| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2736 |
. . . . 5
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
| 2 | | wwlksnextprop.e |
. . . . 5
⊢ 𝐸 = (Edg‘𝐺) |
| 3 | 1, 2 | wwlknp 29830 |
. . . 4
⊢ (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)) |
| 4 | | fzonn0p1 13763 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈ (0..^(𝑁 + 1))) |
| 5 | 4 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ (0..^(𝑁 + 1))) |
| 6 | | fveq2 6881 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝑁 → (𝑊‘𝑖) = (𝑊‘𝑁)) |
| 7 | | fvoveq1 7433 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝑁 → (𝑊‘(𝑖 + 1)) = (𝑊‘(𝑁 + 1))) |
| 8 | 6, 7 | preq12d 4722 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑁 → {(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} = {(𝑊‘𝑁), (𝑊‘(𝑁 + 1))}) |
| 9 | 8 | eleq1d 2820 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑁 → ({(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ↔ {(𝑊‘𝑁), (𝑊‘(𝑁 + 1))} ∈ 𝐸)) |
| 10 | 9 | rspcv 3602 |
. . . . . . . . . 10
⊢ (𝑁 ∈ (0..^(𝑁 + 1)) → (∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 → {(𝑊‘𝑁), (𝑊‘(𝑁 + 1))} ∈ 𝐸)) |
| 11 | 5, 10 | syl 17 |
. . . . . . . . 9
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) →
(∀𝑖 ∈
(0..^(𝑁 + 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 → {(𝑊‘𝑁), (𝑊‘(𝑁 + 1))} ∈ 𝐸)) |
| 12 | 11 | imp 406 |
. . . . . . . 8
⊢ ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) ∧
∀𝑖 ∈
(0..^(𝑁 + 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) → {(𝑊‘𝑁), (𝑊‘(𝑁 + 1))} ∈ 𝐸) |
| 13 | | simpll 766 |
. . . . . . . . . . . . 13
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → 𝑊 ∈ Word (Vtx‘𝐺)) |
| 14 | | 1zzd 12628 |
. . . . . . . . . . . . . 14
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → 1 ∈
ℤ) |
| 15 | | lencl 14556 |
. . . . . . . . . . . . . . . 16
⊢ (𝑊 ∈ Word (Vtx‘𝐺) → (♯‘𝑊) ∈
ℕ0) |
| 16 | 15 | nn0zd 12619 |
. . . . . . . . . . . . . . 15
⊢ (𝑊 ∈ Word (Vtx‘𝐺) → (♯‘𝑊) ∈
ℤ) |
| 17 | 16 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) →
(♯‘𝑊) ∈
ℤ) |
| 18 | | peano2nn0 12546 |
. . . . . . . . . . . . . . . 16
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℕ0) |
| 19 | 18 | nn0zd 12619 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℤ) |
| 20 | 19 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ∈
ℤ) |
| 21 | | nn0ge0 12531 |
. . . . . . . . . . . . . . . 16
⊢ (𝑁 ∈ ℕ0
→ 0 ≤ 𝑁) |
| 22 | | 1red 11241 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑁 ∈ ℕ0
→ 1 ∈ ℝ) |
| 23 | | nn0re 12515 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℝ) |
| 24 | 22, 23 | addge02d 11831 |
. . . . . . . . . . . . . . . 16
⊢ (𝑁 ∈ ℕ0
→ (0 ≤ 𝑁 ↔ 1
≤ (𝑁 +
1))) |
| 25 | 21, 24 | mpbid 232 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈ ℕ0
→ 1 ≤ (𝑁 +
1)) |
| 26 | 25 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → 1 ≤
(𝑁 + 1)) |
| 27 | 18 | nn0red 12568 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℝ) |
| 28 | 27 | lep1d 12178 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ≤ ((𝑁 + 1) + 1)) |
| 29 | | breq2 5128 |
. . . . . . . . . . . . . . . . . . 19
⊢
((♯‘𝑊) =
((𝑁 + 1) + 1) →
((𝑁 + 1) ≤
(♯‘𝑊) ↔
(𝑁 + 1) ≤ ((𝑁 + 1) + 1))) |
| 30 | 28, 29 | syl5ibrcom 247 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑁 ∈ ℕ0
→ ((♯‘𝑊) =
((𝑁 + 1) + 1) → (𝑁 + 1) ≤ (♯‘𝑊))) |
| 31 | 30 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢
((♯‘𝑊)
∈ ℕ0 → (𝑁 ∈ ℕ0 →
((♯‘𝑊) =
((𝑁 + 1) + 1) → (𝑁 + 1) ≤ (♯‘𝑊)))) |
| 32 | 31 | com23 86 |
. . . . . . . . . . . . . . . 16
⊢
((♯‘𝑊)
∈ ℕ0 → ((♯‘𝑊) = ((𝑁 + 1) + 1) → (𝑁 ∈ ℕ0 → (𝑁 + 1) ≤ (♯‘𝑊)))) |
| 33 | 15, 32 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝑊 ∈ Word (Vtx‘𝐺) → ((♯‘𝑊) = ((𝑁 + 1) + 1) → (𝑁 ∈ ℕ0 → (𝑁 + 1) ≤ (♯‘𝑊)))) |
| 34 | 33 | imp31 417 |
. . . . . . . . . . . . . 14
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ≤ (♯‘𝑊)) |
| 35 | 14, 17, 20, 26, 34 | elfzd 13537 |
. . . . . . . . . . . . 13
