MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lswcshw Structured version   Visualization version   GIF version

Theorem lswcshw 14509
Description: The last symbol of a word cyclically shifted by N positions is the symbol at index (N-1) of the original word. (Contributed by AV, 21-Mar-2018.) (Revised by AV, 5-Jun-2018.) (Revised by AV, 1-Nov-2018.)
Assertion
Ref Expression
lswcshw ((𝑊 ∈ Word 𝑉𝑁 ∈ (1...(♯‘𝑊))) → (lastS‘(𝑊 cyclShift 𝑁)) = (𝑊‘(𝑁 − 1)))

Proof of Theorem lswcshw
StepHypRef Expression
1 ovex 7301 . . 3 (𝑊 cyclShift 𝑁) ∈ V
2 lsw 14248 . . 3 ((𝑊 cyclShift 𝑁) ∈ V → (lastS‘(𝑊 cyclShift 𝑁)) = ((𝑊 cyclShift 𝑁)‘((♯‘(𝑊 cyclShift 𝑁)) − 1)))
31, 2mp1i 13 . 2 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1...(♯‘𝑊))) → (lastS‘(𝑊 cyclShift 𝑁)) = ((𝑊 cyclShift 𝑁)‘((♯‘(𝑊 cyclShift 𝑁)) − 1)))
4 elfzelz 13238 . . . 4 (𝑁 ∈ (1...(♯‘𝑊)) → 𝑁 ∈ ℤ)
5 cshwlen 14493 . . . 4 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (♯‘(𝑊 cyclShift 𝑁)) = (♯‘𝑊))
64, 5sylan2 592 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1...(♯‘𝑊))) → (♯‘(𝑊 cyclShift 𝑁)) = (♯‘𝑊))
76fvoveq1d 7290 . 2 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1...(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘((♯‘(𝑊 cyclShift 𝑁)) − 1)) = ((𝑊 cyclShift 𝑁)‘((♯‘𝑊) − 1)))
8 cshwidxn 14503 . 2 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1...(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘((♯‘𝑊) − 1)) = (𝑊‘(𝑁 − 1)))
93, 7, 83eqtrd 2783 1 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1...(♯‘𝑊))) → (lastS‘(𝑊 cyclShift 𝑁)) = (𝑊‘(𝑁 − 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2109  Vcvv 3430  cfv 6430  (class class class)co 7268  1c1 10856  cmin 11188  cz 12302  ...cfz 13221  chash 14025  Word cword 14198  lastSclsw 14246   cyclShift ccsh 14482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932  ax-pre-sup 10933
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-int 4885  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-1st 7817  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-fin 8711  df-sup 9162  df-inf 9163  df-card 9681  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-div 11616  df-nn 11957  df-2 12019  df-n0 12217  df-z 12303  df-uz 12565  df-rp 12713  df-ico 13067  df-fz 13222  df-fzo 13365  df-fl 13493  df-mod 13571  df-hash 14026  df-word 14199  df-lsw 14247  df-concat 14255  df-substr 14335  df-pfx 14365  df-csh 14483
This theorem is referenced by:  clwwisshclwws  28358
  Copyright terms: Public domain W3C validator