MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modsubdir Structured version   Visualization version   GIF version

Theorem modsubdir 13905
Description: Distribute the modulo operation over a subtraction. (Contributed by NM, 30-Dec-2008.)
Assertion
Ref Expression
modsubdir ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐵 mod 𝐶) ≤ (𝐴 mod 𝐶) ↔ ((𝐴𝐵) mod 𝐶) = ((𝐴 mod 𝐶) − (𝐵 mod 𝐶))))

Proof of Theorem modsubdir
StepHypRef Expression
1 modcl 13835 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐴 mod 𝐶) ∈ ℝ)
213adant2 1131 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐴 mod 𝐶) ∈ ℝ)
3 modcl 13835 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐵 mod 𝐶) ∈ ℝ)
433adant1 1130 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐵 mod 𝐶) ∈ ℝ)
52, 4subge0d 11768 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (0 ≤ ((𝐴 mod 𝐶) − (𝐵 mod 𝐶)) ↔ (𝐵 mod 𝐶) ≤ (𝐴 mod 𝐶)))
6 resubcl 11486 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵) ∈ ℝ)
763adant3 1132 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐴𝐵) ∈ ℝ)
8 simp3 1138 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → 𝐶 ∈ ℝ+)
9 rerpdivcl 12983 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐴 / 𝐶) ∈ ℝ)
109flcld 13760 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (⌊‘(𝐴 / 𝐶)) ∈ ℤ)
11103adant2 1131 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (⌊‘(𝐴 / 𝐶)) ∈ ℤ)
12 rerpdivcl 12983 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐵 / 𝐶) ∈ ℝ)
1312flcld 13760 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (⌊‘(𝐵 / 𝐶)) ∈ ℤ)
14133adant1 1130 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (⌊‘(𝐵 / 𝐶)) ∈ ℤ)
1511, 14zsubcld 12643 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → ((⌊‘(𝐴 / 𝐶)) − (⌊‘(𝐵 / 𝐶))) ∈ ℤ)
16 modcyc2 13869 . . . . . . 7 (((𝐴𝐵) ∈ ℝ ∧ 𝐶 ∈ ℝ+ ∧ ((⌊‘(𝐴 / 𝐶)) − (⌊‘(𝐵 / 𝐶))) ∈ ℤ) → (((𝐴𝐵) − (𝐶 · ((⌊‘(𝐴 / 𝐶)) − (⌊‘(𝐵 / 𝐶))))) mod 𝐶) = ((𝐴𝐵) mod 𝐶))
177, 8, 15, 16syl3anc 1373 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (((𝐴𝐵) − (𝐶 · ((⌊‘(𝐴 / 𝐶)) − (⌊‘(𝐵 / 𝐶))))) mod 𝐶) = ((𝐴𝐵) mod 𝐶))
18 recn 11158 . . . . . . . . . 10 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
19183ad2ant1 1133 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → 𝐴 ∈ ℂ)
20 recn 11158 . . . . . . . . . 10 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
21203ad2ant2 1134 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → 𝐵 ∈ ℂ)
22 rpre 12960 . . . . . . . . . . . . 13 (𝐶 ∈ ℝ+𝐶 ∈ ℝ)
2322adantl 481 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → 𝐶 ∈ ℝ)
24 refldivcl 13785 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (⌊‘(𝐴 / 𝐶)) ∈ ℝ)
2523, 24remulcld 11204 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐶 · (⌊‘(𝐴 / 𝐶))) ∈ ℝ)
2625recnd 11202 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐶 · (⌊‘(𝐴 / 𝐶))) ∈ ℂ)
27263adant2 1131 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐶 · (⌊‘(𝐴 / 𝐶))) ∈ ℂ)
