MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1pwcl Structured version   Visualization version   GIF version

Theorem r1pwcl 9916
Description: The cumulative hierarchy of a limit ordinal is closed under power set. (Contributed by Raph Levien, 29-May-2004.) (Proof shortened by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
r1pwcl (Lim 𝐵 → (𝐴 ∈ (𝑅1𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1𝐵)))

Proof of Theorem r1pwcl
StepHypRef Expression
1 r1elwf 9865 . . . 4 (𝐴 ∈ (𝑅1𝐵) → 𝐴 (𝑅1 “ On))
2 elfvdm 6957 . . . 4 (𝐴 ∈ (𝑅1𝐵) → 𝐵 ∈ dom 𝑅1)
31, 2jca 511 . . 3 (𝐴 ∈ (𝑅1𝐵) → (𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1))
43a1i 11 . 2 (Lim 𝐵 → (𝐴 ∈ (𝑅1𝐵) → (𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1)))
5 r1elwf 9865 . . . . 5 (𝒫 𝐴 ∈ (𝑅1𝐵) → 𝒫 𝐴 (𝑅1 “ On))
6 pwwf 9876 . . . . 5 (𝐴 (𝑅1 “ On) ↔ 𝒫 𝐴 (𝑅1 “ On))
75, 6sylibr 234 . . . 4 (𝒫 𝐴 ∈ (𝑅1𝐵) → 𝐴 (𝑅1 “ On))
8 elfvdm 6957 . . . 4 (𝒫 𝐴 ∈ (𝑅1𝐵) → 𝐵 ∈ dom 𝑅1)
97, 8jca 511 . . 3 (𝒫 𝐴 ∈ (𝑅1𝐵) → (𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1))
109a1i 11 . 2 (Lim 𝐵 → (𝒫 𝐴 ∈ (𝑅1𝐵) → (𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1)))
11 limsuc 7886 . . . . . 6 (Lim 𝐵 → ((rank‘𝐴) ∈ 𝐵 ↔ suc (rank‘𝐴) ∈ 𝐵))
1211adantr 480 . . . . 5 ((Lim 𝐵 ∧ (𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1)) → ((rank‘𝐴) ∈ 𝐵 ↔ suc (rank‘𝐴) ∈ 𝐵))
13 rankpwi 9892 . . . . . . 7 (𝐴 (𝑅1 “ On) → (rank‘𝒫 𝐴) = suc (rank‘𝐴))
1413ad2antrl 727 . . . . . 6 ((Lim 𝐵 ∧ (𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1)) → (rank‘𝒫 𝐴) = suc (rank‘𝐴))
1514eleq1d 2829 . . . . 5 ((Lim 𝐵 ∧ (𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1)) → ((rank‘𝒫 𝐴) ∈ 𝐵 ↔ suc (rank‘𝐴) ∈ 𝐵))
1612, 15bitr4d 282 . . . 4 ((Lim 𝐵 ∧ (𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1)) → ((rank‘𝐴) ∈ 𝐵 ↔ (rank‘𝒫 𝐴) ∈ 𝐵))
17 rankr1ag 9871 . . . . 5 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ∈ (𝑅1𝐵) ↔ (rank‘𝐴) ∈ 𝐵))
1817adantl 481 . . . 4 ((Lim 𝐵 ∧ (𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1)) → (𝐴 ∈ (𝑅1𝐵) ↔ (rank‘𝐴) ∈ 𝐵))
19 rankr1ag 9871 . . . . . 6 ((𝒫 𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝒫 𝐴 ∈ (𝑅1𝐵) ↔ (rank‘𝒫 𝐴) ∈ 𝐵))
206, 19sylanb 580 . . . . 5 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝒫 𝐴 ∈ (𝑅1𝐵) ↔ (rank‘𝒫 𝐴) ∈ 𝐵))
2120adantl 481 . . . 4 ((Lim 𝐵 ∧ (𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1)) → (𝒫 𝐴 ∈ (𝑅1𝐵) ↔ (rank‘𝒫 𝐴) ∈ 𝐵))
2216, 18, 213bitr4d 311 . . 3 ((Lim 𝐵 ∧ (𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1)) → (𝐴 ∈ (𝑅1𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1𝐵)))
2322ex 412 . 2 (Lim 𝐵 → ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ∈ (𝑅1𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1𝐵))))
244, 10, 23pm5.21ndd 379 1 (Lim 𝐵 → (𝐴 ∈ (𝑅1𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  𝒫 cpw 4622   cuni 4931  dom cdm 5700  cima 5703  Oncon0 6395  Lim wlim 6396  suc csuc 6397  cfv 6573  𝑅1cr1 9831  rankcrnk 9832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-r1 9833  df-rank 9834
This theorem is referenced by:  r1limwun  10805
  Copyright terms: Public domain W3C validator