MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odmodnn0 Structured version   Visualization version   GIF version

Theorem odmodnn0 19148
Description: Reduce the argument of a group multiple by modding out the order of the element. (Contributed by Mario Carneiro, 23-Sep-2015.)
Hypotheses
Ref Expression
odcl.1 𝑋 = (Base‘𝐺)
odcl.2 𝑂 = (od‘𝐺)
odid.3 · = (.g𝐺)
odid.4 0 = (0g𝐺)
Assertion
Ref Expression
odmodnn0 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑁 mod (𝑂𝐴)) · 𝐴) = (𝑁 · 𝐴))

Proof of Theorem odmodnn0
StepHypRef Expression
1 simpl1 1190 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → 𝐺 ∈ Mnd)
2 nnnn0 12240 . . . . . 6 ((𝑂𝐴) ∈ ℕ → (𝑂𝐴) ∈ ℕ0)
32adantl 482 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (𝑂𝐴) ∈ ℕ0)
4 simpl3 1192 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → 𝑁 ∈ ℕ0)
54nn0red 12294 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → 𝑁 ∈ ℝ)
6 nnrp 12741 . . . . . . . 8 ((𝑂𝐴) ∈ ℕ → (𝑂𝐴) ∈ ℝ+)
76adantl 482 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (𝑂𝐴) ∈ ℝ+)
85, 7rerpdivcld 12803 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (𝑁 / (𝑂𝐴)) ∈ ℝ)
94nn0ge0d 12296 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → 0 ≤ 𝑁)
10 nnre 11980 . . . . . . . 8 ((𝑂𝐴) ∈ ℕ → (𝑂𝐴) ∈ ℝ)
1110adantl 482 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (𝑂𝐴) ∈ ℝ)
12 nngt0 12004 . . . . . . . 8 ((𝑂𝐴) ∈ ℕ → 0 < (𝑂𝐴))
1312adantl 482 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → 0 < (𝑂𝐴))
14 divge0 11844 . . . . . . 7 (((𝑁 ∈ ℝ ∧ 0 ≤ 𝑁) ∧ ((𝑂𝐴) ∈ ℝ ∧ 0 < (𝑂𝐴))) → 0 ≤ (𝑁 / (𝑂𝐴)))
155, 9, 11, 13, 14syl22anc 836 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → 0 ≤ (𝑁 / (𝑂𝐴)))
16 flge0nn0 13540 . . . . . 6 (((𝑁 / (𝑂𝐴)) ∈ ℝ ∧ 0 ≤ (𝑁 / (𝑂𝐴))) → (⌊‘(𝑁 / (𝑂𝐴))) ∈ ℕ0)
178, 15, 16syl2anc 584 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (⌊‘(𝑁 / (𝑂𝐴))) ∈ ℕ0)
183, 17nn0mulcld 12298 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) ∈ ℕ0)
194nn0zd 12424 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → 𝑁 ∈ ℤ)
20 zmodcl 13611 . . . . 5 ((𝑁 ∈ ℤ ∧ (𝑂𝐴) ∈ ℕ) → (𝑁 mod (𝑂𝐴)) ∈ ℕ0)
2119, 20sylancom 588 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (𝑁 mod (𝑂𝐴)) ∈ ℕ0)
22 simpl2 1191 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → 𝐴𝑋)
23 odcl.1 . . . . 5 𝑋 = (Base‘𝐺)
24 odid.3 . . . . 5 · = (.g𝐺)
25 eqid 2738 . . . . 5 (+g𝐺) = (+g𝐺)
2623, 24, 25mulgnn0dir 18733 . . . 4 ((𝐺 ∈ Mnd ∧ (((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) ∈ ℕ0 ∧ (𝑁 mod (𝑂𝐴)) ∈ ℕ0𝐴𝑋)) → ((((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) + (𝑁 mod (𝑂𝐴))) · 𝐴) = ((((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) · 𝐴)(+g𝐺)((𝑁 mod (𝑂𝐴)) · 𝐴)))
271, 18, 21, 22, 26syl13anc 1371 . . 3 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) + (𝑁 mod (𝑂𝐴))) · 𝐴) = ((((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) · 𝐴)(+g𝐺)((𝑁 mod (𝑂𝐴)) · 𝐴)))
2811recnd 11003 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (𝑂𝐴) ∈ ℂ)
2917nn0cnd 12295 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (⌊‘(𝑁 / (𝑂𝐴))) ∈ ℂ)
3028, 29mulcomd 10996 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) = ((⌊‘(𝑁 / (𝑂𝐴))) · (𝑂𝐴)))
3130oveq1d 7290 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) · 𝐴) = (((⌊‘(𝑁 / (𝑂𝐴))) · (𝑂𝐴)) · 𝐴))
3223, 24mulgnn0ass 18739 . . . . . . 7 ((𝐺 ∈ Mnd ∧ ((⌊‘(𝑁 / (𝑂𝐴))) ∈ ℕ0 ∧ (𝑂𝐴) ∈ ℕ0𝐴𝑋)) → (((⌊‘(𝑁 / (𝑂𝐴))) · (𝑂𝐴)) · 𝐴) = ((⌊‘(𝑁 / (𝑂𝐴))) · ((𝑂𝐴) · 𝐴)))
331, 17, 3, 22, 32syl13anc 1371 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (((⌊‘(𝑁 / (𝑂𝐴))) · (𝑂𝐴)) · 𝐴) = ((⌊‘(𝑁 / (𝑂𝐴))) · ((𝑂𝐴) · 𝐴)))
34 odcl.2 . . . . . . . . . 10 𝑂 = (od‘𝐺)
35 odid.4 . . . . . . . . . 10 0 = (0g𝐺)
3623, 34, 24, 35odid 19146 . . . . . . . . 9 (𝐴𝑋 → ((𝑂𝐴) · 𝐴) = 0 )
3722, 36syl 17 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑂𝐴) · 𝐴) = 0 )
3837oveq2d 7291 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((⌊‘(𝑁 / (𝑂𝐴))) · ((𝑂𝐴) · 𝐴)) = ((⌊‘(𝑁 / (𝑂𝐴))) · 0 ))
3923, 24, 35mulgnn0z 18730 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ (⌊‘(𝑁 / (𝑂𝐴))) ∈ ℕ0) → ((⌊‘(𝑁 / (𝑂𝐴))) · 0 ) = 0 )
401, 17, 39syl2anc 584 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((⌊‘(𝑁 / (𝑂𝐴))) · 0 ) = 0 )
4138, 40eqtrd 2778 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((⌊‘(𝑁 / (𝑂𝐴))) · ((𝑂𝐴) · 𝐴)) = 0 )
4233, 41eqtrd 2778 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (((⌊‘(𝑁 / (𝑂𝐴))) · (𝑂𝐴)) · 𝐴) = 0 )
4331, 42eqtrd 2778 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) · 𝐴) = 0 )
4443oveq1d 7290 . . 3 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) · 𝐴)(+g𝐺)((𝑁 mod (𝑂𝐴)) · 𝐴)) = ( 0 (+g𝐺)((𝑁 mod (𝑂𝐴)) · 𝐴)))
4527, 44eqtrd 2778 . 2 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) + (𝑁 mod (𝑂𝐴))) · 𝐴) = ( 0 (+g𝐺)((𝑁 mod (𝑂𝐴)) · 𝐴)))
46 modval 13591 . . . . . 6 ((𝑁 ∈ ℝ ∧ (𝑂𝐴) ∈ ℝ+) → (𝑁 mod (𝑂𝐴)) = (𝑁 − ((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴))))))
475, 7, 46syl2anc 584 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (𝑁 mod (𝑂𝐴)) = (𝑁 − ((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴))))))
4847oveq2d 7291 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) + (𝑁 mod (𝑂𝐴))) = (((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) + (𝑁 − ((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))))))
4918nn0cnd 12295 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) ∈ ℂ)
504nn0cnd 12295 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → 𝑁 ∈ ℂ)
5149, 50pncan3d 11335 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) + (𝑁 − ((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))))) = 𝑁)
5248, 51eqtrd 2778 . . 3 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) + (𝑁 mod (𝑂𝐴))) = 𝑁)
5352oveq1d 7290 . 2 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) + (𝑁 mod (𝑂𝐴))) · 𝐴) = (𝑁 · 𝐴))
5423, 24mulgnn0cl 18720 . . . 4 ((𝐺 ∈ Mnd ∧ (𝑁 mod (𝑂𝐴)) ∈ ℕ0𝐴𝑋) → ((𝑁 mod (𝑂𝐴)) · 𝐴) ∈ 𝑋)
551, 21, 22, 54syl3anc 1370 . . 3 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑁 mod (𝑂𝐴)) · 𝐴) ∈ 𝑋)
5623, 25, 35mndlid 18405 . . 3 ((𝐺 ∈ Mnd ∧ ((𝑁 mod (𝑂𝐴)) · 𝐴) ∈ 𝑋) → ( 0 (+g𝐺)((𝑁 mod (𝑂𝐴)) · 𝐴)) = ((𝑁 mod (𝑂𝐴)) · 𝐴))
571, 55, 56syl2anc 584 . 2 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ( 0 (+g𝐺)((𝑁 mod (𝑂𝐴)) · 𝐴)) = ((𝑁 mod (𝑂𝐴)) · 𝐴))
5845, 53, 573eqtr3rd 2787 1 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑁 mod (𝑂𝐴)) · 𝐴) = (𝑁 · 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106   class class class wbr 5074  cfv 6433  (class class class)co 7275  cr 10870  0cc0 10871   + caddc 10874   · cmul 10876   < clt 11009  cle 11010  cmin 11205   / cdiv 11632  cn 11973  0cn0 12233  cz 12319  +crp 12730  cfl 13510   mod cmo 13589  Basecbs 16912  +gcplusg 16962  0gc0g 17150  Mndcmnd 18385  .gcmg 18700  odcod 19132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fl 13512  df-mod 13590  df-seq 13722  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mulg 18701  df-od 19136
This theorem is referenced by:  mndodcong  19150
  Copyright terms: Public domain W3C validator