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ∈
(1...(♯‘𝑊))) |
| 36 | | pfxfvlsw 14718 |
. . . . . . . . . . . . 13
⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (1...(♯‘𝑊))) → (lastS‘(𝑊 prefix (𝑁 + 1))) = (𝑊‘((𝑁 + 1) − 1))) |
| 37 | 13, 35, 36 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) →
(lastS‘(𝑊 prefix
(𝑁 + 1))) = (𝑊‘((𝑁 + 1) − 1))) |
| 38 | | nn0cn 12516 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℂ) |
| 39 | | 1cnd 11235 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈ ℕ0
→ 1 ∈ ℂ) |
| 40 | 38, 39 | pncand 11600 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ ℕ0
→ ((𝑁 + 1) − 1)
= 𝑁) |
| 41 | 40 | fveq2d 6885 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℕ0
→ (𝑊‘((𝑁 + 1) − 1)) = (𝑊‘𝑁)) |
| 42 | 41 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (𝑊‘((𝑁 + 1) − 1)) = (𝑊‘𝑁)) |
| 43 | 37, 42 | eqtrd 2771 |
. . . . . . . . . . 11
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) →
(lastS‘(𝑊 prefix
(𝑁 + 1))) = (𝑊‘𝑁)) |
| 44 | | lsw 14587 |
. . . . . . . . . . . . 13
⊢ (𝑊 ∈ Word (Vtx‘𝐺) → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1))) |
| 45 | 44 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) →
(lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1))) |
| 46 | | fvoveq1 7433 |
. . . . . . . . . . . . . 14
⊢
((♯‘𝑊) =
((𝑁 + 1) + 1) → (𝑊‘((♯‘𝑊) − 1)) = (𝑊‘(((𝑁 + 1) + 1) − 1))) |
| 47 | 46 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → (𝑊‘((♯‘𝑊) − 1)) = (𝑊‘(((𝑁 + 1) + 1) − 1))) |
| 48 | 18 | nn0cnd 12569 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℂ) |
| 49 | 48, 39 | pncand 11600 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ ℕ0
→ (((𝑁 + 1) + 1)
− 1) = (𝑁 +
1)) |
| 50 | 49 | fveq2d 6885 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℕ0
→ (𝑊‘(((𝑁 + 1) + 1) − 1)) = (𝑊‘(𝑁 + 1))) |
| 51 | 47, 50 | sylan9eq 2791 |
. . . . . . . . . . . 12
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (𝑊‘((♯‘𝑊) − 1)) = (𝑊‘(𝑁 + 1))) |
| 52 | 45, 51 | eqtrd 2771 |
. . . . . . . . . . 11
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) →
(lastS‘𝑊) = (𝑊‘(𝑁 + 1))) |
| 53 | 43, 52 | preq12d 4722 |
. . . . . . . . . 10
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) →
{(lastS‘(𝑊 prefix
(𝑁 + 1))),
(lastS‘𝑊)} = {(𝑊‘𝑁), (𝑊‘(𝑁 + 1))}) |
| 54 | 53 | eleq1d 2820 |
. . . . . . . . 9
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) →
({(lastS‘(𝑊 prefix
(𝑁 + 1))),
(lastS‘𝑊)} ∈
𝐸 ↔ {(𝑊‘𝑁), (𝑊‘(𝑁 + 1))} ∈ 𝐸)) |
| 55 | 54 | adantr 480 |
. . . . . . . 8
⊢ ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) ∧
∀𝑖 ∈
(0..^(𝑁 + 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) → ({(lastS‘(𝑊 prefix (𝑁 + 1))), (lastS‘𝑊)} ∈ 𝐸 ↔ {(𝑊‘𝑁), (𝑊‘(𝑁 + 1))} ∈ 𝐸)) |
| 56 | 12, 55 | mpbird 257 |
. . . . . . 7
⊢ ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) ∧
∀𝑖 ∈
(0..^(𝑁 + 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) → {(lastS‘(𝑊 prefix (𝑁 + 1))), (lastS‘𝑊)} ∈ 𝐸) |
| 57 | 56 | exp31 419 |
. . . . . 6
⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → (𝑁 ∈ ℕ0 →
(∀𝑖 ∈
(0..^(𝑁 + 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 → {(lastS‘(𝑊 prefix (𝑁 + 1))), (lastS‘𝑊)} ∈ 𝐸))) |
| 58 | 57 | com23 86 |
. . . . 5
⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → (∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 → (𝑁 ∈ ℕ0 →
{(lastS‘(𝑊 prefix
(𝑁 + 1))),
(lastS‘𝑊)} ∈
𝐸))) |
| 59 | 58 | 3impia 1117 |
. . . 4
⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) → (𝑁 ∈ ℕ0 →
{(lastS‘(𝑊 prefix
(𝑁 + 1))),
(lastS‘𝑊)} ∈
𝐸)) |
| 60 | 3, 59 | syl 17 |
. . 3
⊢ (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑁 ∈ ℕ0 →
{(lastS‘(𝑊 prefix
(𝑁 + 1))),
(lastS‘𝑊)} ∈
𝐸)) |
| 61 | | wwlksnextprop.x |
. . 3
⊢ 𝑋 = ((𝑁 + 1) WWalksN 𝐺) |
| 62 | 60, 61 | eleq2s 2853 |
. 2
⊢ (𝑊 ∈ 𝑋 → (𝑁 ∈ ℕ0 →
{(lastS‘(𝑊 prefix
(𝑁 + 1))),
(lastS‘𝑊)} ∈
𝐸)) |
| 63 | 62 | imp 406 |
1
⊢ ((𝑊 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0) →
{(lastS‘(𝑊 prefix
(𝑁 + 1))),
(lastS‘𝑊)} ∈
𝐸) |