MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odmodnn0 Structured version   Visualization version   GIF version

Theorem odmodnn0 18668
Description: Reduce the argument of a group multiple by modding out the order of the element. (Contributed by Mario Carneiro, 23-Sep-2015.)
Hypotheses
Ref Expression
odcl.1 𝑋 = (Base‘𝐺)
odcl.2 𝑂 = (od‘𝐺)
odid.3 · = (.g𝐺)
odid.4 0 = (0g𝐺)
Assertion
Ref Expression
odmodnn0 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑁 mod (𝑂𝐴)) · 𝐴) = (𝑁 · 𝐴))

Proof of Theorem odmodnn0
StepHypRef Expression
1 simpl1 1187 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → 𝐺 ∈ Mnd)
2 nnnn0 11905 . . . . . 6 ((𝑂𝐴) ∈ ℕ → (𝑂𝐴) ∈ ℕ0)
32adantl 484 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (𝑂𝐴) ∈ ℕ0)
4 simpl3 1189 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → 𝑁 ∈ ℕ0)
54nn0red 11957 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → 𝑁 ∈ ℝ)
6 nnrp 12401 . . . . . . . 8 ((𝑂𝐴) ∈ ℕ → (𝑂𝐴) ∈ ℝ+)
76adantl 484 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (𝑂𝐴) ∈ ℝ+)
85, 7rerpdivcld 12463 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (𝑁 / (𝑂𝐴)) ∈ ℝ)
94nn0ge0d 11959 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → 0 ≤ 𝑁)
10 nnre 11645 . . . . . . . 8 ((𝑂𝐴) ∈ ℕ → (𝑂𝐴) ∈ ℝ)
1110adantl 484 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (𝑂𝐴) ∈ ℝ)
12 nngt0 11669 . . . . . . . 8 ((𝑂𝐴) ∈ ℕ → 0 < (𝑂𝐴))
1312adantl 484 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → 0 < (𝑂𝐴))
14 divge0 11509 . . . . . . 7 (((𝑁 ∈ ℝ ∧ 0 ≤ 𝑁) ∧ ((𝑂𝐴) ∈ ℝ ∧ 0 < (𝑂𝐴))) → 0 ≤ (𝑁 / (𝑂𝐴)))
155, 9, 11, 13, 14syl22anc 836 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → 0 ≤ (𝑁 / (𝑂𝐴)))
16 flge0nn0 13191 . . . . . 6 (((𝑁 / (𝑂𝐴)) ∈ ℝ ∧ 0 ≤ (𝑁 / (𝑂𝐴))) → (⌊‘(𝑁 / (𝑂𝐴))) ∈ ℕ0)
178, 15, 16syl2anc 586 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (⌊‘(𝑁 / (𝑂𝐴))) ∈ ℕ0)
183, 17nn0mulcld 11961 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) ∈ ℕ0)
194nn0zd 12086 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → 𝑁 ∈ ℤ)
20 zmodcl 13260 . . . . 5 ((𝑁 ∈ ℤ ∧ (𝑂𝐴) ∈ ℕ) → (𝑁 mod (𝑂𝐴)) ∈ ℕ0)
2119, 20sylancom 590 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (𝑁 mod (𝑂𝐴)) ∈ ℕ0)
22 simpl2 1188 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → 𝐴𝑋)
23 odcl.1 . . . . 5 𝑋 = (Base‘𝐺)
24 odid.3 . . . . 5 · = (.g𝐺)
25 eqid 2821 . . . . 5 (+g𝐺) = (+g𝐺)
2623, 24, 25mulgnn0dir 18257 . . . 4 ((𝐺 ∈ Mnd ∧ (((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) ∈ ℕ0 ∧ (𝑁 mod (𝑂𝐴)) ∈ ℕ0𝐴𝑋)) → ((((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) + (𝑁 mod (𝑂𝐴))) · 𝐴) = ((((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) · 𝐴)(+g𝐺)((𝑁 mod (𝑂𝐴)) · 𝐴)))
271, 18, 21, 22, 26syl13anc 1368 . . 3 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) + (𝑁 mod (𝑂𝐴))) · 𝐴) = ((((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) · 𝐴)(+g𝐺)((𝑁 mod (𝑂𝐴)) · 𝐴)))
2811recnd 10669 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (𝑂𝐴) ∈ ℂ)
2917nn0cnd 11958 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (⌊‘(𝑁 / (𝑂𝐴))) ∈ ℂ)
3028, 29mulcomd 10662 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) = ((⌊‘(𝑁 / (𝑂𝐴))) · (𝑂𝐴)))
3130oveq1d 7171 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) · 𝐴) = (((⌊‘(𝑁 / (𝑂𝐴))) · (𝑂𝐴)) · 𝐴))
3223, 24mulgnn0ass 18263 . . . . . . 7 ((𝐺 ∈ Mnd ∧ ((⌊‘(𝑁 / (𝑂𝐴))) ∈ ℕ0 ∧ (𝑂𝐴) ∈ ℕ0𝐴𝑋)) → (((⌊‘(𝑁 / (𝑂𝐴))) · (𝑂𝐴)) · 𝐴) = ((⌊‘(𝑁 / (𝑂𝐴))) · ((𝑂𝐴) · 𝐴)))
331, 17, 3, 22, 32syl13anc 1368 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (((⌊‘(𝑁 / (𝑂𝐴))) · (𝑂𝐴)) · 𝐴) = ((⌊‘(𝑁 / (𝑂𝐴))) · ((𝑂𝐴) · 𝐴)))
