MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsw Structured version   Visualization version   GIF version

Theorem lsw 14529
Description: Extract the last symbol of a word. May be not meaningful for other sets which are not words. (Contributed by Alexander van der Vekens, 18-Mar-2018.)
Assertion
Ref Expression
lsw (𝑊𝑋 → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1)))

Proof of Theorem lsw
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 elex 3468 . 2 (𝑊𝑋𝑊 ∈ V)
2 fvex 6871 . 2 (𝑊‘((♯‘𝑊) − 1)) ∈ V
3 id 22 . . . 4 (𝑤 = 𝑊𝑤 = 𝑊)
4 fveq2 6858 . . . . 5 (𝑤 = 𝑊 → (♯‘𝑤) = (♯‘𝑊))
54oveq1d 7402 . . . 4 (𝑤 = 𝑊 → ((♯‘𝑤) − 1) = ((♯‘𝑊) − 1))
63, 5fveq12d 6865 . . 3 (𝑤 = 𝑊 → (𝑤‘((♯‘𝑤) − 1)) = (𝑊‘((♯‘𝑊) − 1)))
7 df-lsw 14528 . . 3 lastS = (𝑤 ∈ V ↦ (𝑤‘((♯‘𝑤) − 1)))
86, 7fvmptg 6966 . 2 ((𝑊 ∈ V ∧ (𝑊‘((♯‘𝑊) − 1)) ∈ V) → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1)))
91, 2, 8sylancl 586 1 (𝑊𝑋 → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3447  cfv 6511  (class class class)co 7387  1c1 11069  cmin 11405  chash 14295  lastSclsw 14527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-lsw 14528
This theorem is referenced by:  lsw0  14530  lsw1  14532  lswcl  14533  ccatval1lsw  14549  lswccatn0lsw  14556  swrdlsw  14632  pfxfvlsw  14660  repswlsw  14747  lswcshw  14780  lswco  14805  lsws2  14870  lsws3  14871  lsws4  14872  wrdl2exs2  14912  swrd2lsw  14918  psgnunilem5  19424  wlkonwlk1l  29591  wwlknlsw  29777  wwlksnext  29823  wwlksnredwwlkn  29825  wwlksnextproplem2  29840  clwlkclwwlklem2a1  29921  clwlkclwwlklem2a3  29923  clwlkclwwlklem2a4  29926  clwlkclwwlklem2  29929  clwwisshclwwslem  29943  clwwlknlbonbgr1  29968  clwwlkn2  29973  clwwlkel  29975  clwwlkf  29976  clwwlkwwlksb  29983  clwwlknonex2lem2  30037  2clwwlk2clwwlklem  30275  numclwwlk1lem2f1  30286  pfxlsw2ccat  32872  chnind  32937  chnub  32938  chnccats1  32941  wrdpmtrlast  33050  iwrdsplit  34378  signsvtn0  34561  signstfveq0  34568  lswn0  47445  grtriclwlk3  47944
  Copyright terms: Public domain W3C validator