MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odmodnn0 Structured version   Visualization version   GIF version

Theorem odmodnn0 19244
Description: Reduce the argument of a group multiple by modding out the order of the element. (Contributed by Mario Carneiro, 23-Sep-2015.)
Hypotheses
Ref Expression
odcl.1 𝑋 = (Base‘𝐺)
odcl.2 𝑂 = (od‘𝐺)
odid.3 · = (.g𝐺)
odid.4 0 = (0g𝐺)
Assertion
Ref Expression
odmodnn0 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑁 mod (𝑂𝐴)) · 𝐴) = (𝑁 · 𝐴))

Proof of Theorem odmodnn0
StepHypRef Expression
1 simpl1 1191 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → 𝐺 ∈ Mnd)
2 nnnn0 12345 . . . . . 6 ((𝑂𝐴) ∈ ℕ → (𝑂𝐴) ∈ ℕ0)
32adantl 483 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (𝑂𝐴) ∈ ℕ0)
4 simpl3 1193 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → 𝑁 ∈ ℕ0)
54nn0red 12399 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → 𝑁 ∈ ℝ)
6 nnrp 12846 . . . . . . . 8 ((𝑂𝐴) ∈ ℕ → (𝑂𝐴) ∈ ℝ+)
76adantl 483 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (𝑂𝐴) ∈ ℝ+)
85, 7rerpdivcld 12908 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (𝑁 / (𝑂𝐴)) ∈ ℝ)
94nn0ge0d 12401 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → 0 ≤ 𝑁)
10 nnre 12085 . . . . . . . 8 ((𝑂𝐴) ∈ ℕ → (𝑂𝐴) ∈ ℝ)
1110adantl 483 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (𝑂𝐴) ∈ ℝ)
12 nngt0 12109 . . . . . . . 8 ((𝑂𝐴) ∈ ℕ → 0 < (𝑂𝐴))
1312adantl 483 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → 0 < (𝑂𝐴))
14 divge0 11949 . . . . . . 7 (((𝑁 ∈ ℝ ∧ 0 ≤ 𝑁) ∧ ((𝑂𝐴) ∈ ℝ ∧ 0 < (𝑂𝐴))) → 0 ≤ (𝑁 / (𝑂𝐴)))
155, 9, 11, 13, 14syl22anc 837 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → 0 ≤ (𝑁 / (𝑂𝐴)))
16 flge0nn0 13645 . . . . . 6 (((𝑁 / (𝑂𝐴)) ∈ ℝ ∧ 0 ≤ (𝑁 / (𝑂𝐴))) → (⌊‘(𝑁 / (𝑂𝐴))) ∈ ℕ0)
178, 15, 16syl2anc 585 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (⌊‘(𝑁 / (𝑂𝐴))) ∈ ℕ0)
183, 17nn0mulcld 12403 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) ∈ ℕ0)
194nn0zd 12529 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → 𝑁 ∈ ℤ)
20 zmodcl 13716 . . . . 5 ((𝑁 ∈ ℤ ∧ (𝑂𝐴) ∈ ℕ) → (𝑁 mod (𝑂𝐴)) ∈ ℕ0)
2119, 20sylancom 589 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (𝑁 mod (𝑂𝐴)) ∈ ℕ0)
22 simpl2 1192 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → 𝐴𝑋)
23 odcl.1 . . . . 5 𝑋 = (Base‘𝐺)
24 odid.3 . . . . 5 · = (.g𝐺)
25 eqid 2737 . . . . 5 (+g𝐺) = (+g𝐺)
2623, 24, 25mulgnn0dir 18829 . . . 4 ((𝐺 ∈ Mnd ∧ (((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) ∈ ℕ0 ∧ (𝑁 mod (𝑂𝐴)) ∈ ℕ0𝐴𝑋)) → ((((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) + (𝑁 mod (𝑂𝐴))) · 𝐴) = ((((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) · 𝐴)(+g𝐺)((𝑁 mod (𝑂𝐴)) · 𝐴)))
271, 18, 21, 22, 26syl13anc 1372 . . 3 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) + (𝑁 mod (𝑂𝐴))) · 𝐴) = ((((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) · 𝐴)(+g𝐺)((𝑁 mod (𝑂𝐴)) · 𝐴)))
