![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lsw | Structured version Visualization version GIF version |
Description: Extract the last symbol of a word. May be not meaningful for other sets which are not words. (Contributed by Alexander van der Vekens, 18-Mar-2018.) |
Ref | Expression |
---|---|
lsw | ⊢ (𝑊 ∈ 𝑋 → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3499 | . 2 ⊢ (𝑊 ∈ 𝑋 → 𝑊 ∈ V) | |
2 | fvex 6920 | . 2 ⊢ (𝑊‘((♯‘𝑊) − 1)) ∈ V | |
3 | id 22 | . . . 4 ⊢ (𝑤 = 𝑊 → 𝑤 = 𝑊) | |
4 | fveq2 6907 | . . . . 5 ⊢ (𝑤 = 𝑊 → (♯‘𝑤) = (♯‘𝑊)) | |
5 | 4 | oveq1d 7446 | . . . 4 ⊢ (𝑤 = 𝑊 → ((♯‘𝑤) − 1) = ((♯‘𝑊) − 1)) |
6 | 3, 5 | fveq12d 6914 | . . 3 ⊢ (𝑤 = 𝑊 → (𝑤‘((♯‘𝑤) − 1)) = (𝑊‘((♯‘𝑊) − 1))) |
7 | df-lsw 14598 | . . 3 ⊢ lastS = (𝑤 ∈ V ↦ (𝑤‘((♯‘𝑤) − 1))) | |
8 | 6, 7 | fvmptg 7014 | . 2 ⊢ ((𝑊 ∈ V ∧ (𝑊‘((♯‘𝑊) − 1)) ∈ V) → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1))) |
9 | 1, 2, 8 | sylancl 586 | 1 ⊢ (𝑊 ∈ 𝑋 → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 Vcvv 3478 ‘cfv 6563 (class class class)co 7431 1c1 11154 − cmin 11490 ♯chash 14366 lastSclsw 14597 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-iota 6516 df-fun 6565 df-fv 6571 df-ov 7434 df-lsw 14598 |
This theorem is referenced by: lsw0 14600 lsw1 14602 lswcl 14603 ccatval1lsw 14619 lswccatn0lsw 14626 swrdlsw 14702 pfxfvlsw 14730 repswlsw 14817 lswcshw 14850 lswco 14875 lsws2 14940 lsws3 14941 lsws4 14942 wrdl2exs2 14982 swrd2lsw 14988 psgnunilem5 19527 wlkonwlk1l 29696 wwlknlsw 29877 wwlksnext 29923 wwlksnredwwlkn 29925 wwlksnextproplem2 29940 clwlkclwwlklem2a1 30021 clwlkclwwlklem2a3 30023 clwlkclwwlklem2a4 30026 clwlkclwwlklem2 30029 clwwisshclwwslem 30043 clwwlknlbonbgr1 30068 clwwlkn2 30073 clwwlkel 30075 clwwlkf 30076 clwwlkwwlksb 30083 clwwlknonex2lem2 30137 2clwwlk2clwwlklem 30375 numclwwlk1lem2f1 30386 pfxlsw2ccat 32920 chnind 32985 chnub 32986 wrdpmtrlast 33096 iwrdsplit 34369 signsvtn0 34564 signstfveq0 34571 lswn0 47369 grtriclwlk3 47850 |
Copyright terms: Public domain | W3C validator |