![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lsw | Structured version Visualization version GIF version |
Description: Extract the last symbol of a word. May be not meaningful for other sets which are not words. (Contributed by Alexander van der Vekens, 18-Mar-2018.) |
Ref | Expression |
---|---|
lsw | ⊢ (𝑊 ∈ 𝑋 → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3509 | . 2 ⊢ (𝑊 ∈ 𝑋 → 𝑊 ∈ V) | |
2 | fvex 6933 | . 2 ⊢ (𝑊‘((♯‘𝑊) − 1)) ∈ V | |
3 | id 22 | . . . 4 ⊢ (𝑤 = 𝑊 → 𝑤 = 𝑊) | |
4 | fveq2 6920 | . . . . 5 ⊢ (𝑤 = 𝑊 → (♯‘𝑤) = (♯‘𝑊)) | |
5 | 4 | oveq1d 7463 | . . . 4 ⊢ (𝑤 = 𝑊 → ((♯‘𝑤) − 1) = ((♯‘𝑊) − 1)) |
6 | 3, 5 | fveq12d 6927 | . . 3 ⊢ (𝑤 = 𝑊 → (𝑤‘((♯‘𝑤) − 1)) = (𝑊‘((♯‘𝑊) − 1))) |
7 | df-lsw 14611 | . . 3 ⊢ lastS = (𝑤 ∈ V ↦ (𝑤‘((♯‘𝑤) − 1))) | |
8 | 6, 7 | fvmptg 7027 | . 2 ⊢ ((𝑊 ∈ V ∧ (𝑊‘((♯‘𝑊) − 1)) ∈ V) → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1))) |
9 | 1, 2, 8 | sylancl 585 | 1 ⊢ (𝑊 ∈ 𝑋 → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ‘cfv 6573 (class class class)co 7448 1c1 11185 − cmin 11520 ♯chash 14379 lastSclsw 14610 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-lsw 14611 |
This theorem is referenced by: lsw0 14613 lsw1 14615 lswcl 14616 ccatval1lsw 14632 lswccatn0lsw 14639 swrdlsw 14715 pfxfvlsw 14743 repswlsw 14830 lswcshw 14863 lswco 14888 lsws2 14953 lsws3 14954 lsws4 14955 wrdl2exs2 14995 swrd2lsw 15001 psgnunilem5 19536 wlkonwlk1l 29699 wwlknlsw 29880 wwlksnext 29926 wwlksnredwwlkn 29928 wwlksnextproplem2 29943 clwlkclwwlklem2a1 30024 clwlkclwwlklem2a3 30026 clwlkclwwlklem2a4 30029 clwlkclwwlklem2 30032 clwwisshclwwslem 30046 clwwlknlbonbgr1 30071 clwwlkn2 30076 clwwlkel 30078 clwwlkf 30079 clwwlkwwlksb 30086 clwwlknonex2lem2 30140 2clwwlk2clwwlklem 30378 numclwwlk1lem2f1 30389 pfxlsw2ccat 32917 chnind 32983 chnub 32984 wrdpmtrlast 33086 iwrdsplit 34352 signsvtn0 34547 signstfveq0 34554 lswn0 47318 grtriclwlk3 47796 |
Copyright terms: Public domain | W3C validator |