![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lsw0 | Structured version Visualization version GIF version |
Description: The last symbol of an empty word does not exist. (Contributed by Alexander van der Vekens, 19-Mar-2018.) (Proof shortened by AV, 2-May-2020.) |
Ref | Expression |
---|---|
lsw0 | ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 0) → (lastS‘𝑊) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsw 13717 | . . 3 ⊢ (𝑊 ∈ Word 𝑉 → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1))) | |
2 | 1 | adantr 473 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 0) → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1))) |
3 | fvoveq1 6993 | . . 3 ⊢ ((♯‘𝑊) = 0 → (𝑊‘((♯‘𝑊) − 1)) = (𝑊‘(0 − 1))) | |
4 | wrddm 13669 | . . . 4 ⊢ (𝑊 ∈ Word 𝑉 → dom 𝑊 = (0..^(♯‘𝑊))) | |
5 | 1nn 11444 | . . . . . . . 8 ⊢ 1 ∈ ℕ | |
6 | nnnle0 11466 | . . . . . . . 8 ⊢ (1 ∈ ℕ → ¬ 1 ≤ 0) | |
7 | 5, 6 | ax-mp 5 | . . . . . . 7 ⊢ ¬ 1 ≤ 0 |
8 | 0re 10433 | . . . . . . . 8 ⊢ 0 ∈ ℝ | |
9 | 1re 10431 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
10 | 8, 9 | subge0i 10986 | . . . . . . 7 ⊢ (0 ≤ (0 − 1) ↔ 1 ≤ 0) |
11 | 7, 10 | mtbir 315 | . . . . . 6 ⊢ ¬ 0 ≤ (0 − 1) |
12 | elfzole1 12855 | . . . . . 6 ⊢ ((0 − 1) ∈ (0..^(♯‘𝑊)) → 0 ≤ (0 − 1)) | |
13 | 11, 12 | mto 189 | . . . . 5 ⊢ ¬ (0 − 1) ∈ (0..^(♯‘𝑊)) |
14 | eleq2 2848 | . . . . 5 ⊢ (dom 𝑊 = (0..^(♯‘𝑊)) → ((0 − 1) ∈ dom 𝑊 ↔ (0 − 1) ∈ (0..^(♯‘𝑊)))) | |
15 | 13, 14 | mtbiri 319 | . . . 4 ⊢ (dom 𝑊 = (0..^(♯‘𝑊)) → ¬ (0 − 1) ∈ dom 𝑊) |
16 | ndmfv 6523 | . . . 4 ⊢ (¬ (0 − 1) ∈ dom 𝑊 → (𝑊‘(0 − 1)) = ∅) | |
17 | 4, 15, 16 | 3syl 18 | . . 3 ⊢ (𝑊 ∈ Word 𝑉 → (𝑊‘(0 − 1)) = ∅) |
18 | 3, 17 | sylan9eqr 2830 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 0) → (𝑊‘((♯‘𝑊) − 1)) = ∅) |
19 | 2, 18 | eqtrd 2808 | 1 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 0) → (lastS‘𝑊) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 387 = wceq 1507 ∈ wcel 2048 ∅c0 4173 class class class wbr 4923 dom cdm 5400 ‘cfv 6182 (class class class)co 6970 0cc0 10327 1c1 10328 ≤ cle 10467 − cmin 10662 ℕcn 11431 ..^cfzo 12842 ♯chash 13498 Word cword 13662 lastSclsw 13715 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-rep 5043 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 ax-cnex 10383 ax-resscn 10384 ax-1cn 10385 ax-icn 10386 ax-addcl 10387 ax-addrcl 10388 ax-mulcl 10389 ax-mulrcl 10390 ax-mulcom 10391 ax-addass 10392 ax-mulass 10393 ax-distr 10394 ax-i2m1 10395 ax-1ne0 10396 ax-1rid 10397 ax-rnegex 10398 ax-rrecex 10399 ax-cnre 10400 ax-pre-lttri 10401 ax-pre-lttrn 10402 ax-pre-ltadd 10403 ax-pre-mulgt0 10404 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rab 3091 df-v 3411 df-sbc 3678 df-csb 3783 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-pss 3841 df-nul 4174 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4707 df-int 4744 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-tr 5025 df-id 5305 df-eprel 5310 df-po 5319 df-so 5320 df-fr 5359 df-we 5361 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-dm 5410 df-rn 5411 df-res 5412 df-ima 5413 df-pred 5980 df-ord 6026 df-on 6027 df-lim 6028 df-suc 6029 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-riota 6931 df-ov 6973 df-oprab 6974 df-mpo 6975 df-om 7391 df-1st 7494 df-2nd 7495 df-wrecs 7743 df-recs 7805 df-rdg 7843 df-1o 7897 df-er 8081 df-en 8299 df-dom 8300 df-sdom 8301 df-fin 8302 df-card 9154 df-pnf 10468 df-mnf 10469 df-xr 10470 df-ltxr 10471 df-le 10472 df-sub 10664 df-neg 10665 df-nn 11432 df-n0 11701 df-z 11787 df-uz 12052 df-fz 12702 df-fzo 12843 df-hash 13499 df-word 13663 df-lsw 13716 |
This theorem is referenced by: lsw0g 13719 |
Copyright terms: Public domain | W3C validator |