𝐵 ∈ dom
𝑅1) |
| 3 | 1, 2 | jca 511 |
. . 3
⊢ (𝐴 ∈
(𝑅1‘𝐵) → (𝐴 ∈ ∪
(𝑅1 “ On) ∧ 𝐵 ∈ dom
𝑅1)) |
| 4 | 3 | a1i 11 |
. 2
⊢ (Lim
𝐵 → (𝐴 ∈ (𝑅1‘𝐵) → (𝐴 ∈ ∪
(𝑅1 “ On) ∧ 𝐵 ∈ dom
𝑅1))) |
| 5 | | r1elwf 9815 |
. . . . 5
⊢
(𝒫 𝐴 ∈
(𝑅1‘𝐵) → 𝒫 𝐴 ∈ ∪
(𝑅1 “ On)) |
| 6 | | pwwf 9826 |
. . . . 5
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) ↔ 𝒫
𝐴 ∈ ∪ (𝑅1 “ On)) |
| 7 | 5, 6 | sylibr 234 |
. . . 4
⊢
(𝒫 𝐴 ∈
(𝑅1‘𝐵) → 𝐴 ∈ ∪
(𝑅1 “ On)) |
| 8 | | elfvdm 6918 |
. . . 4
⊢
(𝒫 𝐴 ∈
(𝑅1‘𝐵) → 𝐵 ∈ dom
𝑅1) |
| 9 | 7, 8 | jca 511 |
. . 3
⊢
(𝒫 𝐴 ∈
(𝑅1‘𝐵) → (𝐴 ∈ ∪
(𝑅1 “ On) ∧ 𝐵 ∈ dom
𝑅1)) |
| 10 | 9 | a1i 11 |
. 2
⊢ (Lim
𝐵 → (𝒫 𝐴 ∈
(𝑅1‘𝐵) → (𝐴 ∈ ∪
(𝑅1 “ On) ∧ 𝐵 ∈ dom
𝑅1))) |
| 11 | | limsuc 7849 |
. . . . . 6
⊢ (Lim
𝐵 → ((rank‘𝐴) ∈ 𝐵 ↔ suc (rank‘𝐴) ∈ 𝐵)) |
| 12 | 11 | adantr 480 |
. . . . 5
⊢ ((Lim
𝐵 ∧ (𝐴 ∈ ∪
(𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1)) →
((rank‘𝐴) ∈
𝐵 ↔ suc
(rank‘𝐴) ∈ 𝐵)) |
| 13 | | rankpwi 9842 |
. . . . . . 7
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) →
(rank‘𝒫 𝐴) =
suc (rank‘𝐴)) |
| 14 | 13 | ad2antrl 728 |
. . . . . 6
⊢ ((Lim
𝐵 ∧ (𝐴 ∈ ∪
(𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1)) →
(rank‘𝒫 𝐴) =
suc (rank‘𝐴)) |
| 15 | 14 | eleq1d 2820 |
. . . . 5
⊢ ((Lim
𝐵 ∧ (𝐴 ∈ ∪
(𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1)) →
((rank‘𝒫 𝐴)
∈ 𝐵 ↔ suc
(rank‘𝐴) ∈ 𝐵)) |
| 16 | 12, 15 | bitr4d 282 |
. . . 4
⊢ ((Lim
𝐵 ∧ (𝐴 ∈ ∪
(𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1)) →
((rank‘𝐴) ∈
𝐵 ↔
(rank‘𝒫 𝐴)
∈ 𝐵)) |
| 17 | | rankr1ag 9821 |
. . . . 5
⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom
𝑅1) → (𝐴 ∈ (𝑅1‘𝐵) ↔ (rank‘𝐴) ∈ 𝐵)) |
| 18 | 17 | adantl 481 |
. . . 4
⊢ ((Lim
𝐵 ∧ (𝐴 ∈ ∪
(𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1)) →
(𝐴 ∈
(𝑅1‘𝐵) ↔ (rank‘𝐴) ∈ 𝐵)) |
| 19 | | rankr1ag 9821 |
. . . . . 6
⊢
((𝒫 𝐴 ∈
∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom
𝑅1) → (𝒫 𝐴 ∈ (𝑅1‘𝐵) ↔ (rank‘𝒫
𝐴) ∈ 𝐵)) |
| 20 | 6, 19 | sylanb 581 |
. . . . 5
⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom
𝑅1) → (𝒫 𝐴 ∈ (𝑅1‘𝐵) ↔ (rank‘𝒫
𝐴) ∈ 𝐵)) |
| 21 | 20 | adantl 481 |
. . . 4
⊢ ((Lim
𝐵 ∧ (𝐴 ∈ ∪
(𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1)) →
(𝒫 𝐴 ∈
(𝑅1‘𝐵) ↔ (rank‘𝒫 𝐴) ∈ 𝐵)) |
| 22 | 16, 18, 21 | 3bitr4d 311 |
. . 3
⊢ ((Lim
𝐵 ∧ (𝐴 ∈ ∪
(𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1)) →
(𝐴 ∈
(𝑅1‘𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘𝐵))) |
| 23 | 22 | ex 412 |
. 2
⊢ (Lim
𝐵 → ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom
𝑅1) → (𝐴 ∈ (𝑅1‘𝐵) ↔ 𝒫 𝐴 ∈
(𝑅1‘𝐵)))) |
| 24 | 4, 10, 23 | pm5.21ndd 379 |
1
⊢ (Lim
𝐵 → (𝐴 ∈ (𝑅1‘𝐵) ↔ 𝒫 𝐴 ∈
(𝑅1‘𝐵))) |