![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > limsuplesup | Structured version Visualization version GIF version |
Description: An upper bound for the superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
limsuplesup.1 | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
limsuplesup.2 | ⊢ (𝜑 → 𝐾 ∈ ℝ) |
Ref | Expression |
---|---|
limsuplesup | ⊢ (𝜑 → (lim sup‘𝐹) ≤ sup(((𝐹 “ (𝐾[,)+∞)) ∩ ℝ*), ℝ*, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limsuplesup.1 | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
2 | eqid 2725 | . . . 4 ⊢ (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) | |
3 | 2 | limsupval 15448 | . . 3 ⊢ (𝐹 ∈ 𝑉 → (lim sup‘𝐹) = inf(ran (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )) |
4 | 1, 3 | syl 17 | . 2 ⊢ (𝜑 → (lim sup‘𝐹) = inf(ran (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )) |
5 | nfv 1909 | . . 3 ⊢ Ⅎ𝑘𝜑 | |
6 | inss2 4224 | . . . . 5 ⊢ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ℝ* | |
7 | 6 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℝ) → ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ℝ*) |
8 | 7 | supxrcld 44537 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℝ) → sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*) |
9 | limsuplesup.2 | . . 3 ⊢ (𝜑 → 𝐾 ∈ ℝ) | |
10 | inss2 4224 | . . . . 5 ⊢ ((𝐹 “ (𝐾[,)+∞)) ∩ ℝ*) ⊆ ℝ* | |
11 | 10 | a1i 11 | . . . 4 ⊢ (𝜑 → ((𝐹 “ (𝐾[,)+∞)) ∩ ℝ*) ⊆ ℝ*) |
12 | 11 | supxrcld 44537 | . . 3 ⊢ (𝜑 → sup(((𝐹 “ (𝐾[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*) |
13 | oveq1 7422 | . . . . . 6 ⊢ (𝑘 = 𝐾 → (𝑘[,)+∞) = (𝐾[,)+∞)) | |
14 | 13 | imaeq2d 6058 | . . . . 5 ⊢ (𝑘 = 𝐾 → (𝐹 “ (𝑘[,)+∞)) = (𝐹 “ (𝐾[,)+∞))) |
15 | 14 | ineq1d 4205 | . . . 4 ⊢ (𝑘 = 𝐾 → ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) = ((𝐹 “ (𝐾[,)+∞)) ∩ ℝ*)) |
16 | 15 | supeq1d 9467 | . . 3 ⊢ (𝑘 = 𝐾 → sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) = sup(((𝐹 “ (𝐾[,)+∞)) ∩ ℝ*), ℝ*, < )) |
17 | 5, 8, 9, 12, 16 | infxrlbrnmpt2 44854 | . 2 ⊢ (𝜑 → inf(ran (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) ≤ sup(((𝐹 “ (𝐾[,)+∞)) ∩ ℝ*), ℝ*, < )) |
18 | 4, 17 | eqbrtrd 5165 | 1 ⊢ (𝜑 → (lim sup‘𝐹) ≤ sup(((𝐹 “ (𝐾[,)+∞)) ∩ ℝ*), ℝ*, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∩ cin 3939 ⊆ wss 3940 class class class wbr 5143 ↦ cmpt 5226 ran crn 5673 “ cima 5675 ‘cfv 6542 (class class class)co 7415 supcsup 9461 infcinf 9462 ℝcr 11135 +∞cpnf 11273 ℝ*cxr 11275 < clt 11276 ≤ cle 11277 [,)cico 13356 lim supclsp 15444 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 ax-pre-sup 11214 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5570 df-po 5584 df-so 5585 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-er 8721 df-en 8961 df-dom 8962 df-sdom 8963 df-sup 9463 df-inf 9464 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-limsup 15445 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |