MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modcyc Structured version   Visualization version   GIF version

Theorem modcyc 13554
Description: The modulo operation is periodic. (Contributed by NM, 10-Nov-2008.)
Assertion
Ref Expression
modcyc ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝑁 ∈ ℤ) → ((𝐴 + (𝑁 · 𝐵)) mod 𝐵) = (𝐴 mod 𝐵))

Proof of Theorem modcyc
StepHypRef Expression
1 zre 12253 . . . . . . . 8 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
2 rpre 12667 . . . . . . . 8 (𝐵 ∈ ℝ+𝐵 ∈ ℝ)
3 remulcl 10887 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑁 · 𝐵) ∈ ℝ)
41, 2, 3syl2an 595 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → (𝑁 · 𝐵) ∈ ℝ)
5 readdcl 10885 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (𝑁 · 𝐵) ∈ ℝ) → (𝐴 + (𝑁 · 𝐵)) ∈ ℝ)
64, 5sylan2 592 . . . . . 6 ((𝐴 ∈ ℝ ∧ (𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+)) → (𝐴 + (𝑁 · 𝐵)) ∈ ℝ)
763impb 1113 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → (𝐴 + (𝑁 · 𝐵)) ∈ ℝ)
8 simp3 1136 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℝ+)
9 modval 13519 . . . . 5 (((𝐴 + (𝑁 · 𝐵)) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 + (𝑁 · 𝐵)) mod 𝐵) = ((𝐴 + (𝑁 · 𝐵)) − (𝐵 · (⌊‘((𝐴 + (𝑁 · 𝐵)) / 𝐵)))))
107, 8, 9syl2anc 583 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → ((𝐴 + (𝑁 · 𝐵)) mod 𝐵) = ((𝐴 + (𝑁 · 𝐵)) − (𝐵 · (⌊‘((𝐴 + (𝑁 · 𝐵)) / 𝐵)))))
11 recn 10892 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
12113ad2ant1 1131 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → 𝐴 ∈ ℂ)
134recnd 10934 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → (𝑁 · 𝐵) ∈ ℂ)
14133adant1 1128 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → (𝑁 · 𝐵) ∈ ℂ)
15 rpcnne0 12677 . . . . . . . . . . . 12 (𝐵 ∈ ℝ+ → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
16153ad2ant3 1133 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
17 divdir 11588 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (𝑁 · 𝐵) ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → ((𝐴 + (𝑁 · 𝐵)) / 𝐵) = ((𝐴 / 𝐵) + ((𝑁 · 𝐵) / 𝐵)))
1812, 14, 16, 17syl3anc 1369 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → ((𝐴 + (𝑁 · 𝐵)) / 𝐵) = ((𝐴 / 𝐵) + ((𝑁 · 𝐵) / 𝐵)))
19 zcn 12254 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
20 divcan4 11590 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ((𝑁 · 𝐵) / 𝐵) = 𝑁)
21203expb 1118 . . . . . . . . . . . . 13 ((𝑁 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → ((𝑁 · 𝐵) / 𝐵) = 𝑁)
2219, 15, 21syl2an 595 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → ((𝑁 · 𝐵) / 𝐵) = 𝑁)
23223adant1 1128 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → ((𝑁 · 𝐵) / 𝐵) = 𝑁)
2423oveq2d 7271 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → ((𝐴 / 𝐵) + ((𝑁 · 𝐵) / 𝐵)) = ((𝐴 / 𝐵) + 𝑁))
2518, 24eqtrd 2778 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → ((𝐴 + (𝑁 · 𝐵)) / 𝐵) = ((𝐴 / 𝐵) + 𝑁))
2625fveq2d 6760 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → (⌊‘((𝐴 + (𝑁 · 𝐵)) / 𝐵)) = (⌊‘((𝐴 / 𝐵) + 𝑁)))
27 rerpdivcl 12689 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ)
28273adant2 1129 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ)
29 simp2 1135 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → 𝑁 ∈ ℤ)
30 fladdz 13473 . . . . . . . . 9 (((𝐴 / 𝐵) ∈ ℝ ∧ 𝑁 ∈ ℤ) → (⌊‘((𝐴 / 𝐵) + 𝑁)) = ((⌊‘(𝐴 / 𝐵)) + 𝑁))
3128, 29, 30syl2anc 583 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → (⌊‘((𝐴 / 𝐵) + 𝑁)) = ((⌊‘(𝐴 / 𝐵)) + 𝑁))
