MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modsubdir Structured version   Visualization version   GIF version

Theorem modsubdir 13912
Description: Distribute the modulo operation over a subtraction. (Contributed by NM, 30-Dec-2008.)
Assertion
Ref Expression
modsubdir ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐵 mod 𝐶) ≤ (𝐴 mod 𝐶) ↔ ((𝐴𝐵) mod 𝐶) = ((𝐴 mod 𝐶) − (𝐵 mod 𝐶))))

Proof of Theorem modsubdir
StepHypRef Expression
1 modcl 13842 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐴 mod 𝐶) ∈ ℝ)
213adant2 1131 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐴 mod 𝐶) ∈ ℝ)
3 modcl 13842 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐵 mod 𝐶) ∈ ℝ)
433adant1 1130 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐵 mod 𝐶) ∈ ℝ)
52, 4subge0d 11775 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (0 ≤ ((𝐴 mod 𝐶) − (𝐵 mod 𝐶)) ↔ (𝐵 mod 𝐶) ≤ (𝐴 mod 𝐶)))
6 resubcl 11493 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵) ∈ ℝ)
763adant3 1132 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐴𝐵) ∈ ℝ)
8 simp3 1138 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → 𝐶 ∈ ℝ+)
9 rerpdivcl 12990 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐴 / 𝐶) ∈ ℝ)
109flcld 13767 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (⌊‘(𝐴 / 𝐶)) ∈ ℤ)
11103adant2 1131 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (⌊‘(𝐴 / 𝐶)) ∈ ℤ)
12 rerpdivcl 12990 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐵 / 𝐶) ∈ ℝ)
1312flcld 13767 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (⌊‘(𝐵 / 𝐶)) ∈ ℤ)
14133adant1 1130 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (⌊‘(𝐵 / 𝐶)) ∈ ℤ)
1511, 14zsubcld 12650 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → ((⌊‘(𝐴 / 𝐶)) − (⌊‘(𝐵 / 𝐶))) ∈ ℤ)
16 modcyc2 13876 . . . . . . 7 (((𝐴𝐵) ∈ ℝ ∧ 𝐶 ∈ ℝ+ ∧ ((⌊‘(𝐴 / 𝐶)) − (⌊‘(𝐵 / 𝐶))) ∈ ℤ) → (((𝐴𝐵) − (𝐶 · ((⌊‘(𝐴 / 𝐶)) − (⌊‘(𝐵 / 𝐶))))) mod 𝐶) = ((𝐴𝐵) mod 𝐶))
177, 8, 15, 16syl3anc 1373 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (((𝐴𝐵) − (𝐶 · ((⌊‘(𝐴 / 𝐶)) − (⌊‘(𝐵 / 𝐶))))) mod 𝐶) = ((𝐴𝐵) mod 𝐶))
18 recn 11165 . . . . . . . . . 10 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
19183ad2ant1 1133 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → 𝐴 ∈ ℂ)
20 recn 11165 . . . . . . . . . 10 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
21203ad2ant2 1134 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → 𝐵 ∈ ℂ)
22 rpre 12967 . . . . . . . . . . . . 13 (𝐶 ∈ ℝ+𝐶 ∈ ℝ)
2322adantl 481 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → 𝐶 ∈ ℝ)
24 refldivcl 13792 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (⌊‘(𝐴 / 𝐶)) ∈ ℝ)
2523, 24remulcld 11211 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐶 · (⌊‘(𝐴 / 𝐶))) ∈ ℝ)
2625recnd 11209 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐶 · (⌊‘(𝐴 / 𝐶))) ∈ ℂ)
27263adant2 1131 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐶 · (⌊‘(𝐴 / 𝐶))) ∈ ℂ)
