MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisumlem1 Structured version   Visualization version   GIF version

Theorem dchrisumlem1 27457
Description: Lemma for dchrisum 27460. Lemma 9.4.1 of [Shapiro], p. 377. (Contributed by Mario Carneiro, 2-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum.g 𝐺 = (DChr‘𝑁)
rpvmasum.d 𝐷 = (Base‘𝐺)
rpvmasum.1 1 = (0g𝐺)
dchrisum.b (𝜑𝑋𝐷)
dchrisum.n1 (𝜑𝑋1 )
dchrisum.2 (𝑛 = 𝑥𝐴 = 𝐵)
dchrisum.3 (𝜑𝑀 ∈ ℕ)
dchrisum.4 ((𝜑𝑛 ∈ ℝ+) → 𝐴 ∈ ℝ)
dchrisum.5 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑀𝑛𝑛𝑥)) → 𝐵𝐴)
dchrisum.6 (𝜑 → (𝑛 ∈ ℝ+𝐴) ⇝𝑟 0)
dchrisum.7 𝐹 = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿𝑛)) · 𝐴))
dchrisum.9 (𝜑𝑅 ∈ ℝ)
dchrisum.10 (𝜑 → ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑛 ∈ (0..^𝑢)(𝑋‘(𝐿𝑛))) ≤ 𝑅)
Assertion
Ref Expression
dchrisumlem1 ((𝜑𝑈 ∈ ℕ0) → (abs‘Σ𝑛 ∈ (0..^𝑈)(𝑋‘(𝐿𝑛))) ≤ 𝑅)
Distinct variable groups:   𝑢,𝑛,𝑥   1 ,𝑛,𝑥   𝑛,𝐹,𝑢,𝑥   𝑥,𝐴   𝑛,𝑁,𝑢,𝑥   𝜑,𝑛,𝑢,𝑥   𝑅,𝑛,𝑢,𝑥   𝑈,𝑛,𝑢,𝑥   𝐵,𝑛   𝑛,𝑍,𝑥   𝐷,𝑛,𝑥   𝑛,𝐿,𝑢,𝑥   𝑛,𝑀,𝑢,𝑥   𝑛,𝑋,𝑢,𝑥
Allowed substitution hints:   𝐴(𝑢,𝑛)   𝐵(𝑥,𝑢)   𝐷(𝑢)   1 (𝑢)   𝐺(𝑥,𝑢,𝑛)   𝑍(𝑢)

Proof of Theorem dchrisumlem1
Dummy variables 𝑘 𝑚 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzodisj 13715 . . . . . 6 ((0..^(𝑁 · (⌊‘(𝑈 / 𝑁)))) ∩ ((𝑁 · (⌊‘(𝑈 / 𝑁)))..^𝑈)) = ∅
21a1i 11 . . . . 5 ((𝜑𝑈 ∈ ℕ0) → ((0..^(𝑁 · (⌊‘(𝑈 / 𝑁)))) ∩ ((𝑁 · (⌊‘(𝑈 / 𝑁)))..^𝑈)) = ∅)
3 rpvmasum.a . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ)
43nnnn0d 12567 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ0)
54adantr 480 . . . . . . . 8 ((𝜑𝑈 ∈ ℕ0) → 𝑁 ∈ ℕ0)
6 nn0re 12515 . . . . . . . . . . 11 (𝑈 ∈ ℕ0𝑈 ∈ ℝ)
76adantl 481 . . . . . . . . . 10 ((𝜑𝑈 ∈ ℕ0) → 𝑈 ∈ ℝ)
83adantr 480 . . . . . . . . . 10 ((𝜑𝑈 ∈ ℕ0) → 𝑁 ∈ ℕ)
97, 8nndivred 12299 . . . . . . . . 9 ((𝜑𝑈 ∈ ℕ0) → (𝑈 / 𝑁) ∈ ℝ)
108nnrpd 13054 . . . . . . . . . 10 ((𝜑𝑈 ∈ ℕ0) → 𝑁 ∈ ℝ+)
11 nn0ge0 12531 . . . . . . . . . . 11 (𝑈 ∈ ℕ0 → 0 ≤ 𝑈)
1211adantl 481 . . . . . . . . . 10 ((𝜑𝑈 ∈ ℕ0) → 0 ≤ 𝑈)
137, 10, 12divge0d 13096 . . . . . . . . 9 ((𝜑𝑈 ∈ ℕ0) → 0 ≤ (𝑈 / 𝑁))
