MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odmodnn0 Structured version   Visualization version   GIF version

Theorem odmodnn0 19572
Description: Reduce the argument of a group multiple by modding out the order of the element. (Contributed by Mario Carneiro, 23-Sep-2015.)
Hypotheses
Ref Expression
odcl.1 𝑋 = (Base‘𝐺)
odcl.2 𝑂 = (od‘𝐺)
odid.3 · = (.g𝐺)
odid.4 0 = (0g𝐺)
Assertion
Ref Expression
odmodnn0 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑁 mod (𝑂𝐴)) · 𝐴) = (𝑁 · 𝐴))

Proof of Theorem odmodnn0
StepHypRef Expression
1 simpl1 1190 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → 𝐺 ∈ Mnd)
2 nnnn0 12530 . . . . . 6 ((𝑂𝐴) ∈ ℕ → (𝑂𝐴) ∈ ℕ0)
32adantl 481 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (𝑂𝐴) ∈ ℕ0)
4 simpl3 1192 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → 𝑁 ∈ ℕ0)
54nn0red 12585 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → 𝑁 ∈ ℝ)
6 nnrp 13043 . . . . . . . 8 ((𝑂𝐴) ∈ ℕ → (𝑂𝐴) ∈ ℝ+)
76adantl 481 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (𝑂𝐴) ∈ ℝ+)
85, 7rerpdivcld 13105 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (𝑁 / (𝑂𝐴)) ∈ ℝ)
94nn0ge0d 12587 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → 0 ≤ 𝑁)
10 nnre 12270 . . . . . . . 8 ((𝑂𝐴) ∈ ℕ → (𝑂𝐴) ∈ ℝ)
1110adantl 481 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (𝑂𝐴) ∈ ℝ)
12 nngt0 12294 . . . . . . . 8 ((𝑂𝐴) ∈ ℕ → 0 < (𝑂𝐴))
1312adantl 481 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → 0 < (𝑂𝐴))
14 divge0 12134 . . . . . . 7 (((𝑁 ∈ ℝ ∧ 0 ≤ 𝑁) ∧ ((𝑂𝐴) ∈ ℝ ∧ 0 < (𝑂𝐴))) → 0 ≤ (𝑁 / (𝑂𝐴)))
155, 9, 11, 13, 14syl22anc 839 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → 0 ≤ (𝑁 / (𝑂𝐴)))
16 flge0nn0 13856 . . . . . 6 (((𝑁 / (𝑂𝐴)) ∈ ℝ ∧ 0 ≤ (𝑁 / (𝑂𝐴))) → (⌊‘(𝑁 / (𝑂𝐴))) ∈ ℕ0)
178, 15, 16syl2anc 584 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (⌊‘(𝑁 / (𝑂𝐴))) ∈ ℕ0)
183, 17nn0mulcld 12589 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) ∈ ℕ0)
194nn0zd 12636 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → 𝑁 ∈ ℤ)
20 zmodcl 13927 . . . . 5 ((𝑁 ∈ ℤ ∧ (𝑂𝐴) ∈ ℕ) → (𝑁 mod (𝑂𝐴)) ∈ ℕ0)
2119, 20sylancom 588 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (𝑁 mod (𝑂𝐴)) ∈ ℕ0)
22 simpl2 1191 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → 𝐴𝑋)
23 odcl.1 . . . . 5 𝑋 = (Base‘𝐺)
24 odid.3 . . . . 5 · = (.g𝐺)
25 eqid 2734 . . . . 5 (+g𝐺) = (+g𝐺)
2623, 24, 25mulgnn0dir 19134 . . . 4 ((𝐺 ∈ Mnd ∧ (((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) ∈ ℕ0 ∧ (𝑁 mod (𝑂𝐴)) ∈ ℕ0𝐴𝑋)) → ((((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) + (𝑁 mod (𝑂𝐴))) · 𝐴) = ((((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) · 𝐴)(+g𝐺)((𝑁 mod (𝑂𝐴)) · 𝐴)))
271, 18, 21, 22, 26syl13anc 1371 . . 3 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) + (𝑁 mod (𝑂𝐴))) · 𝐴) = ((((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) · 𝐴)(+g𝐺)((𝑁 mod (𝑂𝐴)) · 𝐴)))
2811recnd 11286 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (𝑂𝐴) ∈ ℂ)
2917nn0cnd 12586 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (⌊‘(𝑁 / (𝑂𝐴))) ∈ ℂ)
3028, 29mulcomd 11279 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) = ((⌊‘(𝑁 / (𝑂𝐴))) · (𝑂𝐴)))
3130oveq1d 7445 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) · 𝐴) = (((⌊‘(𝑁 / (𝑂𝐴))) · (𝑂𝐴)) · 𝐴))
3223, 24mulgnn0ass 19140 . . . . . . 7 ((𝐺 ∈ Mnd ∧ ((⌊‘(𝑁 / (𝑂𝐴))) ∈ ℕ0 ∧ (𝑂𝐴) ∈ ℕ0𝐴𝑋)) → (((⌊‘(𝑁 / (𝑂𝐴))) · (𝑂𝐴)) · 𝐴) = ((⌊‘(𝑁 / (𝑂𝐴))) · ((𝑂𝐴) · 𝐴)))
331, 17, 3, 22, 32syl13anc 1371 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (((⌊‘(𝑁 / (𝑂𝐴))) · (𝑂𝐴)) · 𝐴) = ((⌊‘(𝑁 / (𝑂𝐴))) · ((𝑂𝐴) · 𝐴)))