2811recnd 11108 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (𝑂𝐴) ∈ ℂ)
2917nn0cnd 12400 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (⌊‘(𝑁 / (𝑂𝐴))) ∈ ℂ)
3028, 29mulcomd 11101 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) = ((⌊‘(𝑁 / (𝑂𝐴))) · (𝑂𝐴)))
3130oveq1d 7356 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) · 𝐴) = (((⌊‘(𝑁 / (𝑂𝐴))) · (𝑂𝐴)) · 𝐴))
3223, 24mulgnn0ass 18835 . . . . . . 7 ((𝐺 ∈ Mnd ∧ ((⌊‘(𝑁 / (𝑂𝐴))) ∈ ℕ0 ∧ (𝑂𝐴) ∈ ℕ0𝐴𝑋)) → (((⌊‘(𝑁 / (𝑂𝐴))) · (𝑂𝐴)) · 𝐴) = ((⌊‘(𝑁 / (𝑂𝐴))) · ((𝑂𝐴) · 𝐴)))
331, 17, 3, 22, 32syl13anc 1372 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (((⌊‘(𝑁 / (𝑂𝐴))) · (𝑂𝐴)) · 𝐴) = ((⌊‘(𝑁 / (𝑂𝐴))) · ((𝑂𝐴) · 𝐴)))
34 odcl.2 . . . . . . . . . 10 𝑂 = (od‘𝐺)
35 odid.4 . . . . . . . . . 10 0 = (0g𝐺)
3623, 34, 24, 35odid 19242 . . . . . . . . 9 (𝐴𝑋 → ((𝑂𝐴) · 𝐴) = 0 )
3722, 36syl 17 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑂𝐴) · 𝐴) = 0 )
3837oveq2d 7357 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((⌊‘(𝑁 / (𝑂𝐴))) · ((𝑂𝐴) · 𝐴)) = ((⌊‘(𝑁 / (𝑂𝐴))) · 0 ))
3923, 24, 35mulgnn0z 18826 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ (⌊‘(𝑁 / (𝑂𝐴))) ∈ ℕ0) → ((⌊‘(𝑁 / (𝑂𝐴))) · 0 ) = 0 )
401, 17, 39syl2anc 585 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((⌊‘(𝑁 / (𝑂𝐴))) · 0 ) = 0 )
4138, 40eqtrd 2777 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((⌊‘(𝑁 / (𝑂𝐴))) · ((𝑂𝐴) · 𝐴)) = 0 )
4233, 41eqtrd 2777 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (((⌊‘(𝑁 / (𝑂𝐴))) · (𝑂𝐴)) · 𝐴) = 0 )
4331, 42eqtrd 2777 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) · 𝐴) = 0 )
4443oveq1d 7356 . . 3 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) · 𝐴)(+g𝐺)((𝑁 mod (𝑂𝐴)) · 𝐴)) = ( 0 (+g𝐺)((𝑁 mod (𝑂𝐴)) · 𝐴)))
4527, 44eqtrd 2777 . 2 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) + (𝑁 mod (𝑂𝐴))) · 𝐴) = ( 0 (+g𝐺)((𝑁 mod (𝑂𝐴)) · 𝐴)))
46 modval 13696 . . . . . 6 ((𝑁 ∈ ℝ ∧ (𝑂𝐴) ∈ ℝ+) → (𝑁 mod (𝑂𝐴)) = (𝑁 − ((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴))))))
475, 7, 46syl2anc 585 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (𝑁 mod (𝑂𝐴)) = (𝑁 − ((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴))))))
4847oveq2d 7357 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) + (𝑁 mod (𝑂𝐴))) = (((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) + (𝑁 − ((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))))))
4918nn0cnd 12400 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) ∈ ℂ)
504nn0cnd 12400 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → 𝑁 ∈ ℂ)
5149, 50pncan3d 11440 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) + (𝑁 − ((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))))) = 𝑁)
5248, 51eqtrd 2777 . . 3 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) + (𝑁 mod (𝑂𝐴))) = 𝑁)
