| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lsw | Structured version Visualization version GIF version | ||
| Description: Extract the last symbol of a word. May be not meaningful for other sets which are not words. (Contributed by Alexander van der Vekens, 18-Mar-2018.) |
| Ref | Expression |
|---|---|
| lsw | ⊢ (𝑊 ∈ 𝑋 → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3457 | . 2 ⊢ (𝑊 ∈ 𝑋 → 𝑊 ∈ V) | |
| 2 | fvex 6835 | . 2 ⊢ (𝑊‘((♯‘𝑊) − 1)) ∈ V | |
| 3 | id 22 | . . . 4 ⊢ (𝑤 = 𝑊 → 𝑤 = 𝑊) | |
| 4 | fveq2 6822 | . . . . 5 ⊢ (𝑤 = 𝑊 → (♯‘𝑤) = (♯‘𝑊)) | |
| 5 | 4 | oveq1d 7361 | . . . 4 ⊢ (𝑤 = 𝑊 → ((♯‘𝑤) − 1) = ((♯‘𝑊) − 1)) |
| 6 | 3, 5 | fveq12d 6829 | . . 3 ⊢ (𝑤 = 𝑊 → (𝑤‘((♯‘𝑤) − 1)) = (𝑊‘((♯‘𝑊) − 1))) |
| 7 | df-lsw 14470 | . . 3 ⊢ lastS = (𝑤 ∈ V ↦ (𝑤‘((♯‘𝑤) − 1))) | |
| 8 | 6, 7 | fvmptg 6927 | . 2 ⊢ ((𝑊 ∈ V ∧ (𝑊‘((♯‘𝑊) − 1)) ∈ V) → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1))) |
| 9 | 1, 2, 8 | sylancl 586 | 1 ⊢ (𝑊 ∈ 𝑋 → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ‘cfv 6481 (class class class)co 7346 1c1 11007 − cmin 11344 ♯chash 14237 lastSclsw 14469 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-lsw 14470 |
| This theorem is referenced by: lsw0 14472 lsw1 14474 lswcl 14475 ccatval1lsw 14492 lswccatn0lsw 14499 swrdlsw 14575 pfxfvlsw 14602 repswlsw 14689 lswcshw 14722 lswco 14746 lsws2 14811 lsws3 14812 lsws4 14813 wrdl2exs2 14853 swrd2lsw 14859 chnind 18527 chnub 18528 chnccats1 18531 chnccat 18532 psgnunilem5 19406 wlkonwlk1l 29640 wwlknlsw 29825 wwlksnext 29871 wwlksnredwwlkn 29873 wwlksnextproplem2 29888 clwlkclwwlklem2a1 29972 clwlkclwwlklem2a3 29974 clwlkclwwlklem2a4 29977 clwlkclwwlklem2 29980 clwwisshclwwslem 29994 clwwlknlbonbgr1 30019 clwwlkn2 30024 clwwlkel 30026 clwwlkf 30027 clwwlkwwlksb 30034 clwwlknonex2lem2 30088 2clwwlk2clwwlklem 30326 numclwwlk1lem2f1 30337 pfxlsw2ccat 32931 wrdpmtrlast 33062 iwrdsplit 34400 signsvtn0 34583 signstfveq0 34590 nthrucw 46994 lswn0 47554 grtriclwlk3 48055 |
| Copyright terms: Public domain | W3C validator |