14 flge0nn0 13842 . . . . . . . . 9 (((𝑈 / 𝑁) ∈ ℝ ∧ 0 ≤ (𝑈 / 𝑁)) → (⌊‘(𝑈 / 𝑁)) ∈ ℕ0)
159, 13, 14syl2anc 584 . . . . . . . 8 ((𝜑𝑈 ∈ ℕ0) → (⌊‘(𝑈 / 𝑁)) ∈ ℕ0)
165, 15nn0mulcld 12572 . . . . . . 7 ((𝜑𝑈 ∈ ℕ0) → (𝑁 · (⌊‘(𝑈 / 𝑁))) ∈ ℕ0)
17 flle 13821 . . . . . . . . 9 ((𝑈 / 𝑁) ∈ ℝ → (⌊‘(𝑈 / 𝑁)) ≤ (𝑈 / 𝑁))
189, 17syl 17 . . . . . . . 8 ((𝜑𝑈 ∈ ℕ0) → (⌊‘(𝑈 / 𝑁)) ≤ (𝑈 / 𝑁))
19 reflcl 13818 . . . . . . . . . 10 ((𝑈 / 𝑁) ∈ ℝ → (⌊‘(𝑈 / 𝑁)) ∈ ℝ)
209, 19syl 17 . . . . . . . . 9 ((𝜑𝑈 ∈ ℕ0) → (⌊‘(𝑈 / 𝑁)) ∈ ℝ)
2120, 7, 10lemuldiv2d 13106 . . . . . . . 8 ((𝜑𝑈 ∈ ℕ0) → ((𝑁 · (⌊‘(𝑈 / 𝑁))) ≤ 𝑈 ↔ (⌊‘(𝑈 / 𝑁)) ≤ (𝑈 / 𝑁)))
2218, 21mpbird 257 . . . . . . 7 ((𝜑𝑈 ∈ ℕ0) → (𝑁 · (⌊‘(𝑈 / 𝑁))) ≤ 𝑈)
23 fznn0 13641 . . . . . . . 8 (𝑈 ∈ ℕ0 → ((𝑁 · (⌊‘(𝑈 / 𝑁))) ∈ (0...𝑈) ↔ ((𝑁 · (⌊‘(𝑈 / 𝑁))) ∈ ℕ0 ∧ (𝑁 · (⌊‘(𝑈 / 𝑁))) ≤ 𝑈)))
2423adantl 481 . . . . . . 7 ((𝜑𝑈 ∈ ℕ0) → ((𝑁 · (⌊‘(𝑈 / 𝑁))) ∈ (0...𝑈) ↔ ((𝑁 · (⌊‘(𝑈 / 𝑁))) ∈ ℕ0 ∧ (𝑁 · (⌊‘(𝑈 / 𝑁))) ≤ 𝑈)))
2516, 22, 24mpbir2and 713 . . . . . 6 ((𝜑𝑈 ∈ ℕ0) → (𝑁 · (⌊‘(𝑈 / 𝑁))) ∈ (0...𝑈))
26 fzosplit 13714 . . . . . 6 ((𝑁 · (⌊‘(𝑈 / 𝑁))) ∈ (0...𝑈) → (0..^𝑈) = ((0..^(𝑁 · (⌊‘(𝑈 / 𝑁)))) ∪ ((𝑁 · (⌊‘(𝑈 / 𝑁)))..^𝑈)))
2725, 26syl 17 . . . . 5 ((𝜑𝑈 ∈ ℕ0) → (0..^𝑈) = ((0..^(𝑁 · (⌊‘(𝑈 / 𝑁)))) ∪ ((𝑁 · (⌊‘(𝑈 / 𝑁)))..^𝑈)))
28 fzofi 13997 . . . . . 6 (0..^𝑈) ∈ Fin
2928a1i 11 . . . . 5 ((𝜑𝑈 ∈ ℕ0) → (0..^𝑈) ∈ Fin)
30 rpvmasum.g . . . . . 6 𝐺 = (DChr‘𝑁)
31 rpvmasum.z . . . . . 6 𝑍 = (ℤ/nℤ‘𝑁)
32 rpvmasum.d . . . . . 6 𝐷 = (Base‘𝐺)
33 rpvmasum.l . . . . . 6 𝐿 = (ℤRHom‘𝑍)
34 dchrisum.b . . . . . . 7 (𝜑𝑋𝐷)
3534ad2antrr 726 . . . . . 6 (((𝜑𝑈 ∈ ℕ0) ∧ 𝑛 ∈ (0..^𝑈)) → 𝑋𝐷)
36 elfzoelz 13681 . . . . . . 7 (𝑛 ∈ (0..^𝑈) → 𝑛 ∈ ℤ)
3736adantl 481 . . . . . 6 (((𝜑𝑈 ∈ ℕ0) ∧ 𝑛 ∈ (0..^𝑈)) → 𝑛 ∈ ℤ)
3830, 31, 32, 33, 35, 37dchrzrhcl 27213 . . . . 5 (((𝜑𝑈 ∈ ℕ0) ∧ 𝑛 ∈ (0..^𝑈)) → (𝑋‘(𝐿𝑛)) ∈ ℂ)
392, 27, 29, 38fsumsplit 15762 . . . 4 ((𝜑𝑈 ∈ ℕ0) → Σ𝑛 ∈ (0..^𝑈)(𝑋‘(𝐿𝑛)) = (Σ𝑛 ∈ (0..^(𝑁 · (⌊‘(𝑈 / 𝑁))))(𝑋‘(𝐿𝑛)) + Σ𝑛 ∈ ((𝑁 · (⌊‘(𝑈 / 𝑁)))..^𝑈)(𝑋‘(𝐿𝑛))))
40 oveq2 7418 . . . . . . . . . . . 12 (𝑘 = 0 → (𝑁 · 𝑘) = (𝑁 · 0))
