![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lsws2 | Structured version Visualization version GIF version |
Description: The last symbol of a doubleton word is its second symbol. (Contributed by AV, 8-Feb-2021.) |
Ref | Expression |
---|---|
lsws2 | ⊢ (𝐵 ∈ 𝑉 → (lastS‘〈“𝐴𝐵”〉) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | s2cli 13969 | . . 3 ⊢ 〈“𝐴𝐵”〉 ∈ Word V | |
2 | lsw 13588 | . . 3 ⊢ (〈“𝐴𝐵”〉 ∈ Word V → (lastS‘〈“𝐴𝐵”〉) = (〈“𝐴𝐵”〉‘((♯‘〈“𝐴𝐵”〉) − 1))) | |
3 | 1, 2 | mp1i 13 | . 2 ⊢ (𝐵 ∈ 𝑉 → (lastS‘〈“𝐴𝐵”〉) = (〈“𝐴𝐵”〉‘((♯‘〈“𝐴𝐵”〉) − 1))) |
4 | s2len 13978 | . . . . . 6 ⊢ (♯‘〈“𝐴𝐵”〉) = 2 | |
5 | 4 | oveq1i 6892 | . . . . 5 ⊢ ((♯‘〈“𝐴𝐵”〉) − 1) = (2 − 1) |
6 | 2m1e1 11450 | . . . . 5 ⊢ (2 − 1) = 1 | |
7 | 5, 6 | eqtri 2825 | . . . 4 ⊢ ((♯‘〈“𝐴𝐵”〉) − 1) = 1 |
8 | 7 | fveq2i 6418 | . . 3 ⊢ (〈“𝐴𝐵”〉‘((♯‘〈“𝐴𝐵”〉) − 1)) = (〈“𝐴𝐵”〉‘1) |
9 | 8 | a1i 11 | . 2 ⊢ (𝐵 ∈ 𝑉 → (〈“𝐴𝐵”〉‘((♯‘〈“𝐴𝐵”〉) − 1)) = (〈“𝐴𝐵”〉‘1)) |
10 | s2fv1 13977 | . 2 ⊢ (𝐵 ∈ 𝑉 → (〈“𝐴𝐵”〉‘1) = 𝐵) | |
11 | 3, 9, 10 | 3eqtrd 2841 | 1 ⊢ (𝐵 ∈ 𝑉 → (lastS‘〈“𝐴𝐵”〉) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1653 ∈ wcel 2157 Vcvv 3389 ‘cfv 6105 (class class class)co 6882 1c1 10229 − cmin 10560 2c2 11372 ♯chash 13374 Word cword 13538 lastSclsw 13586 〈“cs2 13930 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2379 ax-ext 2781 ax-rep 4968 ax-sep 4979 ax-nul 4987 ax-pow 5039 ax-pr 5101 ax-un 7187 ax-cnex 10284 ax-resscn 10285 ax-1cn 10286 ax-icn 10287 ax-addcl 10288 ax-addrcl 10289 ax-mulcl 10290 ax-mulrcl 10291 ax-mulcom 10292 ax-addass 10293 ax-mulass 10294 ax-distr 10295 ax-i2m1 10296 ax-1ne0 10297 ax-1rid 10298 ax-rnegex 10299 ax-rrecex 10300 ax-cnre 10301 ax-pre-lttri 10302 ax-pre-lttrn 10303 ax-pre-ltadd 10304 ax-pre-mulgt0 10305 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2593 df-eu 2611 df-clab 2790 df-cleq 2796 df-clel 2799 df-nfc 2934 df-ne 2976 df-nel 3079 df-ral 3098 df-rex 3099 df-reu 3100 df-rab 3102 df-v 3391 df-sbc 3638 df-csb 3733 df-dif 3776 df-un 3778 df-in 3780 df-ss 3787 df-pss 3789 df-nul 4120 df-if 4282 df-pw 4355 df-sn 4373 df-pr 4375 df-tp 4377 df-op 4379 df-uni 4633 df-int 4672 df-iun 4716 df-br 4848 df-opab 4910 df-mpt 4927 df-tr 4950 df-id 5224 df-eprel 5229 df-po 5237 df-so 5238 df-fr 5275 df-we 5277 df-xp 5322 df-rel 5323 df-cnv 5324 df-co 5325 df-dm 5326 df-rn 5327 df-res 5328 df-ima 5329 df-pred 5902 df-ord 5948 df-on 5949 df-lim 5950 df-suc 5951 df-iota 6068 df-fun 6107 df-fn 6108 df-f 6109 df-f1 6110 df-fo 6111 df-f1o 6112 df-fv 6113 df-riota 6843 df-ov 6885 df-oprab 6886 df-mpt2 6887 df-om 7304 df-1st 7405 df-2nd 7406 df-wrecs 7649 df-recs 7711 df-rdg 7749 df-1o 7803 df-oadd 7807 df-er 7986 df-en 8200 df-dom 8201 df-sdom 8202 df-fin 8203 df-card 9055 df-pnf 10369 df-mnf 10370 df-xr 10371 df-ltxr 10372 df-le 10373 df-sub 10562 df-neg 10563 df-nn 11317 df-2 11380 df-n0 11585 df-z 11671 df-uz 11935 df-fz 12585 df-fzo 12725 df-hash 13375 df-word 13539 df-lsw 13587 df-concat 13595 df-s1 13620 df-s2 13937 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |