| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lsw | Structured version Visualization version GIF version | ||
| Description: Extract the last symbol of a word. May be not meaningful for other sets which are not words. (Contributed by Alexander van der Vekens, 18-Mar-2018.) |
| Ref | Expression |
|---|---|
| lsw | ⊢ (𝑊 ∈ 𝑋 → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3471 | . 2 ⊢ (𝑊 ∈ 𝑋 → 𝑊 ∈ V) | |
| 2 | fvex 6874 | . 2 ⊢ (𝑊‘((♯‘𝑊) − 1)) ∈ V | |
| 3 | id 22 | . . . 4 ⊢ (𝑤 = 𝑊 → 𝑤 = 𝑊) | |
| 4 | fveq2 6861 | . . . . 5 ⊢ (𝑤 = 𝑊 → (♯‘𝑤) = (♯‘𝑊)) | |
| 5 | 4 | oveq1d 7405 | . . . 4 ⊢ (𝑤 = 𝑊 → ((♯‘𝑤) − 1) = ((♯‘𝑊) − 1)) |
| 6 | 3, 5 | fveq12d 6868 | . . 3 ⊢ (𝑤 = 𝑊 → (𝑤‘((♯‘𝑤) − 1)) = (𝑊‘((♯‘𝑊) − 1))) |
| 7 | df-lsw 14535 | . . 3 ⊢ lastS = (𝑤 ∈ V ↦ (𝑤‘((♯‘𝑤) − 1))) | |
| 8 | 6, 7 | fvmptg 6969 | . 2 ⊢ ((𝑊 ∈ V ∧ (𝑊‘((♯‘𝑊) − 1)) ∈ V) → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1))) |
| 9 | 1, 2, 8 | sylancl 586 | 1 ⊢ (𝑊 ∈ 𝑋 → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ‘cfv 6514 (class class class)co 7390 1c1 11076 − cmin 11412 ♯chash 14302 lastSclsw 14534 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-lsw 14535 |
| This theorem is referenced by: lsw0 14537 lsw1 14539 lswcl 14540 ccatval1lsw 14556 lswccatn0lsw 14563 swrdlsw 14639 pfxfvlsw 14667 repswlsw 14754 lswcshw 14787 lswco 14812 lsws2 14877 lsws3 14878 lsws4 14879 wrdl2exs2 14919 swrd2lsw 14925 psgnunilem5 19431 wlkonwlk1l 29598 wwlknlsw 29784 wwlksnext 29830 wwlksnredwwlkn 29832 wwlksnextproplem2 29847 clwlkclwwlklem2a1 29928 clwlkclwwlklem2a3 29930 clwlkclwwlklem2a4 29933 clwlkclwwlklem2 29936 clwwisshclwwslem 29950 clwwlknlbonbgr1 29975 clwwlkn2 29980 clwwlkel 29982 clwwlkf 29983 clwwlkwwlksb 29990 clwwlknonex2lem2 30044 2clwwlk2clwwlklem 30282 numclwwlk1lem2f1 30293 pfxlsw2ccat 32879 chnind 32944 chnub 32945 chnccats1 32948 wrdpmtrlast 33057 iwrdsplit 34385 signsvtn0 34568 signstfveq0 34575 lswn0 47449 grtriclwlk3 47948 |
| Copyright terms: Public domain | W3C validator |