MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modval Structured version   Visualization version   GIF version

Theorem modval 13572
Description: The value of the modulo operation. The modulo congruence notation of number theory, 𝐽𝐾 (modulo 𝑁), can be expressed in our notation as (𝐽 mod 𝑁) = (𝐾 mod 𝑁). Definition 1 in Knuth, The Art of Computer Programming, Vol. I (1972), p. 38. Knuth uses "mod" for the operation and "modulo" for the congruence. Unlike Knuth, we restrict the second argument to positive reals to simplify certain theorems. (This also gives us future flexibility to extend it to any one of several different conventions for a zero or negative second argument, should there be an advantage in doing so.) (Contributed by NM, 10-Nov-2008.) (Revised by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
modval ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 mod 𝐵) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))))

Proof of Theorem modval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvoveq1 7291 . . . 4 (𝑥 = 𝐴 → (⌊‘(𝑥 / 𝑦)) = (⌊‘(𝐴 / 𝑦)))
21oveq2d 7284 . . 3 (𝑥 = 𝐴 → (𝑦 · (⌊‘(𝑥 / 𝑦))) = (𝑦 · (⌊‘(𝐴 / 𝑦))))
3 oveq12 7277 . . 3 ((𝑥 = 𝐴 ∧ (𝑦 · (⌊‘(𝑥 / 𝑦))) = (𝑦 · (⌊‘(𝐴 / 𝑦)))) → (𝑥 − (𝑦 · (⌊‘(𝑥 / 𝑦)))) = (𝐴 − (𝑦 · (⌊‘(𝐴 / 𝑦)))))
42, 3mpdan 683 . 2 (𝑥 = 𝐴 → (𝑥 − (𝑦 · (⌊‘(𝑥 / 𝑦)))) = (𝐴 − (𝑦 · (⌊‘(𝐴 / 𝑦)))))
5 oveq2 7276 . . . . 5 (𝑦 = 𝐵 → (𝐴 / 𝑦) = (𝐴 / 𝐵))
65fveq2d 6772 . . . 4 (𝑦 = 𝐵 → (⌊‘(𝐴 / 𝑦)) = (⌊‘(𝐴 / 𝐵)))
7 oveq12 7277 . . . 4 ((𝑦 = 𝐵 ∧ (⌊‘(𝐴 / 𝑦)) = (⌊‘(𝐴 / 𝐵))) → (𝑦 · (⌊‘(𝐴 / 𝑦))) = (𝐵 · (⌊‘(𝐴 / 𝐵))))
86, 7mpdan 683 . . 3 (𝑦 = 𝐵 → (𝑦 · (⌊‘(𝐴 / 𝑦))) = (𝐵 · (⌊‘(𝐴 / 𝐵))))
98oveq2d 7284 . 2 (𝑦 = 𝐵 → (𝐴 − (𝑦 · (⌊‘(𝐴 / 𝑦)))) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))))
10 df-mod 13571 . 2 mod = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ+ ↦ (𝑥 − (𝑦 · (⌊‘(𝑥 / 𝑦)))))
11 ovex 7301 . 2 (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))) ∈ V
124, 9, 10, 11ovmpo 7424 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 mod 𝐵) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2109  cfv 6430  (class class class)co 7268  cr 10854   · cmul 10860  cmin 11188   / cdiv 11615  +crp 12712  cfl 13491   mod cmo 13570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-sbc 3720  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-iota 6388  df-fun 6432  df-fv 6438  df-ov 7271  df-oprab 7272  df-mpo 7273  df-mod 13571
This theorem is referenced by:  modvalr  13573  modcl  13574  mod0  13577  modge0  13580  modlt  13581  moddiffl  13583  modfrac  13585  modmulnn  13590  zmodcl  13592  modid  13597  modcyc  13607  modadd1  13609  modmul1  13625  moddi  13640  modsubdir  13641  modirr  13643  iexpcyc  13904  digit2  13932  dvdsmod  16019  divalgmod  16096  modgcd  16221  bezoutlem3  16230  prmdiv  16467  odzdvds  16477  fldivp1  16579  mulgmodid  18723  odmodnn0  19129  odmod  19135  gexdvds  19170  zringlpirlem3  20667  sineq0  25661  efif1olem2  25680  lgseisenlem4  26507  dchrisumlem1  26618  ostth2lem2  26763  sineq0ALT  42510  ltmod  43133  fourierswlem  43725
  Copyright terms: Public domain W3C validator