MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odmodnn0 Structured version   Visualization version   GIF version

Theorem odmodnn0 19063
Description: Reduce the argument of a group multiple by modding out the order of the element. (Contributed by Mario Carneiro, 23-Sep-2015.)
Hypotheses
Ref Expression
odcl.1 𝑋 = (Base‘𝐺)
odcl.2 𝑂 = (od‘𝐺)
odid.3 · = (.g𝐺)
odid.4 0 = (0g𝐺)
Assertion
Ref Expression
odmodnn0 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑁 mod (𝑂𝐴)) · 𝐴) = (𝑁 · 𝐴))

Proof of Theorem odmodnn0
StepHypRef Expression
1 simpl1 1189 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → 𝐺 ∈ Mnd)
2 nnnn0 12170 . . . . . 6 ((𝑂𝐴) ∈ ℕ → (𝑂𝐴) ∈ ℕ0)
32adantl 481 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (𝑂𝐴) ∈ ℕ0)
4 simpl3 1191 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → 𝑁 ∈ ℕ0)
54nn0red 12224 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → 𝑁 ∈ ℝ)
6 nnrp 12670 . . . . . . . 8 ((𝑂𝐴) ∈ ℕ → (𝑂𝐴) ∈ ℝ+)
76adantl 481 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (𝑂𝐴) ∈ ℝ+)
85, 7rerpdivcld 12732 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (𝑁 / (𝑂𝐴)) ∈ ℝ)
94nn0ge0d 12226 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → 0 ≤ 𝑁)
10 nnre 11910 . . . . . . . 8 ((𝑂𝐴) ∈ ℕ → (𝑂𝐴) ∈ ℝ)
1110adantl 481 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (𝑂𝐴) ∈ ℝ)
12 nngt0 11934 . . . . . . . 8 ((𝑂𝐴) ∈ ℕ → 0 < (𝑂𝐴))
1312adantl 481 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → 0 < (𝑂𝐴))
14 divge0 11774 . . . . . . 7 (((𝑁 ∈ ℝ ∧ 0 ≤ 𝑁) ∧ ((𝑂𝐴) ∈ ℝ ∧ 0 < (𝑂𝐴))) → 0 ≤ (𝑁 / (𝑂𝐴)))
155, 9, 11, 13, 14syl22anc 835 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → 0 ≤ (𝑁 / (𝑂𝐴)))
16 flge0nn0 13468 . . . . . 6 (((𝑁 / (𝑂𝐴)) ∈ ℝ ∧ 0 ≤ (𝑁 / (𝑂𝐴))) → (⌊‘(𝑁 / (𝑂𝐴))) ∈ ℕ0)
178, 15, 16syl2anc 583 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (⌊‘(𝑁 / (𝑂𝐴))) ∈ ℕ0)
183, 17nn0mulcld 12228 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) ∈ ℕ0)
194nn0zd 12353 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → 𝑁 ∈ ℤ)
20 zmodcl 13539 . . . . 5 ((𝑁 ∈ ℤ ∧ (𝑂𝐴) ∈ ℕ) → (𝑁 mod (𝑂𝐴)) ∈ ℕ0)
2119, 20sylancom 587 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (𝑁 mod (𝑂𝐴)) ∈ ℕ0)
22 simpl2 1190 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → 𝐴𝑋)
23 odcl.1 . . . . 5 𝑋 = (Base‘𝐺)
24 odid.3 . . . . 5 · = (.g𝐺)
25 eqid 2738 . . . . 5 (+g𝐺) = (+g𝐺)
2623, 24, 25mulgnn0dir 18648 . . . 4 ((𝐺 ∈ Mnd ∧ (((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) ∈ ℕ0 ∧ (𝑁 mod (𝑂𝐴)) ∈ ℕ0𝐴𝑋)) → ((((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) + (𝑁 mod (𝑂𝐴))) · 𝐴) = ((((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) · 𝐴)(+g𝐺)((𝑁 mod (𝑂𝐴)) · 𝐴)))
271, 18, 21, 22, 26syl13anc 1370 . . 3 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) + (𝑁 mod (𝑂𝐴))) · 𝐴) = ((((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) · 𝐴)(+g𝐺)((𝑁 mod (𝑂𝐴)) · 𝐴)))
2811recnd 10934 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (𝑂𝐴) ∈ ℂ)
2917nn0cnd 12225 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (⌊‘(𝑁 / (𝑂𝐴))) ∈ ℂ)
3028, 29mulcomd 10927 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) = ((⌊‘(𝑁 / (𝑂𝐴))) · (𝑂𝐴)))
3130oveq1d 7270 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) · 𝐴) = (((⌊‘(𝑁 / (𝑂𝐴))) · (𝑂𝐴)) · 𝐴))
3223, 24mulgnn0ass 18654 . . . . . . 7 ((𝐺 ∈ Mnd ∧ ((⌊‘(𝑁 / (𝑂𝐴))) ∈ ℕ0 ∧ (𝑂𝐴) ∈ ℕ0𝐴𝑋)) → (((⌊‘(𝑁 / (𝑂𝐴))) · (𝑂𝐴)) · 𝐴) = ((⌊‘(𝑁 / (𝑂𝐴))) · ((𝑂𝐴) · 𝐴)))
331, 17, 3, 22, 32syl13anc 1370 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (((⌊‘(𝑁 / (𝑂𝐴))) · (𝑂𝐴)) · 𝐴) = ((⌊‘(𝑁 / (𝑂𝐴))) · ((𝑂𝐴) · 𝐴)))