2822adantl 481 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → 𝐶 ∈ ℝ)
29 refldivcl 13785 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (⌊‘(𝐵 / 𝐶)) ∈ ℝ)
3028, 29remulcld 11204 . . . . . . . . . . 11 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐶 · (⌊‘(𝐵 / 𝐶))) ∈ ℝ)
3130recnd 11202 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐶 · (⌊‘(𝐵 / 𝐶))) ∈ ℂ)
32313adant1 1130 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐶 · (⌊‘(𝐵 / 𝐶))) ∈ ℂ)
3319, 21, 27, 32sub4d 11582 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐴𝐵) − ((𝐶 · (⌊‘(𝐴 / 𝐶))) − (𝐶 · (⌊‘(𝐵 / 𝐶))))) = ((𝐴 − (𝐶 · (⌊‘(𝐴 / 𝐶)))) − (𝐵 − (𝐶 · (⌊‘(𝐵 / 𝐶))))))
34223ad2ant3 1135 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → 𝐶 ∈ ℝ)
3534recnd 11202 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → 𝐶 ∈ ℂ)
3624recnd 11202 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (⌊‘(𝐴 / 𝐶)) ∈ ℂ)
37363adant2 1131 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (⌊‘(𝐴 / 𝐶)) ∈ ℂ)
3829recnd 11202 . . . . . . . . . . 11 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (⌊‘(𝐵 / 𝐶)) ∈ ℂ)
39383adant1 1130 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (⌊‘(𝐵 / 𝐶)) ∈ ℂ)
4035, 37, 39subdid 11634 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐶 · ((⌊‘(𝐴 / 𝐶)) − (⌊‘(𝐵 / 𝐶)))) = ((𝐶 · (⌊‘(𝐴 / 𝐶))) − (𝐶 · (⌊‘(𝐵 / 𝐶)))))
4140oveq2d 7403 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐴𝐵) − (𝐶 · ((⌊‘(𝐴 / 𝐶)) − (⌊‘(𝐵 / 𝐶))))) = ((𝐴𝐵) − ((𝐶 · (⌊‘(𝐴 / 𝐶))) − (𝐶 · (⌊‘(𝐵 / 𝐶))))))
42 modval 13833 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐴 mod 𝐶) = (𝐴 − (𝐶 · (⌊‘(𝐴 / 𝐶)))))
43423adant2 1131 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐴 mod 𝐶) = (𝐴 − (𝐶 · (⌊‘(𝐴 / 𝐶)))))
44 modval 13833 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐵 mod 𝐶) = (𝐵 − (𝐶 · (⌊‘(𝐵 / 𝐶)))))
45443adant1 1130 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐵 mod 𝐶) = (𝐵 − (𝐶 · (⌊‘(𝐵 / 𝐶)))))
4643, 45oveq12d 7405 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐴 mod 𝐶) − (𝐵 mod 𝐶)) = ((𝐴 − (𝐶 · (⌊‘(𝐴 / 𝐶)))) − (𝐵 − (𝐶 · (⌊‘(𝐵 / 𝐶))))))
4733, 41, 463eqtr4d 2774 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐴𝐵) − (𝐶 · ((⌊‘(𝐴 / 𝐶)) − (⌊‘(𝐵 / 𝐶))))) = ((𝐴 mod 𝐶) − (𝐵 mod 𝐶)))
4847oveq1d 7402 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (((𝐴𝐵) − (𝐶 · ((⌊‘(𝐴 / 𝐶)) − (⌊‘(𝐵 / 𝐶))))) mod 𝐶) = (((𝐴 mod 𝐶) − (𝐵 mod 𝐶)) mod 𝐶))
4917, 48eqtr3d 2766 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐴𝐵) mod 𝐶) = (((𝐴 mod 𝐶) − (𝐵 mod 𝐶)) mod 𝐶))
5049adantr 480 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) ∧ 0 ≤ ((𝐴 mod 𝐶) − (𝐵 mod 𝐶))) → ((𝐴𝐵) mod 𝐶) = (((𝐴 mod 𝐶) − (𝐵 mod 𝐶)) mod 𝐶))
512, 4resubcld 11606 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐴 mod 𝐶) − (𝐵 mod 𝐶)) ∈ ℝ)
5251adantr 480 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) ∧ 0 ≤ ((𝐴 mod 𝐶) − (𝐵 mod 𝐶))) → ((𝐴 mod 𝐶) − (𝐵 mod 𝐶)) ∈ ℝ)