5352oveq1d 7356 . 2 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) + (𝑁 mod (𝑂𝐴))) · 𝐴) = (𝑁 · 𝐴))
5423, 24mulgnn0cl 18816 . . . 4 ((𝐺 ∈ Mnd ∧ (𝑁 mod (𝑂𝐴)) ∈ ℕ0𝐴𝑋) → ((𝑁 mod (𝑂𝐴)) · 𝐴) ∈ 𝑋)
551, 21, 22, 54syl3anc 1371 . . 3 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑁 mod (𝑂𝐴)) · 𝐴) ∈ 𝑋)
5623, 25, 35mndlid 18502 . . 3 ((𝐺 ∈ Mnd ∧ ((𝑁 mod (𝑂𝐴)) · 𝐴) ∈ 𝑋) → ( 0 (+g𝐺)((𝑁 mod (𝑂𝐴)) · 𝐴)) = ((𝑁 mod (𝑂𝐴)) · 𝐴))
571, 55, 56syl2anc 585 . 2 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ( 0 (+g𝐺)((𝑁 mod (𝑂𝐴)) · 𝐴)) = ((𝑁 mod (𝑂𝐴)) · 𝐴))
5845, 53, 573eqtr3rd 2786 1 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑁 mod (𝑂𝐴)) · 𝐴) = (𝑁 · 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1087   = wceq 1541  wcel 2106   class class class wbr 5096  cfv 6483  (class class class)co 7341  cr 10975  0cc0 10976   + caddc 10979   · cmul 10981   < clt 11114  cle 11115  cmin 11310   / cdiv 11737  cn 12078  0cn0 12338  cz 12424  +crp 12835  cfl 13615   mod cmo 13694  Basecbs 17009  +gcplusg 17059  0gc0g 17247  Mndcmnd 18482  .gcmg 18796  odcod 19228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5247  ax-nul 5254  ax-pow 5312  ax-pr 5376  ax-un 7654  ax-cnex 11032  ax-resscn 11033  ax-1cn 11034  ax-icn 11035  ax-addcl 11036  ax-addrcl 11037  ax-mulcl 11038  ax-mulrcl 11039  ax-mulcom 11040  ax-addass 11041  ax-mulass 11042  ax-distr 11043  ax-i2m1 11044  ax-1ne0 11045  ax-1rid 11046  ax-rnegex 11047  ax-rrecex 11048  ax-cnre 11049  ax-pre-lttri 11050  ax-pre-lttrn 11051  ax-pre-ltadd 11052  ax-pre-mulgt0 11053  ax-pre-sup 11054
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3731  df-csb 3847  df-dif 3904  df-un 3906  df-in 3908  df-ss 3918  df-pss 3920  df-nul 4274  df-if 4478  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4857  df-iun 4947  df-br 5097  df-opab 5159  df-mpt 5180  df-tr 5214  df-id 5522  df-eprel 5528  df-po 5536  df-so 5537  df-fr 5579  df-we 5581  df-xp 5630  df-rel 5631  df-cnv 5632  df-co 5633  df-dm 5634  df-rn 5635  df-res 5636  df-ima 5637  df-pred 6242  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6435  df-fun 6485  df-fn 6486  df-f 6487  df-f1 6488  df-fo 6489  df-f1o 6490  df-fv 6491  df-riota 7297  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7785  df-1st 7903  df-2nd 7904  df-frecs 8171  df-wrecs 8202  df-recs 8276  df-rdg 8315  df-er 8573  df-en 8809  df-dom 8810  df-sdom 8811  df-sup 9303  df-inf 9304  df-pnf 11116  df-mnf 11117  df-xr 11118  df-ltxr 11119  df-le 11120  df-sub 11312  df-neg 11313  df-div 11738  df-nn 12079  df-n0 12339  df-z 12425  df-uz 12688  df-rp 12836  df-fz 13345  df-fl 13617  df-mod 13695  df-seq 13827  df-0g 17249  df-mgm 18423  df-sgrp 18472  df-mnd 18483  df-mulg 18797  df-od 19232
This theorem is referenced by:  mndodcong  19246
  Copyright terms: Public domain W3C validator