MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksnextproplem2 Structured version   Visualization version   GIF version

Theorem wwlksnextproplem2 29897
Description: Lemma 2 for wwlksnextprop 29899. (Contributed by Alexander van der Vekens, 1-Aug-2018.) (Revised by AV, 20-Apr-2021.) (Revised by AV, 29-Oct-2022.)
Hypotheses
Ref Expression
wwlksnextprop.x 𝑋 = ((𝑁 + 1) WWalksN 𝐺)
wwlksnextprop.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
wwlksnextproplem2 ((𝑊𝑋𝑁 ∈ ℕ0) → {(lastS‘(𝑊 prefix (𝑁 + 1))), (lastS‘𝑊)} ∈ 𝐸)

Proof of Theorem wwlksnextproplem2
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . . . 5 (Vtx‘𝐺) = (Vtx‘𝐺)
2 wwlksnextprop.e . . . . 5 𝐸 = (Edg‘𝐺)
31, 2wwlknp 29830 . . . 4 (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸))
4 fzonn0p1 13763 . . . . . . . . . . 11 (𝑁 ∈ ℕ0𝑁 ∈ (0..^(𝑁 + 1)))
54adantl 481 . . . . . . . . . 10 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ (0..^(𝑁 + 1)))
6 fveq2 6881 . . . . . . . . . . . . 13 (𝑖 = 𝑁 → (𝑊𝑖) = (𝑊𝑁))
7 fvoveq1 7433 . . . . . . . . . . . . 13 (𝑖 = 𝑁 → (𝑊‘(𝑖 + 1)) = (𝑊‘(𝑁 + 1)))
86, 7preq12d 4722 . . . . . . . . . . . 12 (𝑖 = 𝑁 → {(𝑊𝑖), (𝑊‘(𝑖 + 1))} = {(𝑊𝑁), (𝑊‘(𝑁 + 1))})
98eleq1d 2820 . . . . . . . . . . 11 (𝑖 = 𝑁 → ({(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ↔ {(𝑊𝑁), (𝑊‘(𝑁 + 1))} ∈ 𝐸))
109rspcv 3602 . . . . . . . . . 10 (𝑁 ∈ (0..^(𝑁 + 1)) → (∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 → {(𝑊𝑁), (𝑊‘(𝑁 + 1))} ∈ 𝐸))
115, 10syl 17 . . . . . . . . 9 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 → {(𝑊𝑁), (𝑊‘(𝑁 + 1))} ∈ 𝐸))
1211imp 406 . . . . . . . 8 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) → {(𝑊𝑁), (𝑊‘(𝑁 + 1))} ∈ 𝐸)
13 simpll 766 . . . . . . . . . . . . 13 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → 𝑊 ∈ Word (Vtx‘𝐺))
14 1zzd 12628 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → 1 ∈ ℤ)
15 lencl 14556 . . . . . . . . . . . . . . . 16 (𝑊 ∈ Word (Vtx‘𝐺) → (♯‘𝑊) ∈ ℕ0)
1615nn0zd 12619 . . . . . . . . . . . . . . 15 (𝑊 ∈ Word (Vtx‘𝐺) → (♯‘𝑊) ∈ ℤ)
1716ad2antrr 726 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (♯‘𝑊) ∈ ℤ)
18 peano2nn0 12546 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
1918nn0zd 12619 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℤ)
2019adantl 481 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ ℤ)
21 nn0ge0 12531 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
22 1red 11241 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ0 → 1 ∈ ℝ)
23 nn0re 12515 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
2422, 23addge02d 11831 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ0 → (0 ≤ 𝑁 ↔ 1 ≤ (𝑁 + 1)))
2521, 24mpbid 232 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0 → 1 ≤ (𝑁 + 1))
2625adantl 481 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → 1 ≤ (𝑁 + 1))
2718nn0red 12568 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℝ)
2827lep1d 12178 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0 → (𝑁 + 1) ≤ ((𝑁 + 1) + 1))
29 breq2 5128 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝑊) = ((𝑁 + 1) + 1) → ((𝑁 + 1) ≤ (♯‘𝑊) ↔ (𝑁 + 1) ≤ ((𝑁 + 1) + 1)))
3028, 29syl5ibrcom 247 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0 → ((♯‘𝑊) = ((𝑁 + 1) + 1) → (𝑁 + 1) ≤ (♯‘𝑊)))
3130a1i 11 . . . . . . . . . . . . . . . . 17 ((♯‘𝑊) ∈ ℕ0 → (𝑁 ∈ ℕ0 → ((♯‘𝑊) = ((𝑁 + 1) + 1) → (𝑁 + 1) ≤ (♯‘𝑊))))
3231com23 86 . . . . . . . . . . . . . . . 16 ((♯‘𝑊) ∈ ℕ0 → ((♯‘𝑊) = ((𝑁 + 1) + 1) → (𝑁 ∈ ℕ0 → (𝑁 + 1) ≤ (♯‘𝑊))))
3315, 32syl 17 . . . . . . . . . . . . . . 15 (𝑊 ∈ Word (Vtx‘𝐺) → ((♯‘𝑊) = ((𝑁 + 1) + 1) → (𝑁 ∈ ℕ0 → (𝑁 + 1) ≤ (♯‘𝑊))))
3433imp31 417 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ≤ (♯‘𝑊))
3514, 17, 20, 26, 34elfzd 13537 . . . . . . . . . . . . 13 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ (1...(♯‘𝑊)))
36 pfxfvlsw 14718 . . . . . . . . . . . . 13 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (1...(♯‘𝑊))) → (lastS‘(𝑊 prefix (𝑁 + 1))) = (𝑊‘((𝑁 + 1) − 1)))