53 simpl3 1194 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) ∧ 0 ≤ ((𝐴 mod 𝐶) − (𝐵 mod 𝐶))) → 𝐶 ∈ ℝ+)
54 simpr 484 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) ∧ 0 ≤ ((𝐴 mod 𝐶) − (𝐵 mod 𝐶))) → 0 ≤ ((𝐴 mod 𝐶) − (𝐵 mod 𝐶)))
55 modge0 13841 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → 0 ≤ (𝐵 mod 𝐶))
56553adant1 1130 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → 0 ≤ (𝐵 mod 𝐶))
572, 4subge02d 11770 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (0 ≤ (𝐵 mod 𝐶) ↔ ((𝐴 mod 𝐶) − (𝐵 mod 𝐶)) ≤ (𝐴 mod 𝐶)))
5856, 57mpbid 232 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐴 mod 𝐶) − (𝐵 mod 𝐶)) ≤ (𝐴 mod 𝐶))
59 modlt 13842 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐴 mod 𝐶) < 𝐶)
60593adant2 1131 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐴 mod 𝐶) < 𝐶)
6151, 2, 34, 58, 60lelttrd 11332 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐴 mod 𝐶) − (𝐵 mod 𝐶)) < 𝐶)
6261adantr 480 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) ∧ 0 ≤ ((𝐴 mod 𝐶) − (𝐵 mod 𝐶))) → ((𝐴 mod 𝐶) − (𝐵 mod 𝐶)) < 𝐶)
63 modid 13858 . . . . 5 (((((𝐴 mod 𝐶) − (𝐵 mod 𝐶)) ∈ ℝ ∧ 𝐶 ∈ ℝ+) ∧ (0 ≤ ((𝐴 mod 𝐶) − (𝐵 mod 𝐶)) ∧ ((𝐴 mod 𝐶) − (𝐵 mod 𝐶)) < 𝐶)) → (((𝐴 mod 𝐶) − (𝐵 mod 𝐶)) mod 𝐶) = ((𝐴 mod 𝐶) − (𝐵 mod 𝐶)))
6452, 53, 54, 62, 63syl22anc 838 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) ∧ 0 ≤ ((𝐴 mod 𝐶) − (𝐵 mod 𝐶))) → (((𝐴 mod 𝐶) − (𝐵 mod 𝐶)) mod 𝐶) = ((𝐴 mod 𝐶) − (𝐵 mod 𝐶)))
6550, 64eqtrd 2764 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) ∧ 0 ≤ ((𝐴 mod 𝐶) − (𝐵 mod 𝐶))) → ((𝐴𝐵) mod 𝐶) = ((𝐴 mod 𝐶) − (𝐵 mod 𝐶)))
66 modge0 13841 . . . . . 6 (((𝐴𝐵) ∈ ℝ ∧ 𝐶 ∈ ℝ+) → 0 ≤ ((𝐴𝐵) mod 𝐶))
676, 66stoic3 1776 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → 0 ≤ ((𝐴𝐵) mod 𝐶))
6867adantr 480 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) ∧ ((𝐴𝐵) mod 𝐶) = ((𝐴 mod 𝐶) − (𝐵 mod 𝐶))) → 0 ≤ ((𝐴𝐵) mod 𝐶))
69 simpr 484 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) ∧ ((𝐴𝐵) mod 𝐶) = ((𝐴 mod 𝐶) − (𝐵 mod 𝐶))) → ((𝐴𝐵) mod 𝐶) = ((𝐴 mod 𝐶) − (𝐵 mod 𝐶)))
7068, 69breqtrd 5133 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) ∧ ((𝐴𝐵) mod 𝐶) = ((𝐴 mod 𝐶) − (𝐵 mod 𝐶))) → 0 ≤ ((𝐴 mod 𝐶) − (𝐵 mod 𝐶)))
7165, 70impbida 800 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (0 ≤ ((𝐴 mod 𝐶) − (𝐵 mod 𝐶)) ↔ ((𝐴𝐵) mod 𝐶) = ((𝐴 mod 𝐶) − (𝐵 mod 𝐶))))
725, 71bitr3d 281 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐵 mod 𝐶) ≤ (𝐴 mod 𝐶) ↔ ((𝐴𝐵) mod 𝐶) = ((𝐴 mod 𝐶) − (𝐵 mod 𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5107  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068   · cmul 11073   < clt 11208  cle 11209  cmin 11405   / cdiv 11835  cz 12529  +crp 12951  cfl 13752   mod cmo 13831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-fl 13754  df-mod 13832
This theorem is referenced by:  modeqmodmin  13906  digit1  14202  4sqlem12  16927
  Copyright terms: Public domain W3C validator