MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsmod Structured version   Visualization version   GIF version

Theorem dvdsmod 15672
Description: Any number 𝐾 whose mod base 𝑁 is divisible by a divisor 𝑃 of the base is also divisible by 𝑃. This means that primes will also be relatively prime to the base when reduced mod 𝑁 for any base. (Contributed by Mario Carneiro, 13-Mar-2014.)
Assertion
Ref Expression
dvdsmod (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → (𝑃 ∥ (𝐾 mod 𝑁) ↔ 𝑃𝐾))

Proof of Theorem dvdsmod
StepHypRef Expression
1 simpl3 1189 . . . . 5 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → 𝐾 ∈ ℤ)
21zred 12081 . . . 4 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → 𝐾 ∈ ℝ)
3 simpl2 1188 . . . . 5 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → 𝑁 ∈ ℕ)
43nnrpd 12423 . . . 4 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → 𝑁 ∈ ℝ+)
5 modval 13233 . . . 4 ((𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (𝐾 mod 𝑁) = (𝐾 − (𝑁 · (⌊‘(𝐾 / 𝑁)))))
62, 4, 5syl2anc 586 . . 3 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → (𝐾 mod 𝑁) = (𝐾 − (𝑁 · (⌊‘(𝐾 / 𝑁)))))
76breq2d 5071 . 2 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → (𝑃 ∥ (𝐾 mod 𝑁) ↔ 𝑃 ∥ (𝐾 − (𝑁 · (⌊‘(𝐾 / 𝑁))))))
8 simpl1 1187 . . . . . . . 8 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → 𝑃 ∈ ℕ)
98nnzd 12080 . . . . . . 7 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → 𝑃 ∈ ℤ)
103nnzd 12080 . . . . . . 7 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → 𝑁 ∈ ℤ)
112, 3nndivred 11685 . . . . . . . 8 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → (𝐾 / 𝑁) ∈ ℝ)
1211flcld 13162 . . . . . . 7 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → (⌊‘(𝐾 / 𝑁)) ∈ ℤ)
13 simpr 487 . . . . . . 7 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → 𝑃𝑁)
149, 10, 12, 13dvdsmultr1d 15642 . . . . . 6 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → 𝑃 ∥ (𝑁 · (⌊‘(𝐾 / 𝑁))))
1510, 12zmulcld 12087 . . . . . . . 8 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → (𝑁 · (⌊‘(𝐾 / 𝑁))) ∈ ℤ)
1615zcnd 12082 . . . . . . 7 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → (𝑁 · (⌊‘(𝐾 / 𝑁))) ∈ ℂ)
1716subid1d 10980 . . . . . 6 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → ((𝑁 · (⌊‘(𝐾 / 𝑁))) − 0) = (𝑁 · (⌊‘(𝐾 / 𝑁))))
1814, 17breqtrrd 5087 . . . . 5 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → 𝑃 ∥ ((𝑁 · (⌊‘(𝐾 / 𝑁))) − 0))
19 0zd 11987 . . . . . 6 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → 0 ∈ ℤ)
20 moddvds 15612 . . . . . 6 ((𝑃 ∈ ℕ ∧ (𝑁 · (⌊‘(𝐾 / 𝑁))) ∈ ℤ ∧ 0 ∈ ℤ) → (((𝑁 · (⌊‘(𝐾 / 𝑁))) mod 𝑃) = (0 mod 𝑃) ↔ 𝑃 ∥ ((𝑁 · (⌊‘(𝐾 / 𝑁))) − 0)))
218, 15, 19, 20syl3anc 1367 . . . . 5 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → (((𝑁 · (⌊‘(𝐾 / 𝑁))) mod 𝑃) = (0 mod 𝑃) ↔ 𝑃 ∥ ((𝑁 · (⌊‘(𝐾 / 𝑁))) − 0)))
2218, 21mpbird 259 . . . 4 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → ((𝑁 · (⌊‘(𝐾 / 𝑁))) mod 𝑃) = (0 mod 𝑃))
2322eqeq2d 2832 . . 3 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → ((𝐾 mod 𝑃) = ((𝑁 · (⌊‘(𝐾 / 𝑁))) mod 𝑃) ↔ (𝐾 mod 𝑃) = (0 mod 𝑃)))
24 moddvds 15612 . . . 4 ((𝑃 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ (𝑁 · (⌊‘(𝐾 / 𝑁))) ∈ ℤ) → ((𝐾 mod 𝑃) = ((𝑁 · (⌊‘(𝐾 / 𝑁))) mod 𝑃) ↔ 𝑃 ∥ (𝐾 − (𝑁 · (⌊‘(𝐾 / 𝑁))))))
258, 1, 15, 24syl3anc 1367 . . 3 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → ((𝐾 mod 𝑃) = ((𝑁 · (⌊‘(𝐾 / 𝑁))) mod 𝑃) ↔ 𝑃 ∥ (𝐾 − (𝑁 · (⌊‘(𝐾 / 𝑁))))))
26 moddvds 15612 . . . 4 ((𝑃 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ 0 ∈ ℤ) → ((𝐾 mod 𝑃) = (0 mod 𝑃) ↔ 𝑃 ∥ (𝐾 − 0)))
278, 1, 19, 26syl3anc 1367 . . 3 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → ((𝐾 mod 𝑃) = (0 mod 𝑃) ↔ 𝑃 ∥ (𝐾 − 0)))
2823, 25, 273bitr3d 311 . 2 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → (𝑃 ∥ (𝐾 − (𝑁 · (⌊‘(𝐾 / 𝑁)))) ↔ 𝑃 ∥ (𝐾 − 0)))
291zcnd 12082 . . . 4 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → 𝐾 ∈ ℂ)
3029subid1d 10980 . . 3 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → (𝐾 − 0) = 𝐾)
3130breq2d 5071 . 2 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → (𝑃 ∥ (𝐾 − 0) ↔ 𝑃𝐾))
327, 28, 313bitrd 307 1 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → (𝑃 ∥ (𝐾 mod 𝑁) ↔ 𝑃𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110   class class class wbr 5059  cfv 6350  (class class class)co 7150  cr 10530  0cc0 10531   · cmul 10536  cmin 10864   / cdiv 11291  cn 11632  cz 11975  +crp 12383  cfl 13154   mod cmo 13231  cdvds 15601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-sup 8900  df-inf 8901  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-fl 13156  df-mod 13232  df-dvds 15602
This theorem is referenced by:  ppiublem1  25772  lgsdir2lem2  25896
  Copyright terms: Public domain W3C validator