![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > limsuplesup | Structured version Visualization version GIF version |
Description: An upper bound for the superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
limsuplesup.1 | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
limsuplesup.2 | ⊢ (𝜑 → 𝐾 ∈ ℝ) |
Ref | Expression |
---|---|
limsuplesup | ⊢ (𝜑 → (lim sup‘𝐹) ≤ sup(((𝐹 “ (𝐾[,)+∞)) ∩ ℝ*), ℝ*, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limsuplesup.1 | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
2 | eqid 2740 | . . . 4 ⊢ (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) | |
3 | 2 | limsupval 15520 | . . 3 ⊢ (𝐹 ∈ 𝑉 → (lim sup‘𝐹) = inf(ran (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )) |
4 | 1, 3 | syl 17 | . 2 ⊢ (𝜑 → (lim sup‘𝐹) = inf(ran (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )) |
5 | nfv 1913 | . . 3 ⊢ Ⅎ𝑘𝜑 | |
6 | inss2 4259 | . . . . 5 ⊢ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ℝ* | |
7 | 6 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℝ) → ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ℝ*) |
8 | 7 | supxrcld 45009 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℝ) → sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*) |
9 | limsuplesup.2 | . . 3 ⊢ (𝜑 → 𝐾 ∈ ℝ) | |
10 | inss2 4259 | . . . . 5 ⊢ ((𝐹 “ (𝐾[,)+∞)) ∩ ℝ*) ⊆ ℝ* | |
11 | 10 | a1i 11 | . . . 4 ⊢ (𝜑 → ((𝐹 “ (𝐾[,)+∞)) ∩ ℝ*) ⊆ ℝ*) |
12 | 11 | supxrcld 45009 | . . 3 ⊢ (𝜑 → sup(((𝐹 “ (𝐾[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*) |
13 | oveq1 7455 | . . . . . 6 ⊢ (𝑘 = 𝐾 → (𝑘[,)+∞) = (𝐾[,)+∞)) | |
14 | 13 | imaeq2d 6089 | . . . . 5 ⊢ (𝑘 = 𝐾 → (𝐹 “ (𝑘[,)+∞)) = (𝐹 “ (𝐾[,)+∞))) |
15 | 14 | ineq1d 4240 | . . . 4 ⊢ (𝑘 = 𝐾 → ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) = ((𝐹 “ (𝐾[,)+∞)) ∩ ℝ*)) |
16 | 15 | supeq1d 9515 | . . 3 ⊢ (𝑘 = 𝐾 → sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) = sup(((𝐹 “ (𝐾[,)+∞)) ∩ ℝ*), ℝ*, < )) |
17 | 5, 8, 9, 12, 16 | infxrlbrnmpt2 45325 | . 2 ⊢ (𝜑 → inf(ran (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) ≤ sup(((𝐹 “ (𝐾[,)+∞)) ∩ ℝ*), ℝ*, < )) |
18 | 4, 17 | eqbrtrd 5188 | 1 ⊢ (𝜑 → (lim sup‘𝐹) ≤ sup(((𝐹 “ (𝐾[,)+∞)) ∩ ℝ*), ℝ*, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∩ cin 3975 ⊆ wss 3976 class class class wbr 5166 ↦ cmpt 5249 ran crn 5701 “ cima 5703 ‘cfv 6573 (class class class)co 7448 supcsup 9509 infcinf 9510 ℝcr 11183 +∞cpnf 11321 ℝ*cxr 11323 < clt 11324 ≤ cle 11325 [,)cico 13409 lim supclsp 15516 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-limsup 15517 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |