MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsw1 Structured version   Visualization version   GIF version

Theorem lsw1 14539
Description: The last symbol of a word of length 1 is the first symbol of this word. (Contributed by Alexander van der Vekens, 19-Mar-2018.)
Assertion
Ref Expression
lsw1 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 1) → (lastS‘𝑊) = (𝑊‘0))

Proof of Theorem lsw1
StepHypRef Expression
1 lsw 14536 . 2 (𝑊 ∈ Word 𝑉 → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1)))
2 oveq1 7397 . . . 4 ((♯‘𝑊) = 1 → ((♯‘𝑊) − 1) = (1 − 1))
3 1m1e0 12265 . . . 4 (1 − 1) = 0
42, 3eqtrdi 2781 . . 3 ((♯‘𝑊) = 1 → ((♯‘𝑊) − 1) = 0)
54fveq2d 6865 . 2 ((♯‘𝑊) = 1 → (𝑊‘((♯‘𝑊) − 1)) = (𝑊‘0))
61, 5sylan9eq 2785 1 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 1) → (lastS‘𝑊) = (𝑊‘0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cfv 6514  (class class class)co 7390  0cc0 11075  1c1 11076  cmin 11412  chash 14302  Word cword 14485  lastSclsw 14534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-ltxr 11220  df-sub 11414  df-lsw 14535
This theorem is referenced by:  lsws1  14583  clwwlk1loop  29924  clwwlkn1  29977
  Copyright terms: Public domain W3C validator