![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lsw | Structured version Visualization version GIF version |
Description: Extract the last symbol of a word. May be not meaningful for other sets which are not words. (Contributed by Alexander van der Vekens, 18-Mar-2018.) |
Ref | Expression |
---|---|
lsw | ⊢ (𝑊 ∈ 𝑋 → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3429 | . 2 ⊢ (𝑊 ∈ 𝑋 → 𝑊 ∈ V) | |
2 | fvex 6450 | . 2 ⊢ (𝑊‘((♯‘𝑊) − 1)) ∈ V | |
3 | id 22 | . . . 4 ⊢ (𝑤 = 𝑊 → 𝑤 = 𝑊) | |
4 | fveq2 6437 | . . . . 5 ⊢ (𝑤 = 𝑊 → (♯‘𝑤) = (♯‘𝑊)) | |
5 | 4 | oveq1d 6925 | . . . 4 ⊢ (𝑤 = 𝑊 → ((♯‘𝑤) − 1) = ((♯‘𝑊) − 1)) |
6 | 3, 5 | fveq12d 6444 | . . 3 ⊢ (𝑤 = 𝑊 → (𝑤‘((♯‘𝑤) − 1)) = (𝑊‘((♯‘𝑊) − 1))) |
7 | df-lsw 13630 | . . 3 ⊢ lastS = (𝑤 ∈ V ↦ (𝑤‘((♯‘𝑤) − 1))) | |
8 | 6, 7 | fvmptg 6531 | . 2 ⊢ ((𝑊 ∈ V ∧ (𝑊‘((♯‘𝑊) − 1)) ∈ V) → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1))) |
9 | 1, 2, 8 | sylancl 580 | 1 ⊢ (𝑊 ∈ 𝑋 → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1656 ∈ wcel 2164 Vcvv 3414 ‘cfv 6127 (class class class)co 6910 1c1 10260 − cmin 10592 ♯chash 13417 lastSclsw 13629 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pr 5129 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-sbc 3663 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-br 4876 df-opab 4938 df-mpt 4955 df-id 5252 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-iota 6090 df-fun 6129 df-fv 6135 df-ov 6913 df-lsw 13630 |
This theorem is referenced by: lsw0 13632 lsw1 13634 lswcl 13635 ccatval1lsw 13651 lswccatn0lsw 13658 swrd0fvlswOLD 13739 swrdlsw 13749 pfxfvlsw 13781 swrdccatwrdOLD 13807 repswlsw 13905 lswcshw 13943 lswco 13967 lsws2 14032 lsws3 14033 lsws4 14034 wrdl2exs2 14074 swrd2lsw 14080 psgnunilem5 18271 psgnunilem5OLD 18272 wlkonwlk1l 26967 wwlknlsw 27153 wwlksnext 27211 wwlksnredwwlkn 27214 wwlksnredwwlknOLD 27215 wwlksnextproplem2 27241 wwlksnextproplem2OLD 27242 clwlkclwwlklem2a1 27328 clwlkclwwlklem2a3 27330 clwlkclwwlklem2a4 27333 clwlkclwwlklem2 27336 clwwisshclwwslem 27359 clwwlknlbonbgr1 27384 clwwlkn2 27390 clwwlkel 27392 clwwlkfOLD 27393 clwwlkf 27398 clwwlkwwlksb 27406 clwwlknonex2lem2 27479 2clwwlk2clwwlklem 27726 numclwwlk1lem2f1 27744 numclwwlk1lem2f1OLD 27749 iwrdsplit 30990 iwrdsplitOLD 30991 signsvtn0 31190 signsvtn0OLD 31191 signstfveq0 31198 signstfveq0OLD 31199 lswn0 42266 |
Copyright terms: Public domain | W3C validator |