2822adantl 481 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → 𝐶 ∈ ℝ)
29 refldivcl 13792 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (⌊‘(𝐵 / 𝐶)) ∈ ℝ)
3028, 29remulcld 11211 . . . . . . . . . . 11 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐶 · (⌊‘(𝐵 / 𝐶))) ∈ ℝ)
3130recnd 11209 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐶 · (⌊‘(𝐵 / 𝐶))) ∈ ℂ)
32313adant1 1130 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐶 · (⌊‘(𝐵 / 𝐶))) ∈ ℂ)
3319, 21, 27, 32sub4d 11589 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐴𝐵) − ((𝐶 · (⌊‘(𝐴 / 𝐶))) − (𝐶 · (⌊‘(𝐵 / 𝐶))))) = ((𝐴 − (𝐶 · (⌊‘(𝐴 / 𝐶)))) − (𝐵 − (𝐶 · (⌊‘(𝐵 / 𝐶))))))
34223ad2ant3 1135 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → 𝐶 ∈ ℝ)
3534recnd 11209 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → 𝐶 ∈ ℂ)
3624recnd 11209 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (⌊‘(𝐴 / 𝐶)) ∈ ℂ)
37363adant2 1131 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (⌊‘(𝐴 / 𝐶)) ∈ ℂ)
3829recnd 11209 . . . . . . . . . . 11 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (⌊‘(𝐵 / 𝐶)) ∈ ℂ)
39383adant1 1130 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (⌊‘(𝐵 / 𝐶)) ∈ ℂ)
4035, 37, 39subdid 11641 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐶 · ((⌊‘(𝐴 / 𝐶)) − (⌊‘(𝐵 / 𝐶)))) = ((𝐶 · (⌊‘(𝐴 / 𝐶))) − (𝐶 · (⌊‘(𝐵 / 𝐶)))))
4140oveq2d 7406 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐴𝐵) − (𝐶 · ((⌊‘(𝐴 / 𝐶)) − (⌊‘(𝐵 / 𝐶))))) = ((𝐴𝐵) − ((𝐶 · (⌊‘(𝐴 / 𝐶))) − (𝐶 · (⌊‘(𝐵 / 𝐶))))))
42 modval 13840 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐴 mod 𝐶) = (𝐴 − (𝐶 · (⌊‘(𝐴 / 𝐶)))))
43423adant2 1131 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐴 mod 𝐶) = (𝐴 − (𝐶 · (⌊‘(𝐴 / 𝐶)))))
44 modval 13840 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐵 mod 𝐶) = (𝐵 − (𝐶 · (⌊‘(𝐵 / 𝐶)))))
45443adant1 1130 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐵 mod 𝐶) = (𝐵 − (𝐶 · (⌊‘(𝐵 / 𝐶)))))
4643, 45oveq12d 7408 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐴 mod 𝐶) − (𝐵 mod 𝐶)) = ((𝐴 − (𝐶 · (⌊‘(𝐴 / 𝐶)))) − (𝐵 − (𝐶 · (⌊‘(𝐵 / 𝐶))))))
4733, 41, 463eqtr4d 2775 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐴𝐵) − (𝐶 · ((⌊‘(𝐴 / 𝐶)) − (⌊‘(𝐵 / 𝐶))))) = ((𝐴 mod 𝐶) − (𝐵 mod 𝐶)))
4847oveq1d 7405 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (((𝐴𝐵) − (𝐶 · ((⌊‘(𝐴 / 𝐶)) − (⌊‘(𝐵 / 𝐶))))) mod 𝐶) = (((𝐴 mod 𝐶) − (𝐵 mod 𝐶)) mod 𝐶))
4917, 48eqtr3d 2767 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐴𝐵) mod 𝐶) = (((𝐴 mod 𝐶) − (𝐵 mod 𝐶)) mod 𝐶))
5049adantr 480 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) ∧ 0 ≤ ((𝐴 mod 𝐶) − (𝐵 mod 𝐶))) → ((𝐴𝐵) mod 𝐶) = (((𝐴 mod 𝐶) − (𝐵 mod 𝐶)) mod 𝐶))
512, 4resubcld 11613 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐴 mod 𝐶) − (𝐵 mod 𝐶)) ∈ ℝ)
5251adantr 480 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) ∧ 0 ≤ ((𝐴 mod 𝐶) − (𝐵 mod 𝐶))) → ((𝐴 mod 𝐶) − (𝐵 mod 𝐶)) ∈ ℝ)
