MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modcyc Structured version   Visualization version   GIF version

Theorem modcyc 13947
Description: The modulo operation is periodic. (Contributed by NM, 10-Nov-2008.)
Assertion
Ref Expression
modcyc ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝑁 ∈ ℤ) → ((𝐴 + (𝑁 · 𝐵)) mod 𝐵) = (𝐴 mod 𝐵))

Proof of Theorem modcyc
StepHypRef Expression
1 zre 12619 . . . . . . . 8 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
2 rpre 13044 . . . . . . . 8 (𝐵 ∈ ℝ+𝐵 ∈ ℝ)
3 remulcl 11241 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑁 · 𝐵) ∈ ℝ)
41, 2, 3syl2an 596 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → (𝑁 · 𝐵) ∈ ℝ)
5 readdcl 11239 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (𝑁 · 𝐵) ∈ ℝ) → (𝐴 + (𝑁 · 𝐵)) ∈ ℝ)
64, 5sylan2 593 . . . . . 6 ((𝐴 ∈ ℝ ∧ (𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+)) → (𝐴 + (𝑁 · 𝐵)) ∈ ℝ)
763impb 1114 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → (𝐴 + (𝑁 · 𝐵)) ∈ ℝ)
8 simp3 1138 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℝ+)
9 modval 13912 . . . . 5 (((𝐴 + (𝑁 · 𝐵)) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 + (𝑁 · 𝐵)) mod 𝐵) = ((𝐴 + (𝑁 · 𝐵)) − (𝐵 · (⌊‘((𝐴 + (𝑁 · 𝐵)) / 𝐵)))))
107, 8, 9syl2anc 584 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → ((𝐴 + (𝑁 · 𝐵)) mod 𝐵) = ((𝐴 + (𝑁 · 𝐵)) − (𝐵 · (⌊‘((𝐴 + (𝑁 · 𝐵)) / 𝐵)))))
11 recn 11246 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
12113ad2ant1 1133 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → 𝐴 ∈ ℂ)
134recnd 11290 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → (𝑁 · 𝐵) ∈ ℂ)
14133adant1 1130 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → (𝑁 · 𝐵) ∈ ℂ)
15 rpcnne0 13054 . . . . . . . . . . . 12 (𝐵 ∈ ℝ+ → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
16153ad2ant3 1135 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
17 divdir 11948 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (𝑁 · 𝐵) ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → ((𝐴 + (𝑁 · 𝐵)) / 𝐵) = ((𝐴 / 𝐵) + ((𝑁 · 𝐵) / 𝐵)))
1812, 14, 16, 17syl3anc 1372 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → ((𝐴 + (𝑁 · 𝐵)) / 𝐵) = ((𝐴 / 𝐵) + ((𝑁 · 𝐵) / 𝐵)))
19 zcn 12620 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
20 divcan4 11950 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ((𝑁 · 𝐵) / 𝐵) = 𝑁)
21203expb 1120 . . . . . . . . . . . . 13 ((𝑁 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → ((𝑁 · 𝐵) / 𝐵) = 𝑁)
2219, 15, 21syl2an 596 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → ((𝑁 · 𝐵) / 𝐵) = 𝑁)
23223adant1 1130 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → ((𝑁 · 𝐵) / 𝐵) = 𝑁)
2423oveq2d 7448 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → ((𝐴 / 𝐵) + ((𝑁 · 𝐵) / 𝐵)) = ((𝐴 / 𝐵) + 𝑁))
2518, 24eqtrd 2776 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → ((𝐴 + (𝑁 · 𝐵)) / 𝐵) = ((𝐴 / 𝐵) + 𝑁))
2625fveq2d 6909 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → (⌊‘((𝐴 + (𝑁 · 𝐵)) / 𝐵)) = (⌊‘((𝐴 / 𝐵) + 𝑁)))
27 rerpdivcl 13066 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ)
28273adant2 1131 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ)
29 simp2 1137 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → 𝑁 ∈ ℤ)
30 fladdz 13866 . . . . . . . . 9 (((𝐴 / 𝐵) ∈ ℝ ∧ 𝑁 ∈ ℤ) → (⌊‘((𝐴 / 𝐵) + 𝑁)) = ((⌊‘(𝐴 / 𝐵)) + 𝑁))
3128, 29, 30syl2anc 584 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → (⌊‘((𝐴 / 𝐵) + 𝑁)) = ((⌊‘(𝐴 / 𝐵)) + 𝑁))
3226, 31eqtrd 2776 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → (⌊‘((𝐴 + (𝑁 · 𝐵)) / 𝐵)) = ((⌊‘(𝐴 / 𝐵)) + 𝑁))