34 odcl.2 . . . . . . . . . 10 𝑂 = (od‘𝐺)
35 odid.4 . . . . . . . . . 10 0 = (0g𝐺)
3623, 34, 24, 35odid 18666 . . . . . . . . 9 (𝐴𝑋 → ((𝑂𝐴) · 𝐴) = 0 )
3722, 36syl 17 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑂𝐴) · 𝐴) = 0 )
3837oveq2d 7172 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((⌊‘(𝑁 / (𝑂𝐴))) · ((𝑂𝐴) · 𝐴)) = ((⌊‘(𝑁 / (𝑂𝐴))) · 0 ))
3923, 24, 35mulgnn0z 18254 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ (⌊‘(𝑁 / (𝑂𝐴))) ∈ ℕ0) → ((⌊‘(𝑁 / (𝑂𝐴))) · 0 ) = 0 )
401, 17, 39syl2anc 586 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((⌊‘(𝑁 / (𝑂𝐴))) · 0 ) = 0 )
4138, 40eqtrd 2856 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((⌊‘(𝑁 / (𝑂𝐴))) · ((𝑂𝐴) · 𝐴)) = 0 )
4233, 41eqtrd 2856 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (((⌊‘(𝑁 / (𝑂𝐴))) · (𝑂𝐴)) · 𝐴) = 0 )
4331, 42eqtrd 2856 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) · 𝐴) = 0 )
4443oveq1d 7171 . . 3 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) · 𝐴)(+g𝐺)((𝑁 mod (𝑂𝐴)) · 𝐴)) = ( 0 (+g𝐺)((𝑁 mod (𝑂𝐴)) · 𝐴)))
4527, 44eqtrd 2856 . 2 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) + (𝑁 mod (𝑂𝐴))) · 𝐴) = ( 0 (+g𝐺)((𝑁 mod (𝑂𝐴)) · 𝐴)))
46 modval 13240 . . . . . 6 ((𝑁 ∈ ℝ ∧ (𝑂𝐴) ∈ ℝ+) → (𝑁 mod (𝑂𝐴)) = (𝑁 − ((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴))))))
475, 7, 46syl2anc 586 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (𝑁 mod (𝑂𝐴)) = (𝑁 − ((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴))))))
4847oveq2d 7172 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) + (𝑁 mod (𝑂𝐴))) = (((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) + (𝑁 − ((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))))))
4918nn0cnd 11958 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) ∈ ℂ)
504nn0cnd 11958 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → 𝑁 ∈ ℂ)
5149, 50pncan3d 11000 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) + (𝑁 − ((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))))) = 𝑁)
5248, 51eqtrd 2856 . . 3 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) + (𝑁 mod (𝑂𝐴))) = 𝑁)
5352oveq1d 7171 . 2 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) + (𝑁 mod (𝑂𝐴))) · 𝐴) = (𝑁 · 𝐴))
5423, 24mulgnn0cl 18244 . . . 4 ((𝐺 ∈ Mnd ∧ (𝑁 mod (𝑂𝐴)) ∈ ℕ0𝐴𝑋) → ((𝑁 mod (𝑂𝐴)) · 𝐴) ∈ 𝑋)
551, 21, 22, 54syl3anc 1367 . . 3 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑁 mod (𝑂𝐴)) · 𝐴) ∈ 𝑋)
5623, 25, 35mndlid 17931 . . 3 ((𝐺 ∈ Mnd ∧ ((𝑁 mod (𝑂𝐴)) · 𝐴) ∈ 𝑋) → ( 0 (+g𝐺)((𝑁 mod (𝑂𝐴)) · 𝐴)) = ((𝑁 mod (𝑂𝐴)) · 𝐴))
571, 55, 56syl2anc 586 . 2 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ( 0 (+g𝐺)((𝑁 mod (𝑂𝐴)) · 𝐴)) = ((𝑁 mod (𝑂𝐴)) · 𝐴))
5845, 53, 573eqtr3rd 2865 1 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑁 mod (𝑂𝐴)) · 𝐴) = (𝑁 · 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114   class class class wbr 5066  cfv 6355  (class class class)co 7156  cr 10536  0cc0 10537   + caddc 10540   · cmul 10542   < clt 10675  cle 10676  cmin 10870   / cdiv 11297  cn 11638  0cn0 11898  cz 11982  +crp 12390  cfl 13161   mod cmo 13238  Basecbs 16483  +gcplusg 16565  0gc0g 16713  Mndcmnd 17911  .gcmg 18224  odcod 18652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-sup 8906  df-inf 8907  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-fz 12894  df-fl 13163  df-mod 13239  df-seq 13371  df-0g 16715  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-mulg 18225  df-od 18656
This theorem is referenced by:  mndodcong  18670
  Copyright terms: Public domain W3C validator