MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsw Structured version   Visualization version   GIF version

Theorem lsw 14471
Description: Extract the last symbol of a word. May be not meaningful for other sets which are not words. (Contributed by Alexander van der Vekens, 18-Mar-2018.)
Assertion
Ref Expression
lsw (𝑊𝑋 → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1)))

Proof of Theorem lsw
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 elex 3457 . 2 (𝑊𝑋𝑊 ∈ V)
2 fvex 6835 . 2 (𝑊‘((♯‘𝑊) − 1)) ∈ V
3 id 22 . . . 4 (𝑤 = 𝑊𝑤 = 𝑊)
4 fveq2 6822 . . . . 5 (𝑤 = 𝑊 → (♯‘𝑤) = (♯‘𝑊))
54oveq1d 7364 . . . 4 (𝑤 = 𝑊 → ((♯‘𝑤) − 1) = ((♯‘𝑊) − 1))
63, 5fveq12d 6829 . . 3 (𝑤 = 𝑊 → (𝑤‘((♯‘𝑤) − 1)) = (𝑊‘((♯‘𝑊) − 1)))
7 df-lsw 14470 . . 3 lastS = (𝑤 ∈ V ↦ (𝑤‘((♯‘𝑤) − 1)))
86, 7fvmptg 6928 . 2 ((𝑊 ∈ V ∧ (𝑊‘((♯‘𝑊) − 1)) ∈ V) → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1)))
91, 2, 8sylancl 586 1 (𝑊𝑋 → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3436  cfv 6482  (class class class)co 7349  1c1 11010  cmin 11347  chash 14237  lastSclsw 14469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6438  df-fun 6484  df-fv 6490  df-ov 7352  df-lsw 14470
This theorem is referenced by:  lsw0  14472  lsw1  14474  lswcl  14475  ccatval1lsw  14491  lswccatn0lsw  14498  swrdlsw  14574  pfxfvlsw  14601  repswlsw  14688  lswcshw  14721  lswco  14746  lsws2  14811  lsws3  14812  lsws4  14813  wrdl2exs2  14853  swrd2lsw  14859  psgnunilem5  19373  wlkonwlk1l  29607  wwlknlsw  29792  wwlksnext  29838  wwlksnredwwlkn  29840  wwlksnextproplem2  29855  clwlkclwwlklem2a1  29936  clwlkclwwlklem2a3  29938  clwlkclwwlklem2a4  29941  clwlkclwwlklem2  29944  clwwisshclwwslem  29958  clwwlknlbonbgr1  29983  clwwlkn2  29988  clwwlkel  29990  clwwlkf  29991  clwwlkwwlksb  29998  clwwlknonex2lem2  30052  2clwwlk2clwwlklem  30290  numclwwlk1lem2f1  30301  pfxlsw2ccat  32892  chnind  32953  chnub  32954  chnccats1  32957  wrdpmtrlast  33035  iwrdsplit  34355  signsvtn0  34538  signstfveq0  34545  lswn0  47432  grtriclwlk3  47933
  Copyright terms: Public domain W3C validator