3332oveq2d 7448 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → (𝐵 · (⌊‘((𝐴 + (𝑁 · 𝐵)) / 𝐵))) = (𝐵 · ((⌊‘(𝐴 / 𝐵)) + 𝑁)))
34 rpcn 13046 . . . . . . . 8 (𝐵 ∈ ℝ+𝐵 ∈ ℂ)
35343ad2ant3 1135 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℂ)
36 reflcl 13837 . . . . . . . . . 10 ((𝐴 / 𝐵) ∈ ℝ → (⌊‘(𝐴 / 𝐵)) ∈ ℝ)
3736recnd 11290 . . . . . . . . 9 ((𝐴 / 𝐵) ∈ ℝ → (⌊‘(𝐴 / 𝐵)) ∈ ℂ)
3827, 37syl 17 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌊‘(𝐴 / 𝐵)) ∈ ℂ)
39383adant2 1131 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → (⌊‘(𝐴 / 𝐵)) ∈ ℂ)
40193ad2ant2 1134 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → 𝑁 ∈ ℂ)
4135, 39, 40adddid 11286 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → (𝐵 · ((⌊‘(𝐴 / 𝐵)) + 𝑁)) = ((𝐵 · (⌊‘(𝐴 / 𝐵))) + (𝐵 · 𝑁)))
42 mulcom 11242 . . . . . . . . . 10 ((𝑁 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝑁 · 𝐵) = (𝐵 · 𝑁))
4319, 34, 42syl2an 596 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → (𝑁 · 𝐵) = (𝐵 · 𝑁))
44433adant1 1130 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → (𝑁 · 𝐵) = (𝐵 · 𝑁))
4544eqcomd 2742 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → (𝐵 · 𝑁) = (𝑁 · 𝐵))
4645oveq2d 7448 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → ((𝐵 · (⌊‘(𝐴 / 𝐵))) + (𝐵 · 𝑁)) = ((𝐵 · (⌊‘(𝐴 / 𝐵))) + (𝑁 · 𝐵)))
4733, 41, 463eqtrd 2780 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → (𝐵 · (⌊‘((𝐴 + (𝑁 · 𝐵)) / 𝐵))) = ((𝐵 · (⌊‘(𝐴 / 𝐵))) + (𝑁 · 𝐵)))
4847oveq2d 7448 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → ((𝐴 + (𝑁 · 𝐵)) − (𝐵 · (⌊‘((𝐴 + (𝑁 · 𝐵)) / 𝐵)))) = ((𝐴 + (𝑁 · 𝐵)) − ((𝐵 · (⌊‘(𝐴 / 𝐵))) + (𝑁 · 𝐵))))
4934adantl 481 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℂ)
5049, 38mulcld 11282 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐵 · (⌊‘(𝐴 / 𝐵))) ∈ ℂ)
51503adant2 1131 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → (𝐵 · (⌊‘(𝐴 / 𝐵))) ∈ ℂ)
5212, 51, 14pnpcan2d 11659 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → ((𝐴 + (𝑁 · 𝐵)) − ((𝐵 · (⌊‘(𝐴 / 𝐵))) + (𝑁 · 𝐵))) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))))
5310, 48, 523eqtrd 2780 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → ((𝐴 + (𝑁 · 𝐵)) mod 𝐵) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))))
54 modval 13912 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 mod 𝐵) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))))
55543adant2 1131 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → (𝐴 mod 𝐵) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))))
5653, 55eqtr4d 2779 . 2 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℝ+) → ((𝐴 + (𝑁 · 𝐵)) mod 𝐵) = (𝐴 mod 𝐵))
57563com23 1126 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝑁 ∈ ℤ) → ((𝐴 + (𝑁 · 𝐵)) mod 𝐵) = (𝐴 mod 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2939  cfv 6560  (class class class)co 7432  cc 11154  cr 11155  0cc0 11156   + caddc 11159   · cmul 11161  cmin 11493   / cdiv 11921  cz 12615  +crp 13035  cfl 13831   mod cmo 13910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-sup 9483  df-inf 9484  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-n0 12529  df-z 12616  df-uz 12880  df-rp 13036  df-fl 13833  df-mod 13911
This theorem is referenced by:  modcyc2  13948  muladdmodid  13952  negmod  13958  modsumfzodifsn  13986  modxai  17107  wilthlem1  27112  wilthlem2  27113  lgsdir2lem1  27370  lgsdir2lem5  27374  lgseisenlem1  27420  dirkerper  46116  sqwvfoura  46248  sqwvfourb  46249  fourierswlem  46250  fouriersw  46251  3exp4mod41  47608  m1modmmod  48447
  Copyright terms: Public domain W3C validator