MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsw Structured version   Visualization version   GIF version

Theorem lsw 14505
Description: Extract the last symbol of a word. May be not meaningful for other sets which are not words. (Contributed by Alexander van der Vekens, 18-Mar-2018.)
Assertion
Ref Expression
lsw (𝑊𝑋 → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1)))

Proof of Theorem lsw
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 elex 3465 . 2 (𝑊𝑋𝑊 ∈ V)
2 fvex 6853 . 2 (𝑊‘((♯‘𝑊) − 1)) ∈ V
3 id 22 . . . 4 (𝑤 = 𝑊𝑤 = 𝑊)
4 fveq2 6840 . . . . 5 (𝑤 = 𝑊 → (♯‘𝑤) = (♯‘𝑊))
54oveq1d 7384 . . . 4 (𝑤 = 𝑊 → ((♯‘𝑤) − 1) = ((♯‘𝑊) − 1))
63, 5fveq12d 6847 . . 3 (𝑤 = 𝑊 → (𝑤‘((♯‘𝑤) − 1)) = (𝑊‘((♯‘𝑊) − 1)))
7 df-lsw 14504 . . 3 lastS = (𝑤 ∈ V ↦ (𝑤‘((♯‘𝑤) − 1)))
86, 7fvmptg 6948 . 2 ((𝑊 ∈ V ∧ (𝑊‘((♯‘𝑊) − 1)) ∈ V) → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1)))
91, 2, 8sylancl 586 1 (𝑊𝑋 → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3444  cfv 6499  (class class class)co 7369  1c1 11045  cmin 11381  chash 14271  lastSclsw 14503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-iota 6452  df-fun 6501  df-fv 6507  df-ov 7372  df-lsw 14504
This theorem is referenced by:  lsw0  14506  lsw1  14508  lswcl  14509  ccatval1lsw  14525  lswccatn0lsw  14532  swrdlsw  14608  pfxfvlsw  14636  repswlsw  14723  lswcshw  14756  lswco  14781  lsws2  14846  lsws3  14847  lsws4  14848  wrdl2exs2  14888  swrd2lsw  14894  psgnunilem5  19408  wlkonwlk1l  29642  wwlknlsw  29827  wwlksnext  29873  wwlksnredwwlkn  29875  wwlksnextproplem2  29890  clwlkclwwlklem2a1  29971  clwlkclwwlklem2a3  29973  clwlkclwwlklem2a4  29976  clwlkclwwlklem2  29979  clwwisshclwwslem  29993  clwwlknlbonbgr1  30018  clwwlkn2  30023  clwwlkel  30025  clwwlkf  30026  clwwlkwwlksb  30033  clwwlknonex2lem2  30087  2clwwlk2clwwlklem  30325  numclwwlk1lem2f1  30336  pfxlsw2ccat  32922  chnind  32983  chnub  32984  chnccats1  32987  wrdpmtrlast  33065  iwrdsplit  34371  signsvtn0  34554  signstfveq0  34561  lswn0  47438  grtriclwlk3  47937
  Copyright terms: Public domain W3C validator