MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsslspOLD Structured version   Visualization version   GIF version

Theorem lsslspOLD 20959
Description: Obsolete version of lsslsp 20958 as of 25-Apr-2025. Spans in submodules correspond to spans in the containing module. (Contributed by Stefan O'Rear, 12-Dec-2014.) TODO: Shouldn't we swap 𝑀𝐺 and 𝑁𝐺 since we are computing a property of 𝑁𝐺? (Like we say sin 0 = 0 and not 0 = sin 0.) - NM 15-Mar-2015. (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
lsslsp.x 𝑋 = (𝑊s 𝑈)
lsslsp.m 𝑀 = (LSpan‘𝑊)
lsslsp.n 𝑁 = (LSpan‘𝑋)
lsslsp.l 𝐿 = (LSubSp‘𝑊)
Assertion
Ref Expression
lsslspOLD ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → (𝑀𝐺) = (𝑁𝐺))

Proof of Theorem lsslspOLD
StepHypRef Expression
1 simp1 1136 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → 𝑊 ∈ LMod)
2 lsslsp.x . . . . . . . 8 𝑋 = (𝑊s 𝑈)
3 lsslsp.l . . . . . . . 8 𝐿 = (LSubSp‘𝑊)
42, 3lsslmod 20903 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑈𝐿) → 𝑋 ∈ LMod)
543adant3 1132 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → 𝑋 ∈ LMod)
6 simp3 1138 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → 𝐺𝑈)
7 eqid 2733 . . . . . . . . . 10 (Base‘𝑊) = (Base‘𝑊)
87, 3lssss 20879 . . . . . . . . 9 (𝑈𝐿𝑈 ⊆ (Base‘𝑊))
983ad2ant2 1134 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → 𝑈 ⊆ (Base‘𝑊))
102, 7ressbas2 17159 . . . . . . . 8 (𝑈 ⊆ (Base‘𝑊) → 𝑈 = (Base‘𝑋))
119, 10syl 17 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → 𝑈 = (Base‘𝑋))
126, 11sseqtrd 3968 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → 𝐺 ⊆ (Base‘𝑋))
13 eqid 2733 . . . . . . 7 (Base‘𝑋) = (Base‘𝑋)
14 eqid 2733 . . . . . . 7 (LSubSp‘𝑋) = (LSubSp‘𝑋)
15 lsslsp.n . . . . . . 7 𝑁 = (LSpan‘𝑋)
1613, 14, 15lspcl 20919 . . . . . 6 ((𝑋 ∈ LMod ∧ 𝐺 ⊆ (Base‘𝑋)) → (𝑁𝐺) ∈ (LSubSp‘𝑋))
175, 12, 16syl2anc 584 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → (𝑁𝐺) ∈ (LSubSp‘𝑋))
182, 3, 14lsslss 20904 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑈𝐿) → ((𝑁𝐺) ∈ (LSubSp‘𝑋) ↔ ((𝑁𝐺) ∈ 𝐿 ∧ (𝑁𝐺) ⊆ 𝑈)))
19183adant3 1132 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → ((𝑁𝐺) ∈ (LSubSp‘𝑋) ↔ ((𝑁𝐺) ∈ 𝐿 ∧ (𝑁𝐺) ⊆ 𝑈)))
2017, 19mpbid 232 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → ((𝑁𝐺) ∈ 𝐿 ∧ (𝑁𝐺) ⊆ 𝑈))
2120simpld 494 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → (𝑁𝐺) ∈ 𝐿)
2213, 15lspssid 20928 . . . 4 ((𝑋 ∈ LMod ∧ 𝐺 ⊆ (Base‘𝑋)) → 𝐺 ⊆ (𝑁𝐺))
235, 12, 22syl2anc 584 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → 𝐺 ⊆ (𝑁𝐺))
24 lsslsp.m . . . 4 𝑀 = (LSpan‘𝑊)
253, 24lspssp 20931 . . 3 ((𝑊 ∈ LMod ∧ (𝑁𝐺) ∈ 𝐿𝐺 ⊆ (𝑁𝐺)) → (𝑀𝐺) ⊆ (𝑁𝐺))
261, 21, 23, 25syl3anc 1373 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → (𝑀𝐺) ⊆ (𝑁𝐺))
276, 9sstrd 3942 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → 𝐺 ⊆ (Base‘𝑊))
287, 3, 24lspcl 20919 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺 ⊆ (Base‘𝑊)) → (𝑀𝐺) ∈ 𝐿)
291, 27, 28syl2anc 584 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → (𝑀𝐺) ∈ 𝐿)
303, 24lspssp 20931 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → (𝑀𝐺) ⊆ 𝑈)
312, 3, 14lsslss 20904 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝐿) → ((𝑀𝐺) ∈ (LSubSp‘𝑋) ↔ ((𝑀𝐺) ∈ 𝐿 ∧ (𝑀𝐺) ⊆ 𝑈)))
32313adant3 1132 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → ((𝑀𝐺) ∈ (LSubSp‘𝑋) ↔ ((𝑀𝐺) ∈ 𝐿 ∧ (𝑀𝐺) ⊆ 𝑈)))
3329, 30, 32mpbir2and 713 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → (𝑀𝐺) ∈ (LSubSp‘𝑋))
347, 24lspssid 20928 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺 ⊆ (Base‘𝑊)) → 𝐺 ⊆ (𝑀𝐺))
351, 27, 34syl2anc 584 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → 𝐺 ⊆ (𝑀𝐺))
3614, 15lspssp 20931 . . 3 ((𝑋 ∈ LMod ∧ (𝑀𝐺) ∈ (LSubSp‘𝑋) ∧ 𝐺 ⊆ (𝑀𝐺)) → (𝑁𝐺) ⊆ (𝑀𝐺))
375, 33, 35, 36syl3anc 1373 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → (𝑁𝐺) ⊆ (𝑀𝐺))
3826, 37eqssd 3949 1 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → (𝑀𝐺) = (𝑁𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wss 3899  cfv 6489  (class class class)co 7355  Basecbs 17130  s cress 17151  LModclmod 20803  LSubSpclss 20874  LSpanclspn 20914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-er 8631  df-en 8879  df-dom 8880  df-sdom 8881  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-nn 12136  df-2 12198  df-3 12199  df-4 12200  df-5 12201  df-6 12202  df-sets 17085  df-slot 17103  df-ndx 17115  df-base 17131  df-ress 17152  df-plusg 17184  df-sca 17187  df-vsca 17188  df-0g 17355  df-mgm 18558  df-sgrp 18637  df-mnd 18653  df-grp 18859  df-minusg 18860  df-sbg 18861  df-subg 19046  df-mgp 20069  df-ur 20110  df-ring 20163  df-lmod 20805  df-lss 20875  df-lsp 20915
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator