MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksnextproplem2 Structured version   Visualization version   GIF version

Theorem wwlksnextproplem2 27694
Description: Lemma 2 for wwlksnextprop 27696. (Contributed by Alexander van der Vekens, 1-Aug-2018.) (Revised by AV, 20-Apr-2021.) (Revised by AV, 29-Oct-2022.)
Hypotheses
Ref Expression
wwlksnextprop.x 𝑋 = ((𝑁 + 1) WWalksN 𝐺)
wwlksnextprop.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
wwlksnextproplem2 ((𝑊𝑋𝑁 ∈ ℕ0) → {(lastS‘(𝑊 prefix (𝑁 + 1))), (lastS‘𝑊)} ∈ 𝐸)

Proof of Theorem wwlksnextproplem2
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 eqid 2822 . . . . 5 (Vtx‘𝐺) = (Vtx‘𝐺)
2 wwlksnextprop.e . . . . 5 𝐸 = (Edg‘𝐺)
31, 2wwlknp 27627 . . . 4 (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸))
4 fzonn0p1 13109 . . . . . . . . . . 11 (𝑁 ∈ ℕ0𝑁 ∈ (0..^(𝑁 + 1)))
54adantl 485 . . . . . . . . . 10 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ (0..^(𝑁 + 1)))
6 fveq2 6652 . . . . . . . . . . . . 13 (𝑖 = 𝑁 → (𝑊𝑖) = (𝑊𝑁))
7 fvoveq1 7163 . . . . . . . . . . . . 13 (𝑖 = 𝑁 → (𝑊‘(𝑖 + 1)) = (𝑊‘(𝑁 + 1)))
86, 7preq12d 4651 . . . . . . . . . . . 12 (𝑖 = 𝑁 → {(𝑊𝑖), (𝑊‘(𝑖 + 1))} = {(𝑊𝑁), (𝑊‘(𝑁 + 1))})
98eleq1d 2898 . . . . . . . . . . 11 (𝑖 = 𝑁 → ({(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ↔ {(𝑊𝑁), (𝑊‘(𝑁 + 1))} ∈ 𝐸))
109rspcv 3593 . . . . . . . . . 10 (𝑁 ∈ (0..^(𝑁 + 1)) → (∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 → {(𝑊𝑁), (𝑊‘(𝑁 + 1))} ∈ 𝐸))
115, 10syl 17 . . . . . . . . 9 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 → {(𝑊𝑁), (𝑊‘(𝑁 + 1))} ∈ 𝐸))
1211imp 410 . . . . . . . 8 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) → {(𝑊𝑁), (𝑊‘(𝑁 + 1))} ∈ 𝐸)
13 simpll 766 . . . . . . . . . . . . 13 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → 𝑊 ∈ Word (Vtx‘𝐺))
14 1zzd 12001 . . . . . . . . . . . . . . 15 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → 1 ∈ ℤ)
15 lencl 13876 . . . . . . . . . . . . . . . . 17 (𝑊 ∈ Word (Vtx‘𝐺) → (♯‘𝑊) ∈ ℕ0)
1615nn0zd 12073 . . . . . . . . . . . . . . . 16 (𝑊 ∈ Word (Vtx‘𝐺) → (♯‘𝑊) ∈ ℤ)
1716ad2antrr 725 . . . . . . . . . . . . . . 15 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (♯‘𝑊) ∈ ℤ)
18 peano2nn0 11925 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
1918nn0zd 12073 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℤ)
2019adantl 485 . . . . . . . . . . . . . . 15 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ ℤ)
2114, 17, 203jca 1125 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (1 ∈ ℤ ∧ (♯‘𝑊) ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ))
22 nn0ge0 11910 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
23 1red 10631 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0 → 1 ∈ ℝ)
24 nn0re 11894 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
2523, 24addge02d 11218 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ0 → (0 ≤ 𝑁 ↔ 1 ≤ (𝑁 + 1)))
2622, 25mpbid 235 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ0 → 1 ≤ (𝑁 + 1))
2726adantl 485 . . . . . . . . . . . . . . 15 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → 1 ≤ (𝑁 + 1))
2818nn0red 11944 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℝ)
2928lep1d 11560 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ0 → (𝑁 + 1) ≤ ((𝑁 + 1) + 1))
30 breq2 5046 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝑊) = ((𝑁 + 1) + 1) → ((𝑁 + 1) ≤ (♯‘𝑊) ↔ (𝑁 + 1) ≤ ((𝑁 + 1) + 1)))
3129, 30syl5ibrcom 250 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0 → ((♯‘𝑊) = ((𝑁 + 1) + 1) → (𝑁 + 1) ≤ (♯‘𝑊)))
3231a1i 11 . . . . . . . . . . . . . . . . . 18 ((♯‘𝑊) ∈ ℕ0 → (𝑁 ∈ ℕ0 → ((♯‘𝑊) = ((𝑁 + 1) + 1) → (𝑁 + 1) ≤ (♯‘𝑊))))
3332com23 86 . . . . . . . . . . . . . . . . 17 ((♯‘𝑊) ∈ ℕ0 → ((♯‘𝑊) = ((𝑁 + 1) + 1) → (𝑁 ∈ ℕ0 → (𝑁 + 1) ≤ (♯‘𝑊))))
3415, 33syl 17 . . . . . . . . . . . . . . . 16 (𝑊 ∈ Word (Vtx‘𝐺) → ((♯‘𝑊) = ((𝑁 + 1) + 1) → (𝑁 ∈ ℕ0 → (𝑁 + 1) ≤ (♯‘𝑊))))
3534imp31 421 . . . . . . . . . . . . . . 15 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ≤ (♯‘𝑊))
3627, 35jca 515 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (1 ≤ (𝑁 + 1) ∧ (𝑁 + 1) ≤ (♯‘𝑊)))
37 elfz2 12892 . . . . . . . . . . . . . 14 ((𝑁 + 1) ∈ (1...(♯‘𝑊)) ↔ ((1 ∈ ℤ ∧ (♯‘𝑊) ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ) ∧ (1 ≤ (𝑁 + 1) ∧ (𝑁 + 1) ≤ (♯‘𝑊))))
3821, 36, 37sylanbrc 586 . . . . . . . . . . . . 13 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ (1...(♯‘𝑊)))
39 pfxfvlsw 14048 . . . . . . . . . . . . 13 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (1...(♯‘𝑊))) → (lastS‘(𝑊 prefix (𝑁 + 1))) = (𝑊‘((𝑁 + 1) − 1)))
4013, 38, 39syl2anc 587 . . . . . . . . . . . 12 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (lastS‘(𝑊 prefix (𝑁 + 1))) = (𝑊‘((𝑁 + 1) − 1)))
41 nn0cn 11895 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
42 1cnd 10625 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0 → 1 ∈ ℂ)
4341, 42pncand 10987 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → ((𝑁 + 1) − 1) = 𝑁)
4443fveq2d 6656 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → (𝑊‘((𝑁 + 1) − 1)) = (𝑊𝑁))
4544adantl 485 . . . . . . . . . . . 12 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (𝑊‘((𝑁 + 1) − 1)) = (𝑊𝑁))
4640, 45eqtrd 2857 . . . . . . . . . . 11 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (lastS‘(𝑊 prefix (𝑁 + 1))) = (𝑊𝑁))
47 lsw 13907 . . . . . . . . . . . . 13 (𝑊 ∈ Word (Vtx‘𝐺) → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1)))
4847ad2antrr 725 . . . . . . . . . . . 12 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1)))
49 fvoveq1 7163 . . . . . . . . . . . . . 14 ((♯‘𝑊) = ((𝑁 + 1) + 1) → (𝑊‘((♯‘𝑊) − 1)) = (𝑊‘(((𝑁 + 1) + 1) − 1)))
5049adantl 485 . . . . . . . . . . . . 13 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → (𝑊‘((♯‘𝑊) − 1)) = (𝑊‘(((𝑁 + 1) + 1) − 1)))
5118nn0cnd 11945 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℂ)
5251, 42pncand 10987 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → (((𝑁 + 1) + 1) − 1) = (𝑁 + 1))
5352fveq2d 6656 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → (𝑊‘(((𝑁 + 1) + 1) − 1)) = (𝑊‘(𝑁 + 1)))
5450, 53sylan9eq 2877 . . . . . . . . . . . 12 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (𝑊‘((♯‘𝑊) − 1)) = (𝑊‘(𝑁 + 1)))
5548, 54eqtrd 2857 . . . . . . . . . . 11 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (lastS‘𝑊) = (𝑊‘(𝑁 + 1)))
5646, 55preq12d 4651 . . . . . . . . . 10 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → {(lastS‘(𝑊 prefix (𝑁 + 1))), (lastS‘𝑊)} = {(𝑊𝑁), (𝑊‘(𝑁 + 1))})
5756eleq1d 2898 . . . . . . . . 9 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → ({(lastS‘(𝑊 prefix (𝑁 + 1))), (lastS‘𝑊)} ∈ 𝐸 ↔ {(𝑊𝑁), (𝑊‘(𝑁 + 1))} ∈ 𝐸))
5857adantr 484 . . . . . . . 8 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) → ({(lastS‘(𝑊 prefix (𝑁 + 1))), (lastS‘𝑊)} ∈ 𝐸 ↔ {(𝑊𝑁), (𝑊‘(𝑁 + 1))} ∈ 𝐸))
5912, 58mpbird 260 . . . . . . 7 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) → {(lastS‘(𝑊 prefix (𝑁 + 1))), (lastS‘𝑊)} ∈ 𝐸)
6059exp31 423 . . . . . 6 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → (𝑁 ∈ ℕ0 → (∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 → {(lastS‘(𝑊 prefix (𝑁 + 1))), (lastS‘𝑊)} ∈ 𝐸)))
6160com23 86 . . . . 5 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → (∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 → (𝑁 ∈ ℕ0 → {(lastS‘(𝑊 prefix (𝑁 + 1))), (lastS‘𝑊)} ∈ 𝐸)))
62613impia 1114 . . . 4 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) → (𝑁 ∈ ℕ0 → {(lastS‘(𝑊 prefix (𝑁 + 1))), (lastS‘𝑊)} ∈ 𝐸))
633, 62syl 17 . . 3 (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑁 ∈ ℕ0 → {(lastS‘(𝑊 prefix (𝑁 + 1))), (lastS‘𝑊)} ∈ 𝐸))
64 wwlksnextprop.x . . 3 𝑋 = ((𝑁 + 1) WWalksN 𝐺)
6563, 64eleq2s 2932 . 2 (𝑊𝑋 → (𝑁 ∈ ℕ0 → {(lastS‘(𝑊 prefix (𝑁 + 1))), (lastS‘𝑊)} ∈ 𝐸))
6665imp 410 1 ((𝑊𝑋𝑁 ∈ ℕ0) → {(lastS‘(𝑊 prefix (𝑁 + 1))), (lastS‘𝑊)} ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2114  wral 3130  {cpr 4541   class class class wbr 5042  cfv 6334  (class class class)co 7140  0cc0 10526  1c1 10527   + caddc 10529  cle 10665  cmin 10859  0cn0 11885  cz 11969  ...cfz 12885  ..^cfzo 13028  chash 13686  Word cword 13857  lastSclsw 13905   prefix cpfx 14023  Vtxcvtx 26787  Edgcedg 26838   WWalksN cwwlksn 27610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-int 4852  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-card 9356  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-hash 13687  df-word 13858  df-lsw 13906  df-substr 13994  df-pfx 14024  df-wwlks 27614  df-wwlksn 27615
This theorem is referenced by:  wwlksnextprop  27696
  Copyright terms: Public domain W3C validator