Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsuplesup Structured version   Visualization version   GIF version

Theorem limsuplesup 45149
Description: An upper bound for the superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsuplesup.1 (𝜑𝐹𝑉)
limsuplesup.2 (𝜑𝐾 ∈ ℝ)
Assertion
Ref Expression
limsuplesup (𝜑 → (lim sup‘𝐹) ≤ sup(((𝐹 “ (𝐾[,)+∞)) ∩ ℝ*), ℝ*, < ))

Proof of Theorem limsuplesup
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 limsuplesup.1 . . 3 (𝜑𝐹𝑉)
2 eqid 2725 . . . 4 (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
32limsupval 15448 . . 3 (𝐹𝑉 → (lim sup‘𝐹) = inf(ran (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
41, 3syl 17 . 2 (𝜑 → (lim sup‘𝐹) = inf(ran (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
5 nfv 1909 . . 3 𝑘𝜑
6 inss2 4224 . . . . 5 ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ℝ*
76a1i 11 . . . 4 ((𝜑𝑘 ∈ ℝ) → ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ℝ*)
87supxrcld 44537 . . 3 ((𝜑𝑘 ∈ ℝ) → sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
9 limsuplesup.2 . . 3 (𝜑𝐾 ∈ ℝ)
10 inss2 4224 . . . . 5 ((𝐹 “ (𝐾[,)+∞)) ∩ ℝ*) ⊆ ℝ*
1110a1i 11 . . . 4 (𝜑 → ((𝐹 “ (𝐾[,)+∞)) ∩ ℝ*) ⊆ ℝ*)
1211supxrcld 44537 . . 3 (𝜑 → sup(((𝐹 “ (𝐾[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
13 oveq1 7422 . . . . . 6 (𝑘 = 𝐾 → (𝑘[,)+∞) = (𝐾[,)+∞))
1413imaeq2d 6058 . . . . 5 (𝑘 = 𝐾 → (𝐹 “ (𝑘[,)+∞)) = (𝐹 “ (𝐾[,)+∞)))
1514ineq1d 4205 . . . 4 (𝑘 = 𝐾 → ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) = ((𝐹 “ (𝐾[,)+∞)) ∩ ℝ*))
1615supeq1d 9467 . . 3 (𝑘 = 𝐾 → sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) = sup(((𝐹 “ (𝐾[,)+∞)) ∩ ℝ*), ℝ*, < ))
175, 8, 9, 12, 16infxrlbrnmpt2 44854 . 2 (𝜑 → inf(ran (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) ≤ sup(((𝐹 “ (𝐾[,)+∞)) ∩ ℝ*), ℝ*, < ))
184, 17eqbrtrd 5165 1 (𝜑 → (lim sup‘𝐹) ≤ sup(((𝐹 “ (𝐾[,)+∞)) ∩ ℝ*), ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  cin 3939  wss 3940   class class class wbr 5143  cmpt 5226  ran crn 5673  cima 5675  cfv 6542  (class class class)co 7415  supcsup 9461  infcinf 9462  cr 11135  +∞cpnf 11273  *cxr 11275   < clt 11276  cle 11277  [,)cico 13356  lim supclsp 15444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7737  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213  ax-pre-sup 11214
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5570  df-po 5584  df-so 5585  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-er 8721  df-en 8961  df-dom 8962  df-sdom 8963  df-sup 9463  df-inf 9464  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11474  df-neg 11475  df-limsup 15445
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator