MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modfrac Structured version   Visualization version   GIF version

Theorem modfrac 13654
Description: The fractional part of a number is the number modulo 1. (Contributed by NM, 11-Nov-2008.)
Assertion
Ref Expression
modfrac (𝐴 ∈ ℝ → (𝐴 mod 1) = (𝐴 − (⌊‘𝐴)))

Proof of Theorem modfrac
StepHypRef Expression
1 1rp 12784 . . 3 1 ∈ ℝ+
2 modval 13641 . . 3 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ+) → (𝐴 mod 1) = (𝐴 − (1 · (⌊‘(𝐴 / 1)))))
31, 2mpan2 689 . 2 (𝐴 ∈ ℝ → (𝐴 mod 1) = (𝐴 − (1 · (⌊‘(𝐴 / 1)))))
4 recn 11011 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
54div1d 11793 . . . . . 6 (𝐴 ∈ ℝ → (𝐴 / 1) = 𝐴)
65fveq2d 6808 . . . . 5 (𝐴 ∈ ℝ → (⌊‘(𝐴 / 1)) = (⌊‘𝐴))
76oveq2d 7323 . . . 4 (𝐴 ∈ ℝ → (1 · (⌊‘(𝐴 / 1))) = (1 · (⌊‘𝐴)))
8 reflcl 13566 . . . . . 6 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℝ)
98recnd 11053 . . . . 5 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℂ)
109mulid2d 11043 . . . 4 (𝐴 ∈ ℝ → (1 · (⌊‘𝐴)) = (⌊‘𝐴))
117, 10eqtrd 2776 . . 3 (𝐴 ∈ ℝ → (1 · (⌊‘(𝐴 / 1))) = (⌊‘𝐴))
1211oveq2d 7323 . 2 (𝐴 ∈ ℝ → (𝐴 − (1 · (⌊‘(𝐴 / 1)))) = (𝐴 − (⌊‘𝐴)))
133, 12eqtrd 2776 1 (𝐴 ∈ ℝ → (𝐴 mod 1) = (𝐴 − (⌊‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2104  cfv 6458  (class class class)co 7307  cr 10920  1c1 10922   · cmul 10926  cmin 11255   / cdiv 11682  +crp 12780  cfl 13560   mod cmo 13639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10977  ax-resscn 10978  ax-1cn 10979  ax-icn 10980  ax-addcl 10981  ax-addrcl 10982  ax-mulcl 10983  ax-mulrcl 10984  ax-mulcom 10985  ax-addass 10986  ax-mulass 10987  ax-distr 10988  ax-i2m1 10989  ax-1ne0 10990  ax-1rid 10991  ax-rnegex 10992  ax-rrecex 10993  ax-cnre 10994  ax-pre-lttri 10995  ax-pre-lttrn 10996  ax-pre-ltadd 10997  ax-pre-mulgt0 10998  ax-pre-sup 10999
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3304  df-reu 3305  df-rab 3306  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-om 7745  df-2nd 7864  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-er 8529  df-en 8765  df-dom 8766  df-sdom 8767  df-sup 9249  df-inf 9250  df-pnf 11061  df-mnf 11062  df-xr 11063  df-ltxr 11064  df-le 11065  df-sub 11257  df-neg 11258  df-div 11683  df-nn 12024  df-n0 12284  df-z 12370  df-uz 12633  df-rp 12781  df-fl 13562  df-mod 13640
This theorem is referenced by:  flmod  13655  intfrac  13656  zmod10  13657  irrapxlem3  40841  pellfund14  40915
  Copyright terms: Public domain W3C validator