| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lsw | Structured version Visualization version GIF version | ||
| Description: Extract the last symbol of a word. May be not meaningful for other sets which are not words. (Contributed by Alexander van der Vekens, 18-Mar-2018.) |
| Ref | Expression |
|---|---|
| lsw | ⊢ (𝑊 ∈ 𝑋 → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3468 | . 2 ⊢ (𝑊 ∈ 𝑋 → 𝑊 ∈ V) | |
| 2 | fvex 6871 | . 2 ⊢ (𝑊‘((♯‘𝑊) − 1)) ∈ V | |
| 3 | id 22 | . . . 4 ⊢ (𝑤 = 𝑊 → 𝑤 = 𝑊) | |
| 4 | fveq2 6858 | . . . . 5 ⊢ (𝑤 = 𝑊 → (♯‘𝑤) = (♯‘𝑊)) | |
| 5 | 4 | oveq1d 7402 | . . . 4 ⊢ (𝑤 = 𝑊 → ((♯‘𝑤) − 1) = ((♯‘𝑊) − 1)) |
| 6 | 3, 5 | fveq12d 6865 | . . 3 ⊢ (𝑤 = 𝑊 → (𝑤‘((♯‘𝑤) − 1)) = (𝑊‘((♯‘𝑊) − 1))) |
| 7 | df-lsw 14528 | . . 3 ⊢ lastS = (𝑤 ∈ V ↦ (𝑤‘((♯‘𝑤) − 1))) | |
| 8 | 6, 7 | fvmptg 6966 | . 2 ⊢ ((𝑊 ∈ V ∧ (𝑊‘((♯‘𝑊) − 1)) ∈ V) → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1))) |
| 9 | 1, 2, 8 | sylancl 586 | 1 ⊢ (𝑊 ∈ 𝑋 → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ‘cfv 6511 (class class class)co 7387 1c1 11069 − cmin 11405 ♯chash 14295 lastSclsw 14527 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-lsw 14528 |
| This theorem is referenced by: lsw0 14530 lsw1 14532 lswcl 14533 ccatval1lsw 14549 lswccatn0lsw 14556 swrdlsw 14632 pfxfvlsw 14660 repswlsw 14747 lswcshw 14780 lswco 14805 lsws2 14870 lsws3 14871 lsws4 14872 wrdl2exs2 14912 swrd2lsw 14918 psgnunilem5 19424 wlkonwlk1l 29591 wwlknlsw 29777 wwlksnext 29823 wwlksnredwwlkn 29825 wwlksnextproplem2 29840 clwlkclwwlklem2a1 29921 clwlkclwwlklem2a3 29923 clwlkclwwlklem2a4 29926 clwlkclwwlklem2 29929 clwwisshclwwslem 29943 clwwlknlbonbgr1 29968 clwwlkn2 29973 clwwlkel 29975 clwwlkf 29976 clwwlkwwlksb 29983 clwwlknonex2lem2 30037 2clwwlk2clwwlklem 30275 numclwwlk1lem2f1 30286 pfxlsw2ccat 32872 chnind 32937 chnub 32938 chnccats1 32941 wrdpmtrlast 33050 iwrdsplit 34378 signsvtn0 34561 signstfveq0 34568 lswn0 47445 grtriclwlk3 47944 |
| Copyright terms: Public domain | W3C validator |