![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zmodcl | Structured version Visualization version GIF version |
Description: Closure law for the modulo operation restricted to integers. (Contributed by NM, 27-Nov-2008.) |
Ref | Expression |
---|---|
zmodcl | ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 mod 𝐵) ∈ ℕ0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zre 12546 | . . . 4 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℝ) | |
2 | nnrp 12969 | . . . 4 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℝ+) | |
3 | modval 13820 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 mod 𝐵) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵))))) | |
4 | 1, 2, 3 | syl2an 596 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 mod 𝐵) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵))))) |
5 | nnz 12563 | . . . . . 6 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℤ) | |
6 | 5 | adantl 482 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℤ) |
7 | nndivre 12237 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ∈ ℝ) | |
8 | 1, 7 | sylan 580 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ∈ ℝ) |
9 | 8 | flcld 13747 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (⌊‘(𝐴 / 𝐵)) ∈ ℤ) |
10 | 6, 9 | zmulcld 12656 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐵 · (⌊‘(𝐴 / 𝐵))) ∈ ℤ) |
11 | zsubcl 12588 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ (𝐵 · (⌊‘(𝐴 / 𝐵))) ∈ ℤ) → (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))) ∈ ℤ) | |
12 | 10, 11 | syldan 591 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))) ∈ ℤ) |
13 | 4, 12 | eqeltrd 2833 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 mod 𝐵) ∈ ℤ) |
14 | modge0 13828 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 0 ≤ (𝐴 mod 𝐵)) | |
15 | 1, 2, 14 | syl2an 596 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 0 ≤ (𝐴 mod 𝐵)) |
16 | elnn0z 12555 | . 2 ⊢ ((𝐴 mod 𝐵) ∈ ℕ0 ↔ ((𝐴 mod 𝐵) ∈ ℤ ∧ 0 ≤ (𝐴 mod 𝐵))) | |
17 | 13, 15, 16 | sylanbrc 583 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 mod 𝐵) ∈ ℕ0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 class class class wbr 5142 ‘cfv 6533 (class class class)co 7394 ℝcr 11093 0cc0 11094 · cmul 11099 ≤ cle 11233 − cmin 11428 / cdiv 11855 ℕcn 12196 ℕ0cn0 12456 ℤcz 12542 ℝ+crp 12958 ⌊cfl 13739 mod cmo 13818 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5293 ax-nul 5300 ax-pow 5357 ax-pr 5421 ax-un 7709 ax-cnex 11150 ax-resscn 11151 ax-1cn 11152 ax-icn 11153 ax-addcl 11154 ax-addrcl 11155 ax-mulcl 11156 ax-mulrcl 11157 ax-mulcom 11158 ax-addass 11159 ax-mulass 11160 ax-distr 11161 ax-i2m1 11162 ax-1ne0 11163 ax-1rid 11164 ax-rnegex 11165 ax-rrecex 11166 ax-cnre 11167 ax-pre-lttri 11168 ax-pre-lttrn 11169 ax-pre-ltadd 11170 ax-pre-mulgt0 11171 ax-pre-sup 11172 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4320 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5568 df-eprel 5574 df-po 5582 df-so 5583 df-fr 5625 df-we 5627 df-xp 5676 df-rel 5677 df-cnv 5678 df-co 5679 df-dm 5680 df-rn 5681 df-res 5682 df-ima 5683 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7350 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7840 df-2nd 7960 df-frecs 8250 df-wrecs 8281 df-recs 8355 df-rdg 8394 df-er 8688 df-en 8925 df-dom 8926 df-sdom 8927 df-sup 9421 df-inf 9422 df-pnf 11234 df-mnf 11235 df-xr 11236 df-ltxr 11237 df-le 11238 df-sub 11430 df-neg 11431 df-div 11856 df-nn 12197 df-n0 12457 df-z 12543 df-uz 12807 df-rp 12959 df-fl 13741 df-mod 13819 |
This theorem is referenced by: zmodcld 13841 zmodfz 13842 modaddmodup 13883 modaddmodlo 13884 cshwlen 14733 cshwidxmod 14737 repswcshw 14746 modfsummods 15723 divalgmod 16333 modgcd 16458 eucalgf 16504 eucalginv 16505 modprmn0modprm0 16724 fldivp1 16814 smndex1iidm 18759 odmodnn0 19374 gexdvds 19418 elqaalem2 25764 lgsmod 26755 dchrisumlem1 26921 congrep 41547 |
Copyright terms: Public domain | W3C validator |