4140oveq2d 7426 . . . . . . . . . . 11 (𝑘 = 0 → (0..^(𝑁 · 𝑘)) = (0..^(𝑁 · 0)))
4241sumeq1d 15721 . . . . . . . . . 10 (𝑘 = 0 → Σ𝑛 ∈ (0..^(𝑁 · 𝑘))(𝑋‘(𝐿𝑛)) = Σ𝑛 ∈ (0..^(𝑁 · 0))(𝑋‘(𝐿𝑛)))
4342eqeq1d 2738 . . . . . . . . 9 (𝑘 = 0 → (Σ𝑛 ∈ (0..^(𝑁 · 𝑘))(𝑋‘(𝐿𝑛)) = 0 ↔ Σ𝑛 ∈ (0..^(𝑁 · 0))(𝑋‘(𝐿𝑛)) = 0))
4443imbi2d 340 . . . . . . . 8 (𝑘 = 0 → ((𝜑 → Σ𝑛 ∈ (0..^(𝑁 · 𝑘))(𝑋‘(𝐿𝑛)) = 0) ↔ (𝜑 → Σ𝑛 ∈ (0..^(𝑁 · 0))(𝑋‘(𝐿𝑛)) = 0)))
45 oveq2 7418 . . . . . . . . . . . 12 (𝑘 = 𝑚 → (𝑁 · 𝑘) = (𝑁 · 𝑚))
4645oveq2d 7426 . . . . . . . . . . 11 (𝑘 = 𝑚 → (0..^(𝑁 · 𝑘)) = (0..^(𝑁 · 𝑚)))
4746sumeq1d 15721 . . . . . . . . . 10 (𝑘 = 𝑚 → Σ𝑛 ∈ (0..^(𝑁 · 𝑘))(𝑋‘(𝐿𝑛)) = Σ𝑛 ∈ (0..^(𝑁 · 𝑚))(𝑋‘(𝐿𝑛)))
4847eqeq1d 2738 . . . . . . . . 9 (𝑘 = 𝑚 → (Σ𝑛 ∈ (0..^(𝑁 · 𝑘))(𝑋‘(𝐿𝑛)) = 0 ↔ Σ𝑛 ∈ (0..^(𝑁 · 𝑚))(𝑋‘(𝐿𝑛)) = 0))
4948imbi2d 340 . . . . . . . 8 (𝑘 = 𝑚 → ((𝜑 → Σ𝑛 ∈ (0..^(𝑁 · 𝑘))(𝑋‘(𝐿𝑛)) = 0) ↔ (𝜑 → Σ𝑛 ∈ (0..^(𝑁 · 𝑚))(𝑋‘(𝐿𝑛)) = 0)))
50 oveq2 7418 . . . . . . . . . . . 12 (𝑘 = (𝑚 + 1) → (𝑁 · 𝑘) = (𝑁 · (𝑚 + 1)))
5150oveq2d 7426 . . . . . . . . . . 11 (𝑘 = (𝑚 + 1) → (0..^(𝑁 · 𝑘)) = (0..^(𝑁 · (𝑚 + 1))))
5251sumeq1d 15721 . . . . . . . . . 10 (𝑘 = (𝑚 + 1) → Σ𝑛 ∈ (0..^(𝑁 · 𝑘))(𝑋‘(𝐿𝑛)) = Σ𝑛 ∈ (0..^(𝑁 · (𝑚 + 1)))(𝑋‘(𝐿𝑛)))
5352eqeq1d 2738 . . . . . . . . 9 (𝑘 = (𝑚 + 1) → (Σ𝑛 ∈ (0..^(𝑁 · 𝑘))(𝑋‘(𝐿𝑛)) = 0 ↔ Σ𝑛 ∈ (0..^(𝑁 · (𝑚 + 1)))(𝑋‘(𝐿𝑛)) = 0))
5453imbi2d 340 . . . . . . . 8 (𝑘 = (𝑚 + 1) → ((𝜑 → Σ𝑛 ∈ (0..^(𝑁 · 𝑘))(𝑋‘(𝐿𝑛)) = 0) ↔ (𝜑 → Σ𝑛 ∈ (0..^(𝑁 · (𝑚 + 1)))(𝑋‘(𝐿𝑛)) = 0)))
55 oveq2 7418 . . . . . . . . . . . 12 (𝑘 = (⌊‘(𝑈 / 𝑁)) → (𝑁 · 𝑘) = (𝑁 · (⌊‘(𝑈 / 𝑁))))
5655oveq2d 7426 . . . . . . . . . . 11 (𝑘 = (⌊‘(𝑈 / 𝑁)) → (0..^(𝑁 · 𝑘)) = (0..^(𝑁 · (⌊‘(𝑈 / 𝑁)))))
5756sumeq1d 15721 . . . . . . . . . 10 (𝑘 = (⌊‘(𝑈 / 𝑁)) → Σ𝑛 ∈ (0..^(𝑁 · 𝑘))(𝑋‘(𝐿𝑛)) = Σ𝑛 ∈ (0..^(𝑁 · (⌊‘(𝑈 / 𝑁))))(𝑋‘(𝐿𝑛)))
5857eqeq1d 2738 . . . . . . . . 9 (𝑘 = (⌊‘(𝑈 / 𝑁)) → (Σ𝑛 ∈ (0..^(𝑁 · 𝑘))(𝑋‘(𝐿𝑛)) = 0 ↔ Σ𝑛 ∈ (0..^(𝑁 · (⌊‘(𝑈 / 𝑁))))(𝑋‘(𝐿𝑛)) = 0))
5958imbi2d 340 . . . . . . . 8 (𝑘 = (⌊‘(𝑈 / 𝑁)) → ((𝜑 → Σ𝑛 ∈ (0..^(𝑁 · 𝑘))(𝑋‘(𝐿𝑛)) = 0) ↔ (𝜑 → Σ𝑛 ∈ (0..^(𝑁 · (⌊‘(𝑈 / 𝑁))))(𝑋‘(𝐿𝑛)) = 0)))
