| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lsslsp | Structured version Visualization version GIF version | ||
| Description: Spans in submodules correspond to spans in the containing module. (Contributed by Stefan O'Rear, 12-Dec-2014.) Terms in the equation were swapped as proposed by NM on 15-Mar-2015. (Revised by AV, 18-Apr-2025.) |
| Ref | Expression |
|---|---|
| lsslsp.x | ⊢ 𝑋 = (𝑊 ↾s 𝑈) |
| lsslsp.m | ⊢ 𝑀 = (LSpan‘𝑊) |
| lsslsp.n | ⊢ 𝑁 = (LSpan‘𝑋) |
| lsslsp.l | ⊢ 𝐿 = (LSubSp‘𝑊) |
| Ref | Expression |
|---|---|
| lsslsp | ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → (𝑁‘𝐺) = (𝑀‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsslsp.x | . . . . 5 ⊢ 𝑋 = (𝑊 ↾s 𝑈) | |
| 2 | lsslsp.l | . . . . 5 ⊢ 𝐿 = (LSubSp‘𝑊) | |
| 3 | 1, 2 | lsslmod 20873 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿) → 𝑋 ∈ LMod) |
| 4 | 3 | 3adant3 1132 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → 𝑋 ∈ LMod) |
| 5 | simp1 1136 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → 𝑊 ∈ LMod) | |
| 6 | simp3 1138 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → 𝐺 ⊆ 𝑈) | |
| 7 | eqid 2730 | . . . . . . . 8 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 8 | 7, 2 | lssss 20849 | . . . . . . 7 ⊢ (𝑈 ∈ 𝐿 → 𝑈 ⊆ (Base‘𝑊)) |
| 9 | 8 | 3ad2ant2 1134 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → 𝑈 ⊆ (Base‘𝑊)) |
| 10 | 6, 9 | sstrd 3960 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → 𝐺 ⊆ (Base‘𝑊)) |
| 11 | lsslsp.m | . . . . . 6 ⊢ 𝑀 = (LSpan‘𝑊) | |
| 12 | 7, 2, 11 | lspcl 20889 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ⊆ (Base‘𝑊)) → (𝑀‘𝐺) ∈ 𝐿) |
| 13 | 5, 10, 12 | syl2anc 584 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → (𝑀‘𝐺) ∈ 𝐿) |
| 14 | 2, 11 | lspssp 20901 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → (𝑀‘𝐺) ⊆ 𝑈) |
| 15 | eqid 2730 | . . . . . 6 ⊢ (LSubSp‘𝑋) = (LSubSp‘𝑋) | |
| 16 | 1, 2, 15 | lsslss 20874 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿) → ((𝑀‘𝐺) ∈ (LSubSp‘𝑋) ↔ ((𝑀‘𝐺) ∈ 𝐿 ∧ (𝑀‘𝐺) ⊆ 𝑈))) |
| 17 | 16 | 3adant3 1132 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → ((𝑀‘𝐺) ∈ (LSubSp‘𝑋) ↔ ((𝑀‘𝐺) ∈ 𝐿 ∧ (𝑀‘𝐺) ⊆ 𝑈))) |
| 18 | 13, 14, 17 | mpbir2and 713 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → (𝑀‘𝐺) ∈ (LSubSp‘𝑋)) |
| 19 | 7, 11 | lspssid 20898 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ⊆ (Base‘𝑊)) → 𝐺 ⊆ (𝑀‘𝐺)) |
| 20 | 5, 10, 19 | syl2anc 584 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → 𝐺 ⊆ (𝑀‘𝐺)) |
| 21 | lsslsp.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑋) | |
| 22 | 15, 21 | lspssp 20901 | . . 3 ⊢ ((𝑋 ∈ LMod ∧ (𝑀‘𝐺) ∈ (LSubSp‘𝑋) ∧ 𝐺 ⊆ (𝑀‘𝐺)) → (𝑁‘𝐺) ⊆ (𝑀‘𝐺)) |
| 23 | 4, 18, 20, 22 | syl3anc 1373 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → (𝑁‘𝐺) ⊆ (𝑀‘𝐺)) |
| 24 | 1, 7 | ressbas2 17215 | . . . . . . . 8 ⊢ (𝑈 ⊆ (Base‘𝑊) → 𝑈 = (Base‘𝑋)) |
| 25 | 9, 24 | syl 17 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → 𝑈 = (Base‘𝑋)) |
| 26 | 6, 25 | sseqtrd 3986 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → 𝐺 ⊆ (Base‘𝑋)) |
| 27 | eqid 2730 | . . . . . . 7 ⊢ (Base‘𝑋) = (Base‘𝑋) | |
| 28 | 27, 15, 21 | lspcl 20889 | . . . . . 6 ⊢ ((𝑋 ∈ LMod ∧ 𝐺 ⊆ (Base‘𝑋)) → (𝑁‘𝐺) ∈ (LSubSp‘𝑋)) |
| 29 | 4, 26, 28 | syl2anc 584 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → (𝑁‘𝐺) ∈ (LSubSp‘𝑋)) |
| 30 | 1, 2, 15 | lsslss 20874 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿) → ((𝑁‘𝐺) ∈ (LSubSp‘𝑋) ↔ ((𝑁‘𝐺) ∈ 𝐿 ∧ (𝑁‘𝐺) ⊆ 𝑈))) |
| 31 | 30 | 3adant3 1132 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → ((𝑁‘𝐺) ∈ (LSubSp‘𝑋) ↔ ((𝑁‘𝐺) ∈ 𝐿 ∧ (𝑁‘𝐺) ⊆ 𝑈))) |
| 32 | 29, 31 | mpbid 232 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → ((𝑁‘𝐺) ∈ 𝐿 ∧ (𝑁‘𝐺) ⊆ 𝑈)) |
| 33 | 32 | simpld 494 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → (𝑁‘𝐺) ∈ 𝐿) |
| 34 | 27, 21 | lspssid 20898 | . . . 4 ⊢ ((𝑋 ∈ LMod ∧ 𝐺 ⊆ (Base‘𝑋)) → 𝐺 ⊆ (𝑁‘𝐺)) |
| 35 | 4, 26, 34 | syl2anc 584 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → 𝐺 ⊆ (𝑁‘𝐺)) |
| 36 | 2, 11 | lspssp 20901 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝑁‘𝐺) ∈ 𝐿 ∧ 𝐺 ⊆ (𝑁‘𝐺)) → (𝑀‘𝐺) ⊆ (𝑁‘𝐺)) |
| 37 | 5, 33, 35, 36 | syl3anc 1373 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → (𝑀‘𝐺) ⊆ (𝑁‘𝐺)) |
| 38 | 23, 37 | eqssd 3967 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → (𝑁‘𝐺) = (𝑀‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ⊆ wss 3917 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 ↾s cress 17207 LModclmod 20773 LSubSpclss 20844 LSpanclspn 20884 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-sca 17243 df-vsca 17244 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-grp 18875 df-minusg 18876 df-sbg 18877 df-subg 19062 df-mgp 20057 df-ur 20098 df-ring 20151 df-lmod 20775 df-lss 20845 df-lsp 20885 |
| This theorem is referenced by: lss0v 20930 lsslindf 21746 islinds3 21750 lbslsat 33619 ply1degltdimlem 33625 dimkerim 33630 dimlssid 33635 fldextrspunlem1 33677 lcdlsp 41622 islssfg 43066 |
| Copyright terms: Public domain | W3C validator |