![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pfxfvlsw | Structured version Visualization version GIF version |
Description: The last symbol in a nonempty prefix of a word. (Contributed by Alexander van der Vekens, 24-Jun-2018.) (Revised by AV, 3-May-2020.) |
Ref | Expression |
---|---|
pfxfvlsw | ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ (1...(♯‘𝑊))) → (lastS‘(𝑊 prefix 𝐿)) = (𝑊‘(𝐿 − 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pfxcl 13859 | . . . 4 ⊢ (𝑊 ∈ Word 𝑉 → (𝑊 prefix 𝐿) ∈ Word 𝑉) | |
2 | 1 | adantr 473 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ (1...(♯‘𝑊))) → (𝑊 prefix 𝐿) ∈ Word 𝑉) |
3 | lsw 13727 | . . 3 ⊢ ((𝑊 prefix 𝐿) ∈ Word 𝑉 → (lastS‘(𝑊 prefix 𝐿)) = ((𝑊 prefix 𝐿)‘((♯‘(𝑊 prefix 𝐿)) − 1))) | |
4 | 2, 3 | syl 17 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ (1...(♯‘𝑊))) → (lastS‘(𝑊 prefix 𝐿)) = ((𝑊 prefix 𝐿)‘((♯‘(𝑊 prefix 𝐿)) − 1))) |
5 | fz1ssfz0 12819 | . . . . 5 ⊢ (1...(♯‘𝑊)) ⊆ (0...(♯‘𝑊)) | |
6 | 5 | sseli 3855 | . . . 4 ⊢ (𝐿 ∈ (1...(♯‘𝑊)) → 𝐿 ∈ (0...(♯‘𝑊))) |
7 | pfxlen 13865 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 prefix 𝐿)) = 𝐿) | |
8 | 6, 7 | sylan2 583 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ (1...(♯‘𝑊))) → (♯‘(𝑊 prefix 𝐿)) = 𝐿) |
9 | 8 | fvoveq1d 6998 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ (1...(♯‘𝑊))) → ((𝑊 prefix 𝐿)‘((♯‘(𝑊 prefix 𝐿)) − 1)) = ((𝑊 prefix 𝐿)‘(𝐿 − 1))) |
10 | simpl 475 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ (1...(♯‘𝑊))) → 𝑊 ∈ Word 𝑉) | |
11 | 6 | adantl 474 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ (1...(♯‘𝑊))) → 𝐿 ∈ (0...(♯‘𝑊))) |
12 | elfznn 12752 | . . . . 5 ⊢ (𝐿 ∈ (1...(♯‘𝑊)) → 𝐿 ∈ ℕ) | |
13 | fzo0end 12944 | . . . . 5 ⊢ (𝐿 ∈ ℕ → (𝐿 − 1) ∈ (0..^𝐿)) | |
14 | 12, 13 | syl 17 | . . . 4 ⊢ (𝐿 ∈ (1...(♯‘𝑊)) → (𝐿 − 1) ∈ (0..^𝐿)) |
15 | 14 | adantl 474 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ (1...(♯‘𝑊))) → (𝐿 − 1) ∈ (0..^𝐿)) |
16 | pfxfv 13864 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ (0...(♯‘𝑊)) ∧ (𝐿 − 1) ∈ (0..^𝐿)) → ((𝑊 prefix 𝐿)‘(𝐿 − 1)) = (𝑊‘(𝐿 − 1))) | |
17 | 10, 11, 15, 16 | syl3anc 1351 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ (1...(♯‘𝑊))) → ((𝑊 prefix 𝐿)‘(𝐿 − 1)) = (𝑊‘(𝐿 − 1))) |
18 | 4, 9, 17 | 3eqtrd 2819 | 1 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ (1...(♯‘𝑊))) → (lastS‘(𝑊 prefix 𝐿)) = (𝑊‘(𝐿 − 1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1507 ∈ wcel 2050 ‘cfv 6188 (class class class)co 6976 0cc0 10335 1c1 10336 − cmin 10670 ℕcn 11439 ...cfz 12708 ..^cfzo 12849 ♯chash 13505 Word cword 13672 lastSclsw 13725 prefix cpfx 13852 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2751 ax-rep 5049 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 ax-cnex 10391 ax-resscn 10392 ax-1cn 10393 ax-icn 10394 ax-addcl 10395 ax-addrcl 10396 ax-mulcl 10397 ax-mulrcl 10398 ax-mulcom 10399 ax-addass 10400 ax-mulass 10401 ax-distr 10402 ax-i2m1 10403 ax-1ne0 10404 ax-1rid 10405 ax-rnegex 10406 ax-rrecex 10407 ax-cnre 10408 ax-pre-lttri 10409 ax-pre-lttrn 10410 ax-pre-ltadd 10411 ax-pre-mulgt0 10412 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2760 df-cleq 2772 df-clel 2847 df-nfc 2919 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3418 df-sbc 3683 df-csb 3788 df-dif 3833 df-un 3835 df-in 3837 df-ss 3844 df-pss 3846 df-nul 4180 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-tp 4446 df-op 4448 df-uni 4713 df-int 4750 df-iun 4794 df-br 4930 df-opab 4992 df-mpt 5009 df-tr 5031 df-id 5312 df-eprel 5317 df-po 5326 df-so 5327 df-fr 5366 df-we 5368 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-pred 5986 df-ord 6032 df-on 6033 df-lim 6034 df-suc 6035 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-riota 6937 df-ov 6979 df-oprab 6980 df-mpo 6981 df-om 7397 df-1st 7501 df-2nd 7502 df-wrecs 7750 df-recs 7812 df-rdg 7850 df-1o 7905 df-er 8089 df-en 8307 df-dom 8308 df-sdom 8309 df-fin 8310 df-card 9162 df-pnf 10476 df-mnf 10477 df-xr 10478 df-ltxr 10479 df-le 10480 df-sub 10672 df-neg 10673 df-nn 11440 df-n0 11708 df-z 11794 df-uz 12059 df-fz 12709 df-fzo 12850 df-hash 13506 df-word 13673 df-lsw 13726 df-substr 13804 df-pfx 13853 |
This theorem is referenced by: pfxtrcfvl 13879 wwlksnredwwlkn 27384 wwlksnextproplem2 27411 clwwlkinwwlk 27555 clwwlkf 27569 numclwlk2lem2f 27930 |
Copyright terms: Public domain | W3C validator |