603nncnd 12261 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℂ)
6160mul01d 11439 . . . . . . . . . . . 12 (𝜑 → (𝑁 · 0) = 0)
6261oveq2d 7426 . . . . . . . . . . 11 (𝜑 → (0..^(𝑁 · 0)) = (0..^0))
63 fzo0 13705 . . . . . . . . . . 11 (0..^0) = ∅
6462, 63eqtrdi 2787 . . . . . . . . . 10 (𝜑 → (0..^(𝑁 · 0)) = ∅)
6564sumeq1d 15721 . . . . . . . . 9 (𝜑 → Σ𝑛 ∈ (0..^(𝑁 · 0))(𝑋‘(𝐿𝑛)) = Σ𝑛 ∈ ∅ (𝑋‘(𝐿𝑛)))
66 sum0 15742 . . . . . . . . 9 Σ𝑛 ∈ ∅ (𝑋‘(𝐿𝑛)) = 0
6765, 66eqtrdi 2787 . . . . . . . 8 (𝜑 → Σ𝑛 ∈ (0..^(𝑁 · 0))(𝑋‘(𝐿𝑛)) = 0)
68 oveq1 7417 . . . . . . . . . . 11 𝑛 ∈ (0..^(𝑁 · 𝑚))(𝑋‘(𝐿𝑛)) = 0 → (Σ𝑛 ∈ (0..^(𝑁 · 𝑚))(𝑋‘(𝐿𝑛)) + Σ𝑛 ∈ ((𝑁 · 𝑚)..^(𝑁 · (𝑚 + 1)))(𝑋‘(𝐿𝑛))) = (0 + Σ𝑛 ∈ ((𝑁 · 𝑚)..^(𝑁 · (𝑚 + 1)))(𝑋‘(𝐿𝑛))))
69 fzodisj 13715 . . . . . . . . . . . . . 14 ((0..^(𝑁 · 𝑚)) ∩ ((𝑁 · 𝑚)..^(𝑁 · (𝑚 + 1)))) = ∅
7069a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ0) → ((0..^(𝑁 · 𝑚)) ∩ ((𝑁 · 𝑚)..^(𝑁 · (𝑚 + 1)))) = ∅)
71 nn0re 12515 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℕ0𝑚 ∈ ℝ)
7271adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚 ∈ ℕ0) → 𝑚 ∈ ℝ)
7372lep1d 12178 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ ℕ0) → 𝑚 ≤ (𝑚 + 1))
74 peano2re 11413 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℝ → (𝑚 + 1) ∈ ℝ)
7572, 74syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚 ∈ ℕ0) → (𝑚 + 1) ∈ ℝ)
763adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 ∈ ℕ0) → 𝑁 ∈ ℕ)
7776nnred 12260 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚 ∈ ℕ0) → 𝑁 ∈ ℝ)
7876nngt0d 12294 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚 ∈ ℕ0) → 0 < 𝑁)
79 lemul2 12099 . . . . . . . . . . . . . . . . 17 ((𝑚 ∈ ℝ ∧ (𝑚 + 1) ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → (𝑚 ≤ (𝑚 + 1) ↔ (𝑁 · 𝑚) ≤ (𝑁 · (𝑚 + 1))))
8072, 75, 77, 78, 79syl112anc 1376 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ ℕ0) → (𝑚 ≤ (𝑚 + 1) ↔ (𝑁 · 𝑚) ≤ (𝑁 · (𝑚 + 1))))
8173, 80mpbid 232 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℕ0) → (𝑁 · 𝑚) ≤ (𝑁 · (𝑚 + 1)))