53 simpl3 1194 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) ∧ 0 ≤ ((𝐴 mod 𝐶) − (𝐵 mod 𝐶))) → 𝐶 ∈ ℝ+)
54 simpr 484 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) ∧ 0 ≤ ((𝐴 mod 𝐶) − (𝐵 mod 𝐶))) → 0 ≤ ((𝐴 mod 𝐶) − (𝐵 mod 𝐶)))
55 modge0 13848 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → 0 ≤ (𝐵 mod 𝐶))
56553adant1 1130 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → 0 ≤ (𝐵 mod 𝐶))
572, 4subge02d 11777 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (0 ≤ (𝐵 mod 𝐶) ↔ ((𝐴 mod 𝐶) − (𝐵 mod 𝐶)) ≤ (𝐴 mod 𝐶)))
5856, 57mpbid 232 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐴 mod 𝐶) − (𝐵 mod 𝐶)) ≤ (𝐴 mod 𝐶))
59 modlt 13849 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐴 mod 𝐶) < 𝐶)
60593adant2 1131 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐴 mod 𝐶) < 𝐶)
6151, 2, 34, 58, 60lelttrd 11339 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐴 mod 𝐶) − (𝐵 mod 𝐶)) < 𝐶)
6261adantr 480 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) ∧ 0 ≤ ((𝐴 mod 𝐶) − (𝐵 mod 𝐶))) → ((𝐴 mod 𝐶) − (𝐵 mod 𝐶)) < 𝐶)
63 modid 13865 . . . . 5 (((((𝐴 mod 𝐶) − (𝐵 mod 𝐶)) ∈ ℝ ∧ 𝐶 ∈ ℝ+) ∧ (0 ≤ ((𝐴 mod 𝐶) − (𝐵 mod 𝐶)) ∧ ((𝐴 mod 𝐶) − (𝐵 mod 𝐶)) < 𝐶)) → (((𝐴 mod 𝐶) − (𝐵 mod 𝐶)) mod 𝐶) = ((𝐴 mod 𝐶) − (𝐵 mod 𝐶)))
6452, 53, 54, 62, 63syl22anc 838 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) ∧ 0 ≤ ((𝐴 mod 𝐶) − (𝐵 mod 𝐶))) → (((𝐴 mod 𝐶) − (𝐵 mod 𝐶)) mod 𝐶) = ((𝐴 mod 𝐶) − (𝐵 mod 𝐶)))
6550, 64eqtrd 2765 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) ∧ 0 ≤ ((𝐴 mod 𝐶) − (𝐵 mod 𝐶))) → ((𝐴𝐵) mod 𝐶) = ((𝐴 mod 𝐶) − (𝐵 mod 𝐶)))
66 modge0 13848 . . . . . 6 (((𝐴𝐵) ∈ ℝ ∧ 𝐶 ∈ ℝ+) → 0 ≤ ((𝐴𝐵) mod 𝐶))
676, 66stoic3 1776 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → 0 ≤ ((𝐴𝐵) mod 𝐶))
6867adantr 480 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) ∧ ((𝐴𝐵) mod 𝐶) = ((𝐴 mod 𝐶) − (𝐵 mod 𝐶))) → 0 ≤ ((𝐴𝐵) mod 𝐶))
69 simpr 484 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) ∧ ((𝐴𝐵) mod 𝐶) = ((𝐴 mod 𝐶) − (𝐵 mod 𝐶))) → ((𝐴𝐵) mod 𝐶) = ((𝐴 mod 𝐶) − (𝐵 mod 𝐶)))
7068, 69breqtrd 5136 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) ∧ ((𝐴𝐵) mod 𝐶) = ((𝐴 mod 𝐶) − (𝐵 mod 𝐶))) → 0 ≤ ((𝐴 mod 𝐶) − (𝐵 mod 𝐶)))
7165, 70impbida 800 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (0 ≤ ((𝐴 mod 𝐶) − (𝐵 mod 𝐶)) ↔ ((𝐴𝐵) mod 𝐶) = ((𝐴 mod 𝐶) − (𝐵 mod 𝐶))))
725, 71bitr3d 281 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐵 mod 𝐶) ≤ (𝐴 mod 𝐶) ↔ ((𝐴𝐵) mod 𝐶) = ((𝐴 mod 𝐶) − (𝐵 mod 𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5110  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075   · cmul 11080   < clt 11215  cle 11216  cmin 11412   / cdiv 11842  cz 12536  +crp 12958  cfl 13759   mod cmo 13838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-fl 13761  df-mod 13839
This theorem is referenced by:  modeqmodmin  13913  digit1  14209  4sqlem12  16934
  Copyright terms: Public domain W3C validator