MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsmod Structured version   Visualization version   GIF version

Theorem dvdsmod 16349
Description: Any number 𝐾 whose mod base 𝑁 is divisible by a divisor 𝑃 of the base is also divisible by 𝑃. This means that primes will also be relatively prime to the base when reduced mod 𝑁 for any base. (Contributed by Mario Carneiro, 13-Mar-2014.)
Assertion
Ref Expression
dvdsmod (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → (𝑃 ∥ (𝐾 mod 𝑁) ↔ 𝑃𝐾))

Proof of Theorem dvdsmod
StepHypRef Expression
1 simpl3 1193 . . . . 5 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → 𝐾 ∈ ℤ)
21zred 12705 . . . 4 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → 𝐾 ∈ ℝ)
3 simpl2 1192 . . . . 5 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → 𝑁 ∈ ℕ)
43nnrpd 13057 . . . 4 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → 𝑁 ∈ ℝ+)
5 modval 13893 . . . 4 ((𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (𝐾 mod 𝑁) = (𝐾 − (𝑁 · (⌊‘(𝐾 / 𝑁)))))
62, 4, 5syl2anc 584 . . 3 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → (𝐾 mod 𝑁) = (𝐾 − (𝑁 · (⌊‘(𝐾 / 𝑁)))))
76breq2d 5135 . 2 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → (𝑃 ∥ (𝐾 mod 𝑁) ↔ 𝑃 ∥ (𝐾 − (𝑁 · (⌊‘(𝐾 / 𝑁))))))
8 simpl1 1191 . . . . . . . 8 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → 𝑃 ∈ ℕ)
98nnzd 12623 . . . . . . 7 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → 𝑃 ∈ ℤ)
103nnzd 12623 . . . . . . 7 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → 𝑁 ∈ ℤ)
112, 3nndivred 12302 . . . . . . . 8 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → (𝐾 / 𝑁) ∈ ℝ)
1211flcld 13820 . . . . . . 7 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → (⌊‘(𝐾 / 𝑁)) ∈ ℤ)
13 simpr 484 . . . . . . 7 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → 𝑃𝑁)
149, 10, 12, 13dvdsmultr1d 16317 . . . . . 6 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → 𝑃 ∥ (𝑁 · (⌊‘(𝐾 / 𝑁))))
1510, 12zmulcld 12711 . . . . . . . 8 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → (𝑁 · (⌊‘(𝐾 / 𝑁))) ∈ ℤ)
1615zcnd 12706 . . . . . . 7 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → (𝑁 · (⌊‘(𝐾 / 𝑁))) ∈ ℂ)
1716subid1d 11591 . . . . . 6 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → ((𝑁 · (⌊‘(𝐾 / 𝑁))) − 0) = (𝑁 · (⌊‘(𝐾 / 𝑁))))
1814, 17breqtrrd 5151 . . . . 5 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → 𝑃 ∥ ((𝑁 · (⌊‘(𝐾 / 𝑁))) − 0))
19 0zd 12608 . . . . . 6 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → 0 ∈ ℤ)
20 moddvds 16284 . . . . . 6 ((𝑃 ∈ ℕ ∧ (𝑁 · (⌊‘(𝐾 / 𝑁))) ∈ ℤ ∧ 0 ∈ ℤ) → (((𝑁 · (⌊‘(𝐾 / 𝑁))) mod 𝑃) = (0 mod 𝑃) ↔ 𝑃 ∥ ((𝑁 · (⌊‘(𝐾 / 𝑁))) − 0)))
218, 15, 19, 20syl3anc 1372 . . . . 5 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → (((𝑁 · (⌊‘(𝐾 / 𝑁))) mod 𝑃) = (0 mod 𝑃) ↔ 𝑃 ∥ ((𝑁 · (⌊‘(𝐾 / 𝑁))) − 0)))
2218, 21mpbird 257 . . . 4 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → ((𝑁 · (⌊‘(𝐾 / 𝑁))) mod 𝑃) = (0 mod 𝑃))
2322eqeq2d 2745 . . 3 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → ((𝐾 mod 𝑃) = ((𝑁 · (⌊‘(𝐾 / 𝑁))) mod 𝑃) ↔ (𝐾 mod 𝑃) = (0 mod 𝑃)))
24 moddvds 16284 . . . 4 ((𝑃 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ (𝑁 · (⌊‘(𝐾 / 𝑁))) ∈ ℤ) → ((𝐾 mod 𝑃) = ((𝑁 · (⌊‘(𝐾 / 𝑁))) mod 𝑃) ↔ 𝑃 ∥ (𝐾 − (𝑁 · (⌊‘(𝐾 / 𝑁))))))
258, 1, 15, 24syl3anc 1372 . . 3 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → ((𝐾 mod 𝑃) = ((𝑁 · (⌊‘(𝐾 / 𝑁))) mod 𝑃) ↔ 𝑃 ∥ (𝐾 − (𝑁 · (⌊‘(𝐾 / 𝑁))))))
26 moddvds 16284 . . . 4 ((𝑃 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ 0 ∈ ℤ) → ((𝐾 mod 𝑃) = (0 mod 𝑃) ↔ 𝑃 ∥ (𝐾 − 0)))
278, 1, 19, 26syl3anc 1372 . . 3 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → ((𝐾 mod 𝑃) = (0 mod 𝑃) ↔ 𝑃 ∥ (𝐾 − 0)))
2823, 25, 273bitr3d 309 . 2 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → (𝑃 ∥ (𝐾 − (𝑁 · (⌊‘(𝐾 / 𝑁)))) ↔ 𝑃 ∥ (𝐾 − 0)))
291zcnd 12706 . . . 4 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → 𝐾 ∈ ℂ)
3029subid1d 11591 . . 3 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → (𝐾 − 0) = 𝐾)
3130breq2d 5135 . 2 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → (𝑃 ∥ (𝐾 − 0) ↔ 𝑃𝐾))
327, 28, 313bitrd 305 1 (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → (𝑃 ∥ (𝐾 mod 𝑁) ↔ 𝑃𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107   class class class wbr 5123  cfv 6541  (class class class)co 7413  cr 11136  0cc0 11137   · cmul 11142  cmin 11474   / cdiv 11902  cn 12248  cz 12596  +crp 13016  cfl 13812   mod cmo 13891  cdvds 16273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-er 8727  df-en 8968  df-dom 8969  df-sdom 8970  df-sup 9464  df-inf 9465  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-n0 12510  df-z 12597  df-uz 12861  df-rp 13017  df-fl 13814  df-mod 13892  df-dvds 16274
This theorem is referenced by:  ppiublem1  27183  lgsdir2lem2  27307
  Copyright terms: Public domain W3C validator