3713, 35, 36syl2anc 584 . . . . . . . . . . . 12 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (lastS‘(𝑊 prefix (𝑁 + 1))) = (𝑊‘((𝑁 + 1) − 1)))
38 nn0cn 12516 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
39 1cnd 11235 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0 → 1 ∈ ℂ)
4038, 39pncand 11600 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → ((𝑁 + 1) − 1) = 𝑁)
4140fveq2d 6885 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → (𝑊‘((𝑁 + 1) − 1)) = (𝑊𝑁))
4241adantl 481 . . . . . . . . . . . 12 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (𝑊‘((𝑁 + 1) − 1)) = (𝑊𝑁))
4337, 42eqtrd 2771 . . . . . . . . . . 11 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (lastS‘(𝑊 prefix (𝑁 + 1))) = (𝑊𝑁))
44 lsw 14587 . . . . . . . . . . . . 13 (𝑊 ∈ Word (Vtx‘𝐺) → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1)))
4544ad2antrr 726 . . . . . . . . . . . 12 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1)))
46 fvoveq1 7433 . . . . . . . . . . . . . 14 ((♯‘𝑊) = ((𝑁 + 1) + 1) → (𝑊‘((♯‘𝑊) − 1)) = (𝑊‘(((𝑁 + 1) + 1) − 1)))
4746adantl 481 . . . . . . . . . . . . 13 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → (𝑊‘((♯‘𝑊) − 1)) = (𝑊‘(((𝑁 + 1) + 1) − 1)))
4818nn0cnd 12569 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℂ)
4948, 39pncand 11600 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → (((𝑁 + 1) + 1) − 1) = (𝑁 + 1))
5049fveq2d 6885 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → (𝑊‘(((𝑁 + 1) + 1) − 1)) = (𝑊‘(𝑁 + 1)))
5147, 50sylan9eq 2791 . . . . . . . . . . . 12 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (𝑊‘((♯‘𝑊) − 1)) = (𝑊‘(𝑁 + 1)))
5245, 51eqtrd 2771 . . . . . . . . . . 11 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (lastS‘𝑊) = (𝑊‘(𝑁 + 1)))
5343, 52preq12d 4722 . . . . . . . . . 10 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → {(lastS‘(𝑊 prefix (𝑁 + 1))), (lastS‘𝑊)} = {(𝑊𝑁), (𝑊‘(𝑁 + 1))})
5453eleq1d 2820 . . . . . . . . 9 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → ({(lastS‘(𝑊 prefix (𝑁 + 1))), (lastS‘𝑊)} ∈ 𝐸 ↔ {(𝑊𝑁), (𝑊‘(𝑁 + 1))} ∈ 𝐸))
5554adantr 480 . . . . . . . 8 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) → ({(lastS‘(𝑊 prefix (𝑁 + 1))), (lastS‘𝑊)} ∈ 𝐸 ↔ {(𝑊𝑁), (𝑊‘(𝑁 + 1))} ∈ 𝐸))
5612, 55mpbird 257 . . . . . . 7 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) → {(lastS‘(𝑊 prefix (𝑁 + 1))), (lastS‘𝑊)} ∈ 𝐸)
5756exp31 419 . . . . . 6 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → (𝑁 ∈ ℕ0 → (∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 → {(lastS‘(𝑊 prefix (𝑁 + 1))), (lastS‘𝑊)} ∈ 𝐸)))
5857com23 86 . . . . 5 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → (∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 → (𝑁 ∈ ℕ0 → {(lastS‘(𝑊 prefix (𝑁 + 1))), (lastS‘𝑊)} ∈ 𝐸)))
59583impia 1117 . . . 4 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) → (𝑁 ∈ ℕ0 → {(lastS‘(𝑊 prefix (𝑁 + 1))), (lastS‘𝑊)} ∈ 𝐸))
603, 59syl 17 . . 3 (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑁 ∈ ℕ0 → {(lastS‘(𝑊 prefix (𝑁 + 1))), (lastS‘𝑊)} ∈ 𝐸))
61 wwlksnextprop.x . . 3 𝑋 = ((𝑁 + 1) WWalksN 𝐺)
6260, 61eleq2s 2853 . 2 (𝑊𝑋 → (𝑁 ∈ ℕ0 → {(lastS‘(𝑊 prefix (𝑁 + 1))), (lastS‘𝑊)} ∈ 𝐸))
6362imp 406 1 ((𝑊𝑋𝑁 ∈ ℕ0) → {(lastS‘(𝑊 prefix (𝑁 + 1))), (lastS‘𝑊)} ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3052  {cpr 4608   class class class wbr 5124  cfv 6536  (class class class)co 7410  0cc0 11134  1c1 11135   + caddc 11137  cle 11275  cmin 11471  0cn0 12506  cz 12593  ...cfz 13529  ..^cfzo 13676  chash 14353  Word cword 14536  lastSclsw 14585   prefix cpfx 14693  Vtxcvtx 28980  Edgcedg 29031   WWalksN cwwlksn 29813
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530  df-fzo 13677  df-hash 14354  df-word 14537  df-lsw 14586  df-substr 14664  df-pfx 14694  df-wwlks 29817  df-wwlksn 29818
This theorem is referenced by:  wwlksnextprop  29899
  Copyright terms: Public domain W3C validator