MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modfrac Structured version   Visualization version   GIF version

Theorem modfrac 13585
Description: The fractional part of a number is the number modulo 1. (Contributed by NM, 11-Nov-2008.)
Assertion
Ref Expression
modfrac (𝐴 ∈ ℝ → (𝐴 mod 1) = (𝐴 − (⌊‘𝐴)))

Proof of Theorem modfrac
StepHypRef Expression
1 1rp 12716 . . 3 1 ∈ ℝ+
2 modval 13572 . . 3 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ+) → (𝐴 mod 1) = (𝐴 − (1 · (⌊‘(𝐴 / 1)))))
31, 2mpan2 687 . 2 (𝐴 ∈ ℝ → (𝐴 mod 1) = (𝐴 − (1 · (⌊‘(𝐴 / 1)))))
4 recn 10945 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
54div1d 11726 . . . . . 6 (𝐴 ∈ ℝ → (𝐴 / 1) = 𝐴)
65fveq2d 6772 . . . . 5 (𝐴 ∈ ℝ → (⌊‘(𝐴 / 1)) = (⌊‘𝐴))
76oveq2d 7284 . . . 4 (𝐴 ∈ ℝ → (1 · (⌊‘(𝐴 / 1))) = (1 · (⌊‘𝐴)))
8 reflcl 13497 . . . . . 6 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℝ)
98recnd 10987 . . . . 5 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℂ)
109mulid2d 10977 . . . 4 (𝐴 ∈ ℝ → (1 · (⌊‘𝐴)) = (⌊‘𝐴))
117, 10eqtrd 2779 . . 3 (𝐴 ∈ ℝ → (1 · (⌊‘(𝐴 / 1))) = (⌊‘𝐴))
1211oveq2d 7284 . 2 (𝐴 ∈ ℝ → (𝐴 − (1 · (⌊‘(𝐴 / 1)))) = (𝐴 − (⌊‘𝐴)))
133, 12eqtrd 2779 1 (𝐴 ∈ ℝ → (𝐴 mod 1) = (𝐴 − (⌊‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2109  cfv 6430  (class class class)co 7268  cr 10854  1c1 10856   · cmul 10860  cmin 11188   / cdiv 11615  +crp 12712  cfl 13491   mod cmo 13570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932  ax-pre-sup 10933
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-sup 9162  df-inf 9163  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-div 11616  df-nn 11957  df-n0 12217  df-z 12303  df-uz 12565  df-rp 12713  df-fl 13493  df-mod 13571
This theorem is referenced by:  flmod  13586  intfrac  13587  zmod10  13588  irrapxlem3  40626  pellfund14  40700
  Copyright terms: Public domain W3C validator