34 odcl.2 . . . . . . . . . 10 𝑂 = (od‘𝐺)
35 odid.4 . . . . . . . . . 10 0 = (0g𝐺)
3623, 34, 24, 35odid 19061 . . . . . . . . 9 (𝐴𝑋 → ((𝑂𝐴) · 𝐴) = 0 )
3722, 36syl 17 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑂𝐴) · 𝐴) = 0 )
3837oveq2d 7271 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((⌊‘(𝑁 / (𝑂𝐴))) · ((𝑂𝐴) · 𝐴)) = ((⌊‘(𝑁 / (𝑂𝐴))) · 0 ))
3923, 24, 35mulgnn0z 18645 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ (⌊‘(𝑁 / (𝑂𝐴))) ∈ ℕ0) → ((⌊‘(𝑁 / (𝑂𝐴))) · 0 ) = 0 )
401, 17, 39syl2anc 583 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((⌊‘(𝑁 / (𝑂𝐴))) · 0 ) = 0 )
4138, 40eqtrd 2778 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((⌊‘(𝑁 / (𝑂𝐴))) · ((𝑂𝐴) · 𝐴)) = 0 )
4233, 41eqtrd 2778 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (((⌊‘(𝑁 / (𝑂𝐴))) · (𝑂𝐴)) · 𝐴) = 0 )
4331, 42eqtrd 2778 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) · 𝐴) = 0 )
4443oveq1d 7270 . . 3 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) · 𝐴)(+g𝐺)((𝑁 mod (𝑂𝐴)) · 𝐴)) = ( 0 (+g𝐺)((𝑁 mod (𝑂𝐴)) · 𝐴)))
4527, 44eqtrd 2778 . 2 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) + (𝑁 mod (𝑂𝐴))) · 𝐴) = ( 0 (+g𝐺)((𝑁 mod (𝑂𝐴)) · 𝐴)))
46 modval 13519 . . . . . 6 ((𝑁 ∈ ℝ ∧ (𝑂𝐴) ∈ ℝ+) → (𝑁 mod (𝑂𝐴)) = (𝑁 − ((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴))))))
475, 7, 46syl2anc 583 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (𝑁 mod (𝑂𝐴)) = (𝑁 − ((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴))))))
4847oveq2d 7271 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) + (𝑁 mod (𝑂𝐴))) = (((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) + (𝑁 − ((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))))))
4918nn0cnd 12225 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) ∈ ℂ)
504nn0cnd 12225 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → 𝑁 ∈ ℂ)
5149, 50pncan3d 11265 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) + (𝑁 − ((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))))) = 𝑁)
5248, 51eqtrd 2778 . . 3 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) + (𝑁 mod (𝑂𝐴))) = 𝑁)
5352oveq1d 7270 . 2 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) + (𝑁 mod (𝑂𝐴))) · 𝐴) = (𝑁 · 𝐴))
5423, 24mulgnn0cl 18635 . . . 4 ((𝐺 ∈ Mnd ∧ (𝑁 mod (𝑂𝐴)) ∈ ℕ0𝐴𝑋) → ((𝑁 mod (𝑂𝐴)) · 𝐴) ∈ 𝑋)
551, 21, 22, 54syl3anc 1369 . . 3 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑁 mod (𝑂𝐴)) · 𝐴) ∈ 𝑋)
5623, 25, 35mndlid 18320 . . 3 ((𝐺 ∈ Mnd ∧ ((𝑁 mod (𝑂𝐴)) · 𝐴) ∈ 𝑋) → ( 0 (+g𝐺)((𝑁 mod (𝑂𝐴)) · 𝐴)) = ((𝑁 mod (𝑂𝐴)) · 𝐴))
571, 55, 56syl2anc 583 . 2 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ( 0 (+g𝐺)((𝑁 mod (𝑂𝐴)) · 𝐴)) = ((𝑁 mod (𝑂𝐴)) · 𝐴))
5845, 53, 573eqtr3rd 2787 1 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑁 mod (𝑂𝐴)) · 𝐴) = (𝑁 · 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108   class class class wbr 5070  cfv 6418  (class class class)co 7255  cr 10801  0cc0 10802   + caddc 10805   · cmul 10807   < clt 10940  cle 10941  cmin 11135   / cdiv 11562  cn 11903  0cn0 12163  cz 12249  +crp 12659  cfl 13438   mod cmo 13517  Basecbs 16840  +gcplusg 16888  0gc0g 17067  Mndcmnd 18300  .gcmg 18615  odcod 19047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fl 13440  df-mod 13518  df-seq 13650  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mulg 18616  df-od 19051
This theorem is referenced by:  mndodcong  19065
  Copyright terms: Public domain W3C validator