3226, 31eqtrd 2778 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → (⌊‘((𝐴 + (𝑁 · 𝐵)) / 𝐵)) = ((⌊‘(𝐴 / 𝐵)) + 𝑁))
3332oveq2d 7271 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → (𝐵 · (⌊‘((𝐴 + (𝑁 · 𝐵)) / 𝐵))) = (𝐵 · ((⌊‘(𝐴 / 𝐵)) + 𝑁)))
34 rpcn 12669 . . . . . . . 8 (𝐵 ∈ ℝ+𝐵 ∈ ℂ)
35343ad2ant3 1133 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℂ)
36 reflcl 13444 . . . . . . . . . 10 ((𝐴 / 𝐵) ∈ ℝ → (⌊‘(𝐴 / 𝐵)) ∈ ℝ)
3736recnd 10934 . . . . . . . . 9 ((𝐴 / 𝐵) ∈ ℝ → (⌊‘(𝐴 / 𝐵)) ∈ ℂ)
3827, 37syl 17 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌊‘(𝐴 / 𝐵)) ∈ ℂ)
39383adant2 1129 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → (⌊‘(𝐴 / 𝐵)) ∈ ℂ)
40193ad2ant2 1132 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → 𝑁 ∈ ℂ)
4135, 39, 40adddid 10930 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → (𝐵 · ((⌊‘(𝐴 / 𝐵)) + 𝑁)) = ((𝐵 · (⌊‘(𝐴 / 𝐵))) + (𝐵 · 𝑁)))
42 mulcom 10888 . . . . . . . . . 10 ((𝑁 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝑁 · 𝐵) = (𝐵 · 𝑁))
4319, 34, 42syl2an 595 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → (𝑁 · 𝐵) = (𝐵 · 𝑁))
44433adant1 1128 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → (𝑁 · 𝐵) = (𝐵 · 𝑁))
4544eqcomd 2744 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → (𝐵 · 𝑁) = (𝑁 · 𝐵))
4645oveq2d 7271 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → ((𝐵 · (⌊‘(𝐴 / 𝐵))) + (𝐵 · 𝑁)) = ((𝐵 · (⌊‘(𝐴 / 𝐵))) + (𝑁 · 𝐵)))
4733, 41, 463eqtrd 2782 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → (𝐵 · (⌊‘((𝐴 + (𝑁 · 𝐵)) / 𝐵))) = ((𝐵 · (⌊‘(𝐴 / 𝐵))) + (𝑁 · 𝐵)))
4847oveq2d 7271 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → ((𝐴 + (𝑁 · 𝐵)) − (𝐵 · (⌊‘((𝐴 + (𝑁 · 𝐵)) / 𝐵)))) = ((𝐴 + (𝑁 · 𝐵)) − ((𝐵 · (⌊‘(𝐴 / 𝐵))) + (𝑁 · 𝐵))))
4934adantl 481 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℂ)
5049, 38mulcld 10926 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐵 · (⌊‘(𝐴 / 𝐵))) ∈ ℂ)
51503adant2 1129 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → (𝐵 · (⌊‘(𝐴 / 𝐵))) ∈ ℂ)
5212, 51, 14pnpcan2d 11300 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → ((𝐴 + (𝑁 · 𝐵)) − ((𝐵 · (⌊‘(𝐴 / 𝐵))) + (𝑁 · 𝐵))) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))))
5310, 48, 523eqtrd 2782 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → ((𝐴 + (𝑁 · 𝐵)) mod 𝐵) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))))
54 modval 13519 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 mod 𝐵) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))))
55543adant2 1129 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → (𝐴 mod 𝐵) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))))
5653, 55eqtr4d 2781 . 2 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → ((𝐴 + (𝑁 · 𝐵)) mod 𝐵) = (𝐴 mod 𝐵))
57563com23 1124 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝑁 ∈ ℤ) → ((𝐴 + (𝑁 · 𝐵)) mod 𝐵) = (𝐴 mod 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802   + caddc 10805   · cmul 10807  cmin 11135   / cdiv 11562  cz 12249  +crp 12659  cfl 13438   mod cmo 13517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fl 13440  df-mod 13518
This theorem is referenced by:  modcyc2  13555  muladdmodid  13559  negmod  13564  modsumfzodifsn  13592  modxai  16697  wilthlem1  26122  wilthlem2  26123  lgsdir2lem1  26378  lgsdir2lem5  26382  lgseisenlem1  26428  dirkerper  43527  sqwvfoura  43659  sqwvfourb  43660  fourierswlem  43661  fouriersw  43662  3exp4mod41  44956  m1modmmod  45755
  Copyright terms: Public domain W3C validator