| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pfxfvlsw | Structured version Visualization version GIF version | ||
| Description: The last symbol in a nonempty prefix of a word. (Contributed by Alexander van der Vekens, 24-Jun-2018.) (Revised by AV, 3-May-2020.) |
| Ref | Expression |
|---|---|
| pfxfvlsw | ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ (1...(♯‘𝑊))) → (lastS‘(𝑊 prefix 𝐿)) = (𝑊‘(𝐿 − 1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pfxcl 14700 | . . . 4 ⊢ (𝑊 ∈ Word 𝑉 → (𝑊 prefix 𝐿) ∈ Word 𝑉) | |
| 2 | 1 | adantr 480 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ (1...(♯‘𝑊))) → (𝑊 prefix 𝐿) ∈ Word 𝑉) |
| 3 | lsw 14587 | . . 3 ⊢ ((𝑊 prefix 𝐿) ∈ Word 𝑉 → (lastS‘(𝑊 prefix 𝐿)) = ((𝑊 prefix 𝐿)‘((♯‘(𝑊 prefix 𝐿)) − 1))) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ (1...(♯‘𝑊))) → (lastS‘(𝑊 prefix 𝐿)) = ((𝑊 prefix 𝐿)‘((♯‘(𝑊 prefix 𝐿)) − 1))) |
| 5 | fz1ssfz0 13645 | . . . . 5 ⊢ (1...(♯‘𝑊)) ⊆ (0...(♯‘𝑊)) | |
| 6 | 5 | sseli 3959 | . . . 4 ⊢ (𝐿 ∈ (1...(♯‘𝑊)) → 𝐿 ∈ (0...(♯‘𝑊))) |
| 7 | pfxlen 14706 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 prefix 𝐿)) = 𝐿) | |
| 8 | 6, 7 | sylan2 593 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ (1...(♯‘𝑊))) → (♯‘(𝑊 prefix 𝐿)) = 𝐿) |
| 9 | 8 | fvoveq1d 7432 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ (1...(♯‘𝑊))) → ((𝑊 prefix 𝐿)‘((♯‘(𝑊 prefix 𝐿)) − 1)) = ((𝑊 prefix 𝐿)‘(𝐿 − 1))) |
| 10 | simpl 482 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ (1...(♯‘𝑊))) → 𝑊 ∈ Word 𝑉) | |
| 11 | 6 | adantl 481 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ (1...(♯‘𝑊))) → 𝐿 ∈ (0...(♯‘𝑊))) |
| 12 | elfznn 13575 | . . . . 5 ⊢ (𝐿 ∈ (1...(♯‘𝑊)) → 𝐿 ∈ ℕ) | |
| 13 | fzo0end 13779 | . . . . 5 ⊢ (𝐿 ∈ ℕ → (𝐿 − 1) ∈ (0..^𝐿)) | |
| 14 | 12, 13 | syl 17 | . . . 4 ⊢ (𝐿 ∈ (1...(♯‘𝑊)) → (𝐿 − 1) ∈ (0..^𝐿)) |
| 15 | 14 | adantl 481 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ (1...(♯‘𝑊))) → (𝐿 − 1) ∈ (0..^𝐿)) |
| 16 | pfxfv 14705 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ (0...(♯‘𝑊)) ∧ (𝐿 − 1) ∈ (0..^𝐿)) → ((𝑊 prefix 𝐿)‘(𝐿 − 1)) = (𝑊‘(𝐿 − 1))) | |
| 17 | 10, 11, 15, 16 | syl3anc 1373 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ (1...(♯‘𝑊))) → ((𝑊 prefix 𝐿)‘(𝐿 − 1)) = (𝑊‘(𝐿 − 1))) |
| 18 | 4, 9, 17 | 3eqtrd 2775 | 1 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ (1...(♯‘𝑊))) → (lastS‘(𝑊 prefix 𝐿)) = (𝑊‘(𝐿 − 1))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6536 (class class class)co 7410 0cc0 11134 1c1 11135 − cmin 11471 ℕcn 12245 ...cfz 13529 ..^cfzo 13676 ♯chash 14353 Word cword 14536 lastSclsw 14585 prefix cpfx 14693 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-n0 12507 df-z 12594 df-uz 12858 df-fz 13530 df-fzo 13677 df-hash 14354 df-word 14537 df-lsw 14586 df-substr 14664 df-pfx 14694 |
| This theorem is referenced by: pfxtrcfvl 14720 wwlksnredwwlkn 29882 wwlksnextproplem2 29897 clwwlkinwwlk 30026 clwwlkf 30033 numclwlk2lem2f 30363 chnlt 32998 |
| Copyright terms: Public domain | W3C validator |