| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lsw | Structured version Visualization version GIF version | ||
| Description: Extract the last symbol of a word. May be not meaningful for other sets which are not words. (Contributed by Alexander van der Vekens, 18-Mar-2018.) |
| Ref | Expression |
|---|---|
| lsw | ⊢ (𝑊 ∈ 𝑋 → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3485 | . 2 ⊢ (𝑊 ∈ 𝑋 → 𝑊 ∈ V) | |
| 2 | fvex 6894 | . 2 ⊢ (𝑊‘((♯‘𝑊) − 1)) ∈ V | |
| 3 | id 22 | . . . 4 ⊢ (𝑤 = 𝑊 → 𝑤 = 𝑊) | |
| 4 | fveq2 6881 | . . . . 5 ⊢ (𝑤 = 𝑊 → (♯‘𝑤) = (♯‘𝑊)) | |
| 5 | 4 | oveq1d 7425 | . . . 4 ⊢ (𝑤 = 𝑊 → ((♯‘𝑤) − 1) = ((♯‘𝑊) − 1)) |
| 6 | 3, 5 | fveq12d 6888 | . . 3 ⊢ (𝑤 = 𝑊 → (𝑤‘((♯‘𝑤) − 1)) = (𝑊‘((♯‘𝑊) − 1))) |
| 7 | df-lsw 14586 | . . 3 ⊢ lastS = (𝑤 ∈ V ↦ (𝑤‘((♯‘𝑤) − 1))) | |
| 8 | 6, 7 | fvmptg 6989 | . 2 ⊢ ((𝑊 ∈ V ∧ (𝑊‘((♯‘𝑊) − 1)) ∈ V) → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1))) |
| 9 | 1, 2, 8 | sylancl 586 | 1 ⊢ (𝑊 ∈ 𝑋 → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ‘cfv 6536 (class class class)co 7410 1c1 11135 − cmin 11471 ♯chash 14353 lastSclsw 14585 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-iota 6489 df-fun 6538 df-fv 6544 df-ov 7413 df-lsw 14586 |
| This theorem is referenced by: lsw0 14588 lsw1 14590 lswcl 14591 ccatval1lsw 14607 lswccatn0lsw 14614 swrdlsw 14690 pfxfvlsw 14718 repswlsw 14805 lswcshw 14838 lswco 14863 lsws2 14928 lsws3 14929 lsws4 14930 wrdl2exs2 14970 swrd2lsw 14976 psgnunilem5 19480 wlkonwlk1l 29648 wwlknlsw 29834 wwlksnext 29880 wwlksnredwwlkn 29882 wwlksnextproplem2 29897 clwlkclwwlklem2a1 29978 clwlkclwwlklem2a3 29980 clwlkclwwlklem2a4 29983 clwlkclwwlklem2 29986 clwwisshclwwslem 30000 clwwlknlbonbgr1 30025 clwwlkn2 30030 clwwlkel 30032 clwwlkf 30033 clwwlkwwlksb 30040 clwwlknonex2lem2 30094 2clwwlk2clwwlklem 30332 numclwwlk1lem2f1 30343 pfxlsw2ccat 32931 chnind 32996 chnub 32997 chnccats1 33000 wrdpmtrlast 33109 iwrdsplit 34424 signsvtn0 34607 signstfveq0 34614 lswn0 47425 grtriclwlk3 47924 |
| Copyright terms: Public domain | W3C validator |