MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1pwcl Structured version   Visualization version   GIF version

Theorem r1pwcl 9885
Description: The cumulative hierarchy of a limit ordinal is closed under power set. (Contributed by Raph Levien, 29-May-2004.) (Proof shortened by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
r1pwcl (Lim 𝐵 → (𝐴 ∈ (𝑅1𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1𝐵)))

Proof of Theorem r1pwcl
StepHypRef Expression
1 r1elwf 9834 . . . 4 (𝐴 ∈ (𝑅1𝐵) → 𝐴 (𝑅1 “ On))
2 elfvdm 6944 . . . 4 (𝐴 ∈ (𝑅1𝐵) → 𝐵 ∈ dom 𝑅1)
31, 2jca 511 . . 3 (𝐴 ∈ (𝑅1𝐵) → (𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1))
43a1i 11 . 2 (Lim 𝐵 → (𝐴 ∈ (𝑅1𝐵) → (𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1)))
5 r1elwf 9834 . . . . 5 (𝒫 𝐴 ∈ (𝑅1𝐵) → 𝒫 𝐴 (𝑅1 “ On))
6 pwwf 9845 . . . . 5 (𝐴 (𝑅1 “ On) ↔ 𝒫 𝐴 (𝑅1 “ On))
75, 6sylibr 234 . . . 4 (𝒫 𝐴 ∈ (𝑅1𝐵) → 𝐴 (𝑅1 “ On))
8 elfvdm 6944 . . . 4 (𝒫 𝐴 ∈ (𝑅1𝐵) → 𝐵 ∈ dom 𝑅1)
97, 8jca 511 . . 3 (𝒫 𝐴 ∈ (𝑅1𝐵) → (𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1))
109a1i 11 . 2 (Lim 𝐵 → (𝒫 𝐴 ∈ (𝑅1𝐵) → (𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1)))
11 limsuc 7870 . . . . . 6 (Lim 𝐵 → ((rank‘𝐴) ∈ 𝐵 ↔ suc (rank‘𝐴) ∈ 𝐵))
1211adantr 480 . . . . 5 ((Lim 𝐵 ∧ (𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1)) → ((rank‘𝐴) ∈ 𝐵 ↔ suc (rank‘𝐴) ∈ 𝐵))
13 rankpwi 9861 . . . . . . 7 (𝐴 (𝑅1 “ On) → (rank‘𝒫 𝐴) = suc (rank‘𝐴))
1413ad2antrl 728 . . . . . 6 ((Lim 𝐵 ∧ (𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1)) → (rank‘𝒫 𝐴) = suc (rank‘𝐴))
1514eleq1d 2824 . . . . 5 ((Lim 𝐵 ∧ (𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1)) → ((rank‘𝒫 𝐴) ∈ 𝐵 ↔ suc (rank‘𝐴) ∈ 𝐵))
1612, 15bitr4d 282 . . . 4 ((Lim 𝐵 ∧ (𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1)) → ((rank‘𝐴) ∈ 𝐵 ↔ (rank‘𝒫 𝐴) ∈ 𝐵))
17 rankr1ag 9840 . . . . 5 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ∈ (𝑅1𝐵) ↔ (rank‘𝐴) ∈ 𝐵))
1817adantl 481 . . . 4 ((Lim 𝐵 ∧ (𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1)) → (𝐴 ∈ (𝑅1𝐵) ↔ (rank‘𝐴) ∈ 𝐵))
19 rankr1ag 9840 . . . . . 6 ((𝒫 𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝒫 𝐴 ∈ (𝑅1𝐵) ↔ (rank‘𝒫 𝐴) ∈ 𝐵))
206, 19sylanb 581 . . . . 5 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝒫 𝐴 ∈ (𝑅1𝐵) ↔ (rank‘𝒫 𝐴) ∈ 𝐵))
2120adantl 481 . . . 4 ((Lim 𝐵 ∧ (𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1)) → (𝒫 𝐴 ∈ (𝑅1𝐵) ↔ (rank‘𝒫 𝐴) ∈ 𝐵))
2216, 18, 213bitr4d 311 . . 3 ((Lim 𝐵 ∧ (𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1)) → (𝐴 ∈ (𝑅1𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1𝐵)))
2322ex 412 . 2 (Lim 𝐵 → ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ∈ (𝑅1𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1𝐵))))
244, 10, 23pm5.21ndd 379 1 (Lim 𝐵 → (𝐴 ∈ (𝑅1𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  𝒫 cpw 4605   cuni 4912  dom cdm 5689  cima 5692  Oncon0 6386  Lim wlim 6387  suc csuc 6388  cfv 6563  𝑅1cr1 9800  rankcrnk 9801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-r1 9802  df-rank 9803
This theorem is referenced by:  r1limwun  10774
  Copyright terms: Public domain W3C validator