Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lsw | Structured version Visualization version GIF version |
Description: Extract the last symbol of a word. May be not meaningful for other sets which are not words. (Contributed by Alexander van der Vekens, 18-Mar-2018.) |
Ref | Expression |
---|---|
lsw | ⊢ (𝑊 ∈ 𝑋 → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3429 | . 2 ⊢ (𝑊 ∈ 𝑋 → 𝑊 ∈ V) | |
2 | fvex 6672 | . 2 ⊢ (𝑊‘((♯‘𝑊) − 1)) ∈ V | |
3 | id 22 | . . . 4 ⊢ (𝑤 = 𝑊 → 𝑤 = 𝑊) | |
4 | fveq2 6659 | . . . . 5 ⊢ (𝑤 = 𝑊 → (♯‘𝑤) = (♯‘𝑊)) | |
5 | 4 | oveq1d 7166 | . . . 4 ⊢ (𝑤 = 𝑊 → ((♯‘𝑤) − 1) = ((♯‘𝑊) − 1)) |
6 | 3, 5 | fveq12d 6666 | . . 3 ⊢ (𝑤 = 𝑊 → (𝑤‘((♯‘𝑤) − 1)) = (𝑊‘((♯‘𝑊) − 1))) |
7 | df-lsw 13963 | . . 3 ⊢ lastS = (𝑤 ∈ V ↦ (𝑤‘((♯‘𝑤) − 1))) | |
8 | 6, 7 | fvmptg 6758 | . 2 ⊢ ((𝑊 ∈ V ∧ (𝑊‘((♯‘𝑊) − 1)) ∈ V) → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1))) |
9 | 1, 2, 8 | sylancl 590 | 1 ⊢ (𝑊 ∈ 𝑋 → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2112 Vcvv 3410 ‘cfv 6336 (class class class)co 7151 1c1 10577 − cmin 10909 ♯chash 13741 lastSclsw 13962 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pr 5299 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ral 3076 df-rex 3077 df-v 3412 df-sbc 3698 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4422 df-sn 4524 df-pr 4526 df-op 4530 df-uni 4800 df-br 5034 df-opab 5096 df-mpt 5114 df-id 5431 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-iota 6295 df-fun 6338 df-fv 6344 df-ov 7154 df-lsw 13963 |
This theorem is referenced by: lsw0 13965 lsw1 13967 lswcl 13968 ccatval1lsw 13986 lswccatn0lsw 13993 swrdlsw 14077 pfxfvlsw 14105 repswlsw 14192 lswcshw 14225 lswco 14249 lsws2 14314 lsws3 14315 lsws4 14316 wrdl2exs2 14356 swrd2lsw 14362 psgnunilem5 18690 wlkonwlk1l 27553 wwlknlsw 27733 wwlksnext 27779 wwlksnredwwlkn 27781 wwlksnextproplem2 27796 clwlkclwwlklem2a1 27877 clwlkclwwlklem2a3 27879 clwlkclwwlklem2a4 27882 clwlkclwwlklem2 27885 clwwisshclwwslem 27899 clwwlknlbonbgr1 27924 clwwlkn2 27929 clwwlkel 27931 clwwlkf 27932 clwwlkwwlksb 27939 clwwlknonex2lem2 27993 2clwwlk2clwwlklem 28231 numclwwlk1lem2f1 28242 pfxlsw2ccat 30749 iwrdsplit 31874 signsvtn0 32069 signstfveq0 32076 lswn0 44330 |
Copyright terms: Public domain | W3C validator |