MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modval Structured version   Visualization version   GIF version

Theorem modval 13922
Description: The value of the modulo operation. The modulo congruence notation of number theory, 𝐽𝐾 (modulo 𝑁), can be expressed in our notation as (𝐽 mod 𝑁) = (𝐾 mod 𝑁). Definition 1 in Knuth, The Art of Computer Programming, Vol. I (1972), p. 38. Knuth uses "mod" for the operation and "modulo" for the congruence. Unlike Knuth, we restrict the second argument to positive reals to simplify certain theorems. (This also gives us future flexibility to extend it to any one of several different conventions for a zero or negative second argument, should there be an advantage in doing so.) (Contributed by NM, 10-Nov-2008.) (Revised by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
modval ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 mod 𝐵) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))))

Proof of Theorem modval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvoveq1 7471 . . . 4 (𝑥 = 𝐴 → (⌊‘(𝑥 / 𝑦)) = (⌊‘(𝐴 / 𝑦)))
21oveq2d 7464 . . 3 (𝑥 = 𝐴 → (𝑦 · (⌊‘(𝑥 / 𝑦))) = (𝑦 · (⌊‘(𝐴 / 𝑦))))
3 oveq12 7457 . . 3 ((𝑥 = 𝐴 ∧ (𝑦 · (⌊‘(𝑥 / 𝑦))) = (𝑦 · (⌊‘(𝐴 / 𝑦)))) → (𝑥 − (𝑦 · (⌊‘(𝑥 / 𝑦)))) = (𝐴 − (𝑦 · (⌊‘(𝐴 / 𝑦)))))
42, 3mpdan 686 . 2 (𝑥 = 𝐴 → (𝑥 − (𝑦 · (⌊‘(𝑥 / 𝑦)))) = (𝐴 − (𝑦 · (⌊‘(𝐴 / 𝑦)))))
5 oveq2 7456 . . . . 5 (𝑦 = 𝐵 → (𝐴 / 𝑦) = (𝐴 / 𝐵))
65fveq2d 6924 . . . 4 (𝑦 = 𝐵 → (⌊‘(𝐴 / 𝑦)) = (⌊‘(𝐴 / 𝐵)))
7 oveq12 7457 . . . 4 ((𝑦 = 𝐵 ∧ (⌊‘(𝐴 / 𝑦)) = (⌊‘(𝐴 / 𝐵))) → (𝑦 · (⌊‘(𝐴 / 𝑦))) = (𝐵 · (⌊‘(𝐴 / 𝐵))))
86, 7mpdan 686 . . 3 (𝑦 = 𝐵 → (𝑦 · (⌊‘(𝐴 / 𝑦))) = (𝐵 · (⌊‘(𝐴 / 𝐵))))
98oveq2d 7464 . 2 (𝑦 = 𝐵 → (𝐴 − (𝑦 · (⌊‘(𝐴 / 𝑦)))) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))))
10 df-mod 13921 . 2 mod = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ+ ↦ (𝑥 − (𝑦 · (⌊‘(𝑥 / 𝑦)))))
11 ovex 7481 . 2 (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))) ∈ V
124, 9, 10, 11ovmpo 7610 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 mod 𝐵) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  cfv 6573  (class class class)co 7448  cr 11183   · cmul 11189  cmin 11520   / cdiv 11947  +crp 13057  cfl 13841   mod cmo 13920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-mod 13921
This theorem is referenced by:  modvalr  13923  modcl  13924  mod0  13927  modge0  13930  modlt  13931  moddiffl  13933  modfrac  13935  modmulnn  13940  zmodcl  13942  modid  13947  modcyc  13957  modadd1  13959  modmul1  13975  moddi  13990  modsubdir  13991  modirr  13993  iexpcyc  14256  digit2  14285  dvdsmod  16377  divalgmod  16454  modgcd  16579  bezoutlem3  16588  prmdiv  16832  odzdvds  16842  fldivp1  16944  mulgmodid  19153  odmodnn0  19582  odmod  19588  gexdvds  19626  zringlpirlem3  21498  sineq0  26584  efif1olem2  26603  lgseisenlem4  27440  dchrisumlem1  27551  ostth2lem2  27696  sineq0ALT  44908  ltmod  45559  fourierswlem  46151
  Copyright terms: Public domain W3C validator