Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1pwcl Structured version   Visualization version   GIF version

Theorem r1pwcl 9009
 Description: The cumulative hierarchy of a limit ordinal is closed under power set. (Contributed by Raph Levien, 29-May-2004.) (Proof shortened by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
r1pwcl (Lim 𝐵 → (𝐴 ∈ (𝑅1𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1𝐵)))

Proof of Theorem r1pwcl
StepHypRef Expression
1 r1elwf 8958 . . . 4 (𝐴 ∈ (𝑅1𝐵) → 𝐴 (𝑅1 “ On))
2 elfvdm 6480 . . . 4 (𝐴 ∈ (𝑅1𝐵) → 𝐵 ∈ dom 𝑅1)
31, 2jca 507 . . 3 (𝐴 ∈ (𝑅1𝐵) → (𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1))
43a1i 11 . 2 (Lim 𝐵 → (𝐴 ∈ (𝑅1𝐵) → (𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1)))
5 r1elwf 8958 . . . . 5 (𝒫 𝐴 ∈ (𝑅1𝐵) → 𝒫 𝐴 (𝑅1 “ On))
6 pwwf 8969 . . . . 5 (𝐴 (𝑅1 “ On) ↔ 𝒫 𝐴 (𝑅1 “ On))
75, 6sylibr 226 . . . 4 (𝒫 𝐴 ∈ (𝑅1𝐵) → 𝐴 (𝑅1 “ On))
8 elfvdm 6480 . . . 4 (𝒫 𝐴 ∈ (𝑅1𝐵) → 𝐵 ∈ dom 𝑅1)
97, 8jca 507 . . 3 (𝒫 𝐴 ∈ (𝑅1𝐵) → (𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1))
109a1i 11 . 2 (Lim 𝐵 → (𝒫 𝐴 ∈ (𝑅1𝐵) → (𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1)))
11 limsuc 7329 . . . . . 6 (Lim 𝐵 → ((rank‘𝐴) ∈ 𝐵 ↔ suc (rank‘𝐴) ∈ 𝐵))
1211adantr 474 . . . . 5 ((Lim 𝐵 ∧ (𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1)) → ((rank‘𝐴) ∈ 𝐵 ↔ suc (rank‘𝐴) ∈ 𝐵))
13 rankpwi 8985 . . . . . . 7 (𝐴 (𝑅1 “ On) → (rank‘𝒫 𝐴) = suc (rank‘𝐴))
1413ad2antrl 718 . . . . . 6 ((Lim 𝐵 ∧ (𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1)) → (rank‘𝒫 𝐴) = suc (rank‘𝐴))
1514eleq1d 2844 . . . . 5 ((Lim 𝐵 ∧ (𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1)) → ((rank‘𝒫 𝐴) ∈ 𝐵 ↔ suc (rank‘𝐴) ∈ 𝐵))
1612, 15bitr4d 274 . . . 4 ((Lim 𝐵 ∧ (𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1)) → ((rank‘𝐴) ∈ 𝐵 ↔ (rank‘𝒫 𝐴) ∈ 𝐵))
17 rankr1ag 8964 . . . . 5 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ∈ (𝑅1𝐵) ↔ (rank‘𝐴) ∈ 𝐵))
1817adantl 475 . . . 4 ((Lim 𝐵 ∧ (𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1)) → (𝐴 ∈ (𝑅1𝐵) ↔ (rank‘𝐴) ∈ 𝐵))
19 rankr1ag 8964 . . . . . 6 ((𝒫 𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝒫 𝐴 ∈ (𝑅1𝐵) ↔ (rank‘𝒫 𝐴) ∈ 𝐵))
206, 19sylanb 576 . . . . 5 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝒫 𝐴 ∈ (𝑅1𝐵) ↔ (rank‘𝒫 𝐴) ∈ 𝐵))
2120adantl 475 . . . 4 ((Lim 𝐵 ∧ (𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1)) → (𝒫 𝐴 ∈ (𝑅1𝐵) ↔ (rank‘𝒫 𝐴) ∈ 𝐵))
2216, 18, 213bitr4d 303 . . 3 ((Lim 𝐵 ∧ (𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1)) → (𝐴 ∈ (𝑅1𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1𝐵)))
2322ex 403 . 2 (Lim 𝐵 → ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ∈ (𝑅1𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1𝐵))))
244, 10, 23pm5.21ndd 371 1 (Lim 𝐵 → (𝐴 ∈ (𝑅1𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1𝐵)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 198   ∧ wa 386   = wceq 1601   ∈ wcel 2107  𝒫 cpw 4379  ∪ cuni 4673  dom cdm 5357   “ cima 5360  Oncon0 5978  Lim wlim 5979  suc csuc 5980  ‘cfv 6137  𝑅1cr1 8924  rankcrnk 8925 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-int 4713  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-om 7346  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-r1 8926  df-rank 8927 This theorem is referenced by:  r1limwun  9895
 Copyright terms: Public domain W3C validator