Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsslsp Structured version   Visualization version   GIF version

Theorem lsslsp 19410
 Description: Spans in submodules correspond to spans in the containing module. (Contributed by Stefan O'Rear, 12-Dec-2014.) TODO: Shouldn't we swap 𝑀‘𝐺 and 𝑁‘𝐺 since we are computing a property of 𝑁‘𝐺? (Like we say sin 0 = 0 and not 0 = sin 0.) - NM 15-Mar-2015.
Hypotheses
Ref Expression
lsslsp.x 𝑋 = (𝑊s 𝑈)
lsslsp.m 𝑀 = (LSpan‘𝑊)
lsslsp.n 𝑁 = (LSpan‘𝑋)
lsslsp.l 𝐿 = (LSubSp‘𝑊)
Assertion
Ref Expression
lsslsp ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → (𝑀𝐺) = (𝑁𝐺))

Proof of Theorem lsslsp
StepHypRef Expression
1 simp1 1127 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → 𝑊 ∈ LMod)
2 lsslsp.x . . . . . . . 8 𝑋 = (𝑊s 𝑈)
3 lsslsp.l . . . . . . . 8 𝐿 = (LSubSp‘𝑊)
42, 3lsslmod 19355 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑈𝐿) → 𝑋 ∈ LMod)
543adant3 1123 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → 𝑋 ∈ LMod)
6 simp3 1129 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → 𝐺𝑈)
7 eqid 2778 . . . . . . . . . 10 (Base‘𝑊) = (Base‘𝑊)
87, 3lssss 19329 . . . . . . . . 9 (𝑈𝐿𝑈 ⊆ (Base‘𝑊))
983ad2ant2 1125 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → 𝑈 ⊆ (Base‘𝑊))
102, 7ressbas2 16327 . . . . . . . 8 (𝑈 ⊆ (Base‘𝑊) → 𝑈 = (Base‘𝑋))
119, 10syl 17 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → 𝑈 = (Base‘𝑋))
126, 11sseqtrd 3860 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → 𝐺 ⊆ (Base‘𝑋))
13 eqid 2778 . . . . . . 7 (Base‘𝑋) = (Base‘𝑋)
14 eqid 2778 . . . . . . 7 (LSubSp‘𝑋) = (LSubSp‘𝑋)
15 lsslsp.n . . . . . . 7 𝑁 = (LSpan‘𝑋)
1613, 14, 15lspcl 19371 . . . . . 6 ((𝑋 ∈ LMod ∧ 𝐺 ⊆ (Base‘𝑋)) → (𝑁𝐺) ∈ (LSubSp‘𝑋))
175, 12, 16syl2anc 579 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → (𝑁𝐺) ∈ (LSubSp‘𝑋))
182, 3, 14lsslss 19356 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑈𝐿) → ((𝑁𝐺) ∈ (LSubSp‘𝑋) ↔ ((𝑁𝐺) ∈ 𝐿 ∧ (𝑁𝐺) ⊆ 𝑈)))
19183adant3 1123 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → ((𝑁𝐺) ∈ (LSubSp‘𝑋) ↔ ((𝑁𝐺) ∈ 𝐿 ∧ (𝑁𝐺) ⊆ 𝑈)))
2017, 19mpbid 224 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → ((𝑁𝐺) ∈ 𝐿 ∧ (𝑁𝐺) ⊆ 𝑈))
2120simpld 490 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → (𝑁𝐺) ∈ 𝐿)
2213, 15lspssid 19380 . . . 4 ((𝑋 ∈ LMod ∧ 𝐺 ⊆ (Base‘𝑋)) → 𝐺 ⊆ (𝑁𝐺))
235, 12, 22syl2anc 579 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → 𝐺 ⊆ (𝑁𝐺))
24 lsslsp.m . . . 4 𝑀 = (LSpan‘𝑊)
253, 24lspssp 19383 . . 3 ((𝑊 ∈ LMod ∧ (𝑁𝐺) ∈ 𝐿𝐺 ⊆ (𝑁𝐺)) → (𝑀𝐺) ⊆ (𝑁𝐺))
261, 21, 23, 25syl3anc 1439 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → (𝑀𝐺) ⊆ (𝑁𝐺))
276, 9sstrd 3831 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → 𝐺 ⊆ (Base‘𝑊))
287, 3, 24lspcl 19371 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺 ⊆ (Base‘𝑊)) → (𝑀𝐺) ∈ 𝐿)
291, 27, 28syl2anc 579 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → (𝑀𝐺) ∈ 𝐿)
303, 24lspssp 19383 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → (𝑀𝐺) ⊆ 𝑈)
312, 3, 14lsslss 19356 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝐿) → ((𝑀𝐺) ∈ (LSubSp‘𝑋) ↔ ((𝑀𝐺) ∈ 𝐿 ∧ (𝑀𝐺) ⊆ 𝑈)))
32313adant3 1123 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → ((𝑀𝐺) ∈ (LSubSp‘𝑋) ↔ ((𝑀𝐺) ∈ 𝐿 ∧ (𝑀𝐺) ⊆ 𝑈)))
3329, 30, 32mpbir2and 703 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → (𝑀𝐺) ∈ (LSubSp‘𝑋))
347, 24lspssid 19380 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺 ⊆ (Base‘𝑊)) → 𝐺 ⊆ (𝑀𝐺))
351, 27, 34syl2anc 579 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → 𝐺 ⊆ (𝑀𝐺))
3614, 15lspssp 19383 . . 3 ((𝑋 ∈ LMod ∧ (𝑀𝐺) ∈ (LSubSp‘𝑋) ∧ 𝐺 ⊆ (𝑀𝐺)) → (𝑁𝐺) ⊆ (𝑀𝐺))
375, 33, 35, 36syl3anc 1439 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → (𝑁𝐺) ⊆ (𝑀𝐺))
3826, 37eqssd 3838 1 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → (𝑀𝐺) = (𝑁𝐺))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 198   ∧ wa 386   ∧ w3a 1071   = wceq 1601   ∈ wcel 2107   ⊆ wss 3792  ‘cfv 6135  (class class class)co 6922  Basecbs 16255   ↾s cress 16256  LModclmod 19255  LSubSpclss 19324  LSpanclspn 19366 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-er 8026  df-en 8242  df-dom 8243  df-sdom 8244  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-nn 11375  df-2 11438  df-3 11439  df-4 11440  df-5 11441  df-6 11442  df-ndx 16258  df-slot 16259  df-base 16261  df-sets 16262  df-ress 16263  df-plusg 16351  df-sca 16354  df-vsca 16355  df-0g 16488  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-grp 17812  df-minusg 17813  df-sbg 17814  df-subg 17975  df-mgp 18877  df-ur 18889  df-ring 18936  df-lmod 19257  df-lss 19325  df-lsp 19367 This theorem is referenced by:  lss0v  19411  lsslindf  20573  islinds3  20577  lbslsat  30432  dimkerim  30441  lcdlsp  37775  islssfg  38599
 Copyright terms: Public domain W3C validator