![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > modval | Structured version Visualization version GIF version |
Description: The value of the modulo operation. The modulo congruence notation of number theory, ๐ฝโก๐พ (modulo ๐), can be expressed in our notation as (๐ฝ mod ๐) = (๐พ mod ๐). Definition 1 in Knuth, The Art of Computer Programming, Vol. I (1972), p. 38. Knuth uses "mod" for the operation and "modulo" for the congruence. Unlike Knuth, we restrict the second argument to positive reals to simplify certain theorems. (This also gives us future flexibility to extend it to any one of several different conventions for a zero or negative second argument, should there be an advantage in doing so.) (Contributed by NM, 10-Nov-2008.) (Revised by Mario Carneiro, 3-Nov-2013.) |
Ref | Expression |
---|---|
modval | โข ((๐ด โ โ โง ๐ต โ โ+) โ (๐ด mod ๐ต) = (๐ด โ (๐ต ยท (โโ(๐ด / ๐ต))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvoveq1 7440 | . . . 4 โข (๐ฅ = ๐ด โ (โโ(๐ฅ / ๐ฆ)) = (โโ(๐ด / ๐ฆ))) | |
2 | 1 | oveq2d 7433 | . . 3 โข (๐ฅ = ๐ด โ (๐ฆ ยท (โโ(๐ฅ / ๐ฆ))) = (๐ฆ ยท (โโ(๐ด / ๐ฆ)))) |
3 | oveq12 7426 | . . 3 โข ((๐ฅ = ๐ด โง (๐ฆ ยท (โโ(๐ฅ / ๐ฆ))) = (๐ฆ ยท (โโ(๐ด / ๐ฆ)))) โ (๐ฅ โ (๐ฆ ยท (โโ(๐ฅ / ๐ฆ)))) = (๐ด โ (๐ฆ ยท (โโ(๐ด / ๐ฆ))))) | |
4 | 2, 3 | mpdan 685 | . 2 โข (๐ฅ = ๐ด โ (๐ฅ โ (๐ฆ ยท (โโ(๐ฅ / ๐ฆ)))) = (๐ด โ (๐ฆ ยท (โโ(๐ด / ๐ฆ))))) |
5 | oveq2 7425 | . . . . 5 โข (๐ฆ = ๐ต โ (๐ด / ๐ฆ) = (๐ด / ๐ต)) | |
6 | 5 | fveq2d 6898 | . . . 4 โข (๐ฆ = ๐ต โ (โโ(๐ด / ๐ฆ)) = (โโ(๐ด / ๐ต))) |
7 | oveq12 7426 | . . . 4 โข ((๐ฆ = ๐ต โง (โโ(๐ด / ๐ฆ)) = (โโ(๐ด / ๐ต))) โ (๐ฆ ยท (โโ(๐ด / ๐ฆ))) = (๐ต ยท (โโ(๐ด / ๐ต)))) | |
8 | 6, 7 | mpdan 685 | . . 3 โข (๐ฆ = ๐ต โ (๐ฆ ยท (โโ(๐ด / ๐ฆ))) = (๐ต ยท (โโ(๐ด / ๐ต)))) |
9 | 8 | oveq2d 7433 | . 2 โข (๐ฆ = ๐ต โ (๐ด โ (๐ฆ ยท (โโ(๐ด / ๐ฆ)))) = (๐ด โ (๐ต ยท (โโ(๐ด / ๐ต))))) |
10 | df-mod 13868 | . 2 โข mod = (๐ฅ โ โ, ๐ฆ โ โ+ โฆ (๐ฅ โ (๐ฆ ยท (โโ(๐ฅ / ๐ฆ))))) | |
11 | ovex 7450 | . 2 โข (๐ด โ (๐ต ยท (โโ(๐ด / ๐ต)))) โ V | |
12 | 4, 9, 10, 11 | ovmpo 7579 | 1 โข ((๐ด โ โ โง ๐ต โ โ+) โ (๐ด mod ๐ต) = (๐ด โ (๐ต ยท (โโ(๐ด / ๐ต))))) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โง wa 394 = wceq 1533 โ wcel 2098 โcfv 6547 (class class class)co 7417 โcr 11137 ยท cmul 11143 โ cmin 11474 / cdiv 11901 โ+crp 13006 โcfl 13788 mod cmo 13867 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5299 ax-nul 5306 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-sbc 3775 df-dif 3948 df-un 3950 df-ss 3962 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-iota 6499 df-fun 6549 df-fv 6555 df-ov 7420 df-oprab 7421 df-mpo 7422 df-mod 13868 |
This theorem is referenced by: modvalr 13870 modcl 13871 mod0 13874 modge0 13877 modlt 13878 moddiffl 13880 modfrac 13882 modmulnn 13887 zmodcl 13889 modid 13894 modcyc 13904 modadd1 13906 modmul1 13922 moddi 13937 modsubdir 13938 modirr 13940 iexpcyc 14203 digit2 14231 dvdsmod 16306 divalgmod 16383 modgcd 16508 bezoutlem3 16517 prmdiv 16754 odzdvds 16764 fldivp1 16866 mulgmodid 19073 odmodnn0 19500 odmod 19506 gexdvds 19544 zringlpirlem3 21395 sineq0 26489 efif1olem2 26508 lgseisenlem4 27342 dchrisumlem1 27453 ostth2lem2 27598 sineq0ALT 44458 ltmod 45106 fourierswlem 45698 |
Copyright terms: Public domain | W3C validator |