82 nn0mulcl 12542 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ0𝑚 ∈ ℕ0) → (𝑁 · 𝑚) ∈ ℕ0)
834, 82sylan 580 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚 ∈ ℕ0) → (𝑁 · 𝑚) ∈ ℕ0)
84 nn0uz 12899 . . . . . . . . . . . . . . . . 17 0 = (ℤ‘0)
8583, 84eleqtrdi 2845 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ ℕ0) → (𝑁 · 𝑚) ∈ (ℤ‘0))
86 nn0p1nn 12545 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℕ0 → (𝑚 + 1) ∈ ℕ)
87 nnmulcl 12269 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ ∧ (𝑚 + 1) ∈ ℕ) → (𝑁 · (𝑚 + 1)) ∈ ℕ)
883, 86, 87syl2an 596 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚 ∈ ℕ0) → (𝑁 · (𝑚 + 1)) ∈ ℕ)
8988nnzd 12620 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ ℕ0) → (𝑁 · (𝑚 + 1)) ∈ ℤ)
90 elfz5 13538 . . . . . . . . . . . . . . . 16 (((𝑁 · 𝑚) ∈ (ℤ‘0) ∧ (𝑁 · (𝑚 + 1)) ∈ ℤ) → ((𝑁 · 𝑚) ∈ (0...(𝑁 · (𝑚 + 1))) ↔ (𝑁 · 𝑚) ≤ (𝑁 · (𝑚 + 1))))
9185, 89, 90syl2anc 584 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℕ0) → ((𝑁 · 𝑚) ∈ (0...(𝑁 · (𝑚 + 1))) ↔ (𝑁 · 𝑚) ≤ (𝑁 · (𝑚 + 1))))
9281, 91mpbird 257 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ0) → (𝑁 · 𝑚) ∈ (0...(𝑁 · (𝑚 + 1))))
93 fzosplit 13714 . . . . . . . . . . . . . 14 ((𝑁 · 𝑚) ∈ (0...(𝑁 · (𝑚 + 1))) → (0..^(𝑁 · (𝑚 + 1))) = ((0..^(𝑁 · 𝑚)) ∪ ((𝑁 · 𝑚)..^(𝑁 · (𝑚 + 1)))))
9492, 93syl 17 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ0) → (0..^(𝑁 · (𝑚 + 1))) = ((0..^(𝑁 · 𝑚)) ∪ ((𝑁 · 𝑚)..^(𝑁 · (𝑚 + 1)))))
95 fzofi 13997 . . . . . . . . . . . . . 14 (0..^(𝑁 · (𝑚 + 1))) ∈ Fin
9695a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ0) → (0..^(𝑁 · (𝑚 + 1))) ∈ Fin)
9734ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑛 ∈ (0..^(𝑁 · (𝑚 + 1)))) → 𝑋𝐷)
98 elfzoelz 13681 . . . . . . . . . . . . . . 15 (𝑛 ∈ (0..^(𝑁 · (𝑚 + 1))) → 𝑛 ∈ ℤ)
9998adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑛 ∈ (0..^(𝑁 · (𝑚 + 1)))) → 𝑛 ∈ ℤ)
10030, 31, 32, 33, 97, 99dchrzrhcl 27213 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑛 ∈ (0..^(𝑁 · (𝑚 + 1)))) → (𝑋‘(𝐿𝑛)) ∈ ℂ)