34 odcl.2 . . . . . . . . . 10 𝑂 = (od‘𝐺)
35 odid.4 . . . . . . . . . 10 0 = (0g𝐺)
3623, 34, 24, 35odid 19570 . . . . . . . . 9 (𝐴𝑋 → ((𝑂𝐴) · 𝐴) = 0 )
3722, 36syl 17 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑂𝐴) · 𝐴) = 0 )
3837oveq2d 7446 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((⌊‘(𝑁 / (𝑂𝐴))) · ((𝑂𝐴) · 𝐴)) = ((⌊‘(𝑁 / (𝑂𝐴))) · 0 ))
3923, 24, 35mulgnn0z 19131 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ (⌊‘(𝑁 / (𝑂𝐴))) ∈ ℕ0) → ((⌊‘(𝑁 / (𝑂𝐴))) · 0 ) = 0 )
401, 17, 39syl2anc 584 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((⌊‘(𝑁 / (𝑂𝐴))) · 0 ) = 0 )
4138, 40eqtrd 2774 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((⌊‘(𝑁 / (𝑂𝐴))) · ((𝑂𝐴) · 𝐴)) = 0 )
4233, 41eqtrd 2774 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (((⌊‘(𝑁 / (𝑂𝐴))) · (𝑂𝐴)) · 𝐴) = 0 )
4331, 42eqtrd 2774 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) · 𝐴) = 0 )
4443oveq1d 7445 . . 3 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) · 𝐴)(+g𝐺)((𝑁 mod (𝑂𝐴)) · 𝐴)) = ( 0 (+g𝐺)((𝑁 mod (𝑂𝐴)) · 𝐴)))
4527, 44eqtrd 2774 . 2 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) + (𝑁 mod (𝑂𝐴))) · 𝐴) = ( 0 (+g𝐺)((𝑁 mod (𝑂𝐴)) · 𝐴)))
46 modval 13907 . . . . . 6 ((𝑁 ∈ ℝ ∧ (𝑂𝐴) ∈ ℝ+) → (𝑁 mod (𝑂𝐴)) = (𝑁 − ((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴))))))
475, 7, 46syl2anc 584 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (𝑁 mod (𝑂𝐴)) = (𝑁 − ((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴))))))
4847oveq2d 7446 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) + (𝑁 mod (𝑂𝐴))) = (((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) + (𝑁 − ((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))))))
4918nn0cnd 12586 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) ∈ ℂ)
504nn0cnd 12586 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → 𝑁 ∈ ℂ)
5149, 50pncan3d 11620 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) + (𝑁 − ((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))))) = 𝑁)
5248, 51eqtrd 2774 . . 3 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → (((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) + (𝑁 mod (𝑂𝐴))) = 𝑁)
5352oveq1d 7445 . 2 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((((𝑂𝐴) · (⌊‘(𝑁 / (𝑂𝐴)))) + (𝑁 mod (𝑂𝐴))) · 𝐴) = (𝑁 · 𝐴))
5423, 24, 1, 21, 22mulgnn0cld 19125 . . 3 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑁 mod (𝑂𝐴)) · 𝐴) ∈ 𝑋)
5523, 25, 35mndlid 18779 . . 3 ((𝐺 ∈ Mnd ∧ ((𝑁 mod (𝑂𝐴)) · 𝐴) ∈ 𝑋) → ( 0 (+g𝐺)((𝑁 mod (𝑂𝐴)) · 𝐴)) = ((𝑁 mod (𝑂𝐴)) · 𝐴))
561, 54, 55syl2anc 584 . 2 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ( 0 (+g𝐺)((𝑁 mod (𝑂𝐴)) · 𝐴)) = ((𝑁 mod (𝑂𝐴)) · 𝐴))
5745, 53, 563eqtr3rd 2783 1 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑁 mod (𝑂𝐴)) · 𝐴) = (𝑁 · 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1536  wcel 2105   class class class wbr 5147  cfv 6562  (class class class)co 7430  cr 11151  0cc0 11152   + caddc 11155   · cmul 11157   < clt 11292  cle 11293  cmin 11489   / cdiv 11917  cn 12263  0cn0 12523  cz 12610  +crp 13031  cfl 13826   mod cmo 13905  Basecbs 17244  +gcplusg 17297  0gc0g 17485  Mndcmnd 18759  .gcmg 19097  odcod 19556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-sup 9479  df-inf 9480  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-n0 12524  df-z 12611  df-uz 12876  df-rp 13032  df-fz 13544  df-fl 13828  df-mod 13906  df-seq 14039  df-0g 17487  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-mulg 19098  df-od 19560
This theorem is referenced by:  mndodcong  19574
  Copyright terms: Public domain W3C validator