MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsmod Structured version   Visualization version   GIF version

Theorem dvdsmod 16279
Description: Any number 𝐾 whose mod base 𝑁 is divisible by a divisor 𝑃 of the base is also divisible by 𝑃. This means that primes will also be relatively prime to the base when reduced mod 𝑁 for any base. (Contributed by Mario Carneiro, 13-Mar-2014.)
Assertion
Ref Expression
dvdsmod (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → (𝑃 ∥ (𝐾 mod 𝑁) ↔ 𝑃𝐾))

Proof of Theorem dvdsmod
StepHypRef Expression
1 simpl3 1192 . . . . 5 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → 𝐾 ∈ ℤ)
21zred 12673 . . . 4 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → 𝐾 ∈ ℝ)
3 simpl2 1191 . . . . 5 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → 𝑁 ∈ ℕ)
43nnrpd 13021 . . . 4 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → 𝑁 ∈ ℝ+)
5 modval 13843 . . . 4 ((𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (𝐾 mod 𝑁) = (𝐾 − (𝑁 · (⌊‘(𝐾 / 𝑁)))))
62, 4, 5syl2anc 583 . . 3 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → (𝐾 mod 𝑁) = (𝐾 − (𝑁 · (⌊‘(𝐾 / 𝑁)))))
76breq2d 5160 . 2 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → (𝑃 ∥ (𝐾 mod 𝑁) ↔ 𝑃 ∥ (𝐾 − (𝑁 · (⌊‘(𝐾 / 𝑁))))))
8 simpl1 1190 . . . . . . . 8 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → 𝑃 ∈ ℕ)
98nnzd 12592 . . . . . . 7 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → 𝑃 ∈ ℤ)
103nnzd 12592 . . . . . . 7 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → 𝑁 ∈ ℤ)
112, 3nndivred 12273 . . . . . . . 8 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → (𝐾 / 𝑁) ∈ ℝ)
1211flcld 13770 . . . . . . 7 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → (⌊‘(𝐾 / 𝑁)) ∈ ℤ)
13 simpr 484 . . . . . . 7 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → 𝑃𝑁)
149, 10, 12, 13dvdsmultr1d 16247 . . . . . 6 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → 𝑃 ∥ (𝑁 · (⌊‘(𝐾 / 𝑁))))
1510, 12zmulcld 12679 . . . . . . . 8 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → (𝑁 · (⌊‘(𝐾 / 𝑁))) ∈ ℤ)
1615zcnd 12674 . . . . . . 7 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → (𝑁 · (⌊‘(𝐾 / 𝑁))) ∈ ℂ)
1716subid1d 11567 . . . . . 6 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → ((𝑁 · (⌊‘(𝐾 / 𝑁))) − 0) = (𝑁 · (⌊‘(𝐾 / 𝑁))))
1814, 17breqtrrd 5176 . . . . 5 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → 𝑃 ∥ ((𝑁 · (⌊‘(𝐾 / 𝑁))) − 0))
19 0zd 12577 . . . . . 6 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → 0 ∈ ℤ)
20 moddvds 16215 . . . . . 6 ((𝑃 ∈ ℕ ∧ (𝑁 · (⌊‘(𝐾 / 𝑁))) ∈ ℤ ∧ 0 ∈ ℤ) → (((𝑁 · (⌊‘(𝐾 / 𝑁))) mod 𝑃) = (0 mod 𝑃) ↔ 𝑃 ∥ ((𝑁 · (⌊‘(𝐾 / 𝑁))) − 0)))
218, 15, 19, 20syl3anc 1370 . . . . 5 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → (((𝑁 · (⌊‘(𝐾 / 𝑁))) mod 𝑃) = (0 mod 𝑃) ↔ 𝑃 ∥ ((𝑁 · (⌊‘(𝐾 / 𝑁))) − 0)))
2218, 21mpbird 257 . . . 4 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → ((𝑁 · (⌊‘(𝐾 / 𝑁))) mod 𝑃) = (0 mod 𝑃))
2322eqeq2d 2742 . . 3 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → ((𝐾 mod 𝑃) = ((𝑁 · (⌊‘(𝐾 / 𝑁))) mod 𝑃) ↔ (𝐾 mod 𝑃) = (0 mod 𝑃)))
24 moddvds 16215 . . . 4 ((𝑃 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ (𝑁 · (⌊‘(𝐾 / 𝑁))) ∈ ℤ) → ((𝐾 mod 𝑃) = ((𝑁 · (⌊‘(𝐾 / 𝑁))) mod 𝑃) ↔ 𝑃 ∥ (𝐾 − (𝑁 · (⌊‘(𝐾 / 𝑁))))))
258, 1, 15, 24syl3anc 1370 . . 3 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → ((𝐾 mod 𝑃) = ((𝑁 · (⌊‘(𝐾 / 𝑁))) mod 𝑃) ↔ 𝑃 ∥ (𝐾 − (𝑁 · (⌊‘(𝐾 / 𝑁))))))
26 moddvds 16215 . . . 4 ((𝑃 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ 0 ∈ ℤ) → ((𝐾 mod 𝑃) = (0 mod 𝑃) ↔ 𝑃 ∥ (𝐾 − 0)))
278, 1, 19, 26syl3anc 1370 . . 3 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → ((𝐾 mod 𝑃) = (0 mod 𝑃) ↔ 𝑃 ∥ (𝐾 − 0)))
2823, 25, 273bitr3d 309 . 2 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → (𝑃 ∥ (𝐾 − (𝑁 · (⌊‘(𝐾 / 𝑁)))) ↔ 𝑃 ∥ (𝐾 − 0)))
291zcnd 12674 . . . 4 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → 𝐾 ∈ ℂ)
3029subid1d 11567 . . 3 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → (𝐾 − 0) = 𝐾)
3130breq2d 5160 . 2 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → (𝑃 ∥ (𝐾 − 0) ↔ 𝑃𝐾))
327, 28, 313bitrd 305 1 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → (𝑃 ∥ (𝐾 mod 𝑁) ↔ 𝑃𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1086   = wceq 1540  wcel 2105   class class class wbr 5148  cfv 6543  (class class class)co 7412  cr 11115  0cc0 11116   · cmul 11121  cmin 11451   / cdiv 11878  cn 12219  cz 12565  +crp 12981  cfl 13762   mod cmo 13841  cdvds 16204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193  ax-pre-sup 11194
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-er 8709  df-en 8946  df-dom 8947  df-sdom 8948  df-sup 9443  df-inf 9444  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-div 11879  df-nn 12220  df-n0 12480  df-z 12566  df-uz 12830  df-rp 12982  df-fl 13764  df-mod 13842  df-dvds 16205
This theorem is referenced by:  ppiublem1  27050  lgsdir2lem2  27174
  Copyright terms: Public domain W3C validator