| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lsslspOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of lsslsp 20977 as of 25-Apr-2025. Spans in submodules correspond to spans in the containing module. (Contributed by Stefan O'Rear, 12-Dec-2014.) TODO: Shouldn't we swap 𝑀‘𝐺 and 𝑁‘𝐺 since we are computing a property of 𝑁‘𝐺? (Like we say sin 0 = 0 and not 0 = sin 0.) - NM 15-Mar-2015. (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| lsslsp.x | ⊢ 𝑋 = (𝑊 ↾s 𝑈) |
| lsslsp.m | ⊢ 𝑀 = (LSpan‘𝑊) |
| lsslsp.n | ⊢ 𝑁 = (LSpan‘𝑋) |
| lsslsp.l | ⊢ 𝐿 = (LSubSp‘𝑊) |
| Ref | Expression |
|---|---|
| lsslspOLD | ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → (𝑀‘𝐺) = (𝑁‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → 𝑊 ∈ LMod) | |
| 2 | lsslsp.x | . . . . . . . 8 ⊢ 𝑋 = (𝑊 ↾s 𝑈) | |
| 3 | lsslsp.l | . . . . . . . 8 ⊢ 𝐿 = (LSubSp‘𝑊) | |
| 4 | 2, 3 | lsslmod 20922 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿) → 𝑋 ∈ LMod) |
| 5 | 4 | 3adant3 1132 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → 𝑋 ∈ LMod) |
| 6 | simp3 1138 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → 𝐺 ⊆ 𝑈) | |
| 7 | eqid 2736 | . . . . . . . . . 10 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 8 | 7, 3 | lssss 20898 | . . . . . . . . 9 ⊢ (𝑈 ∈ 𝐿 → 𝑈 ⊆ (Base‘𝑊)) |
| 9 | 8 | 3ad2ant2 1134 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → 𝑈 ⊆ (Base‘𝑊)) |
| 10 | 2, 7 | ressbas2 17264 | . . . . . . . 8 ⊢ (𝑈 ⊆ (Base‘𝑊) → 𝑈 = (Base‘𝑋)) |
| 11 | 9, 10 | syl 17 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → 𝑈 = (Base‘𝑋)) |
| 12 | 6, 11 | sseqtrd 4000 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → 𝐺 ⊆ (Base‘𝑋)) |
| 13 | eqid 2736 | . . . . . . 7 ⊢ (Base‘𝑋) = (Base‘𝑋) | |
| 14 | eqid 2736 | . . . . . . 7 ⊢ (LSubSp‘𝑋) = (LSubSp‘𝑋) | |
| 15 | lsslsp.n | . . . . . . 7 ⊢ 𝑁 = (LSpan‘𝑋) | |
| 16 | 13, 14, 15 | lspcl 20938 | . . . . . 6 ⊢ ((𝑋 ∈ LMod ∧ 𝐺 ⊆ (Base‘𝑋)) → (𝑁‘𝐺) ∈ (LSubSp‘𝑋)) |
| 17 | 5, 12, 16 | syl2anc 584 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → (𝑁‘𝐺) ∈ (LSubSp‘𝑋)) |
| 18 | 2, 3, 14 | lsslss 20923 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿) → ((𝑁‘𝐺) ∈ (LSubSp‘𝑋) ↔ ((𝑁‘𝐺) ∈ 𝐿 ∧ (𝑁‘𝐺) ⊆ 𝑈))) |
| 19 | 18 | 3adant3 1132 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → ((𝑁‘𝐺) ∈ (LSubSp‘𝑋) ↔ ((𝑁‘𝐺) ∈ 𝐿 ∧ (𝑁‘𝐺) ⊆ 𝑈))) |
| 20 | 17, 19 | mpbid 232 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → ((𝑁‘𝐺) ∈ 𝐿 ∧ (𝑁‘𝐺) ⊆ 𝑈)) |
| 21 | 20 | simpld 494 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → (𝑁‘𝐺) ∈ 𝐿) |
| 22 | 13, 15 | lspssid 20947 | . . . 4 ⊢ ((𝑋 ∈ LMod ∧ 𝐺 ⊆ (Base‘𝑋)) → 𝐺 ⊆ (𝑁‘𝐺)) |
| 23 | 5, 12, 22 | syl2anc 584 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → 𝐺 ⊆ (𝑁‘𝐺)) |
| 24 | lsslsp.m | . . . 4 ⊢ 𝑀 = (LSpan‘𝑊) | |
| 25 | 3, 24 | lspssp 20950 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝑁‘𝐺) ∈ 𝐿 ∧ 𝐺 ⊆ (𝑁‘𝐺)) → (𝑀‘𝐺) ⊆ (𝑁‘𝐺)) |
| 26 | 1, 21, 23, 25 | syl3anc 1373 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → (𝑀‘𝐺) ⊆ (𝑁‘𝐺)) |
| 27 | 6, 9 | sstrd 3974 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → 𝐺 ⊆ (Base‘𝑊)) |
| 28 | 7, 3, 24 | lspcl 20938 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ⊆ (Base‘𝑊)) → (𝑀‘𝐺) ∈ 𝐿) |
| 29 | 1, 27, 28 | syl2anc 584 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → (𝑀‘𝐺) ∈ 𝐿) |
| 30 | 3, 24 | lspssp 20950 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → (𝑀‘𝐺) ⊆ 𝑈) |
| 31 | 2, 3, 14 | lsslss 20923 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿) → ((𝑀‘𝐺) ∈ (LSubSp‘𝑋) ↔ ((𝑀‘𝐺) ∈ 𝐿 ∧ (𝑀‘𝐺) ⊆ 𝑈))) |
| 32 | 31 | 3adant3 1132 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → ((𝑀‘𝐺) ∈ (LSubSp‘𝑋) ↔ ((𝑀‘𝐺) ∈ 𝐿 ∧ (𝑀‘𝐺) ⊆ 𝑈))) |
| 33 | 29, 30, 32 | mpbir2and 713 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → (𝑀‘𝐺) ∈ (LSubSp‘𝑋)) |
| 34 | 7, 24 | lspssid 20947 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ⊆ (Base‘𝑊)) → 𝐺 ⊆ (𝑀‘𝐺)) |
| 35 | 1, 27, 34 | syl2anc 584 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → 𝐺 ⊆ (𝑀‘𝐺)) |
| 36 | 14, 15 | lspssp 20950 | . . 3 ⊢ ((𝑋 ∈ LMod ∧ (𝑀‘𝐺) ∈ (LSubSp‘𝑋) ∧ 𝐺 ⊆ (𝑀‘𝐺)) → (𝑁‘𝐺) ⊆ (𝑀‘𝐺)) |
| 37 | 5, 33, 35, 36 | syl3anc 1373 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → (𝑁‘𝐺) ⊆ (𝑀‘𝐺)) |
| 38 | 26, 37 | eqssd 3981 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → (𝑀‘𝐺) = (𝑁‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ⊆ wss 3931 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 ↾s cress 17256 LModclmod 20822 LSubSpclss 20893 LSpanclspn 20933 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-sca 17292 df-vsca 17293 df-0g 17460 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-grp 18924 df-minusg 18925 df-sbg 18926 df-subg 19111 df-mgp 20106 df-ur 20147 df-ring 20200 df-lmod 20824 df-lss 20894 df-lsp 20934 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |