| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lsw | Structured version Visualization version GIF version | ||
| Description: Extract the last symbol of a word. May be not meaningful for other sets which are not words. (Contributed by Alexander van der Vekens, 18-Mar-2018.) |
| Ref | Expression |
|---|---|
| lsw | ⊢ (𝑊 ∈ 𝑋 → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3457 | . 2 ⊢ (𝑊 ∈ 𝑋 → 𝑊 ∈ V) | |
| 2 | fvex 6835 | . 2 ⊢ (𝑊‘((♯‘𝑊) − 1)) ∈ V | |
| 3 | id 22 | . . . 4 ⊢ (𝑤 = 𝑊 → 𝑤 = 𝑊) | |
| 4 | fveq2 6822 | . . . . 5 ⊢ (𝑤 = 𝑊 → (♯‘𝑤) = (♯‘𝑊)) | |
| 5 | 4 | oveq1d 7364 | . . . 4 ⊢ (𝑤 = 𝑊 → ((♯‘𝑤) − 1) = ((♯‘𝑊) − 1)) |
| 6 | 3, 5 | fveq12d 6829 | . . 3 ⊢ (𝑤 = 𝑊 → (𝑤‘((♯‘𝑤) − 1)) = (𝑊‘((♯‘𝑊) − 1))) |
| 7 | df-lsw 14470 | . . 3 ⊢ lastS = (𝑤 ∈ V ↦ (𝑤‘((♯‘𝑤) − 1))) | |
| 8 | 6, 7 | fvmptg 6928 | . 2 ⊢ ((𝑊 ∈ V ∧ (𝑊‘((♯‘𝑊) − 1)) ∈ V) → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1))) |
| 9 | 1, 2, 8 | sylancl 586 | 1 ⊢ (𝑊 ∈ 𝑋 → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3436 ‘cfv 6482 (class class class)co 7349 1c1 11010 − cmin 11347 ♯chash 14237 lastSclsw 14469 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6438 df-fun 6484 df-fv 6490 df-ov 7352 df-lsw 14470 |
| This theorem is referenced by: lsw0 14472 lsw1 14474 lswcl 14475 ccatval1lsw 14491 lswccatn0lsw 14498 swrdlsw 14574 pfxfvlsw 14601 repswlsw 14688 lswcshw 14721 lswco 14746 lsws2 14811 lsws3 14812 lsws4 14813 wrdl2exs2 14853 swrd2lsw 14859 psgnunilem5 19373 wlkonwlk1l 29607 wwlknlsw 29792 wwlksnext 29838 wwlksnredwwlkn 29840 wwlksnextproplem2 29855 clwlkclwwlklem2a1 29936 clwlkclwwlklem2a3 29938 clwlkclwwlklem2a4 29941 clwlkclwwlklem2 29944 clwwisshclwwslem 29958 clwwlknlbonbgr1 29983 clwwlkn2 29988 clwwlkel 29990 clwwlkf 29991 clwwlkwwlksb 29998 clwwlknonex2lem2 30052 2clwwlk2clwwlklem 30290 numclwwlk1lem2f1 30301 pfxlsw2ccat 32892 chnind 32953 chnub 32954 chnccats1 32957 wrdpmtrlast 33035 iwrdsplit 34355 signsvtn0 34538 signstfveq0 34545 lswn0 47432 grtriclwlk3 47933 |
| Copyright terms: Public domain | W3C validator |