10170, 94, 96, 100fsumsplit 15762 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ0) → Σ𝑛 ∈ (0..^(𝑁 · (𝑚 + 1)))(𝑋‘(𝐿𝑛)) = (Σ𝑛 ∈ (0..^(𝑁 · 𝑚))(𝑋‘(𝐿𝑛)) + Σ𝑛 ∈ ((𝑁 · 𝑚)..^(𝑁 · (𝑚 + 1)))(𝑋‘(𝐿𝑛))))
10276nncnd 12261 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚 ∈ ℕ0) → 𝑁 ∈ ℂ)
10372recnd 11268 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚 ∈ ℕ0) → 𝑚 ∈ ℂ)
104 1cnd 11235 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚 ∈ ℕ0) → 1 ∈ ℂ)
105102, 103, 104adddid 11264 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 ∈ ℕ0) → (𝑁 · (𝑚 + 1)) = ((𝑁 · 𝑚) + (𝑁 · 1)))
106102mulridd 11257 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚 ∈ ℕ0) → (𝑁 · 1) = 𝑁)
107106oveq2d 7426 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 ∈ ℕ0) → ((𝑁 · 𝑚) + (𝑁 · 1)) = ((𝑁 · 𝑚) + 𝑁))
108105, 107eqtrd 2771 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚 ∈ ℕ0) → (𝑁 · (𝑚 + 1)) = ((𝑁 · 𝑚) + 𝑁))
109108oveq2d 7426 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ ℕ0) → ((𝑁 · 𝑚)..^(𝑁 · (𝑚 + 1))) = ((𝑁 · 𝑚)..^((𝑁 · 𝑚) + 𝑁)))
110109sumeq1d 15721 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℕ0) → Σ𝑛 ∈ ((𝑁 · 𝑚)..^(𝑁 · (𝑚 + 1)))(𝑋‘(𝐿𝑛)) = Σ𝑛 ∈ ((𝑁 · 𝑚)..^((𝑁 · 𝑚) + 𝑁))(𝑋‘(𝐿𝑛)))
111 oveq2 7418 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑁 → ((𝑁 · 𝑚) + 𝑘) = ((𝑁 · 𝑚) + 𝑁))
112111oveq2d 7426 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑁 → ((𝑁 · 𝑚)..^((𝑁 · 𝑚) + 𝑘)) = ((𝑁 · 𝑚)..^((𝑁 · 𝑚) + 𝑁)))
113112sumeq1d 15721 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑁 → Σ𝑛 ∈ ((𝑁 · 𝑚)..^((𝑁 · 𝑚) + 𝑘))(𝑋‘(𝐿𝑛)) = Σ𝑛 ∈ ((𝑁 · 𝑚)..^((𝑁 · 𝑚) + 𝑁))(𝑋‘(𝐿𝑛)))
114 oveq2 7418 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑁 → (0..^𝑘) = (0..^𝑁))
115114sumeq1d 15721 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑁 → Σ𝑛 ∈ (0..^𝑘)(𝑋‘(𝐿𝑛)) = Σ𝑛 ∈ (0..^𝑁)(𝑋‘(𝐿𝑛)))
116113, 115eqeq12d 2752 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑁 → (Σ𝑛 ∈ ((𝑁 · 𝑚)..^((𝑁 · 𝑚) + 𝑘))(𝑋‘(𝐿𝑛)) = Σ𝑛 ∈ (0..^𝑘)(𝑋‘(𝐿𝑛)) ↔ Σ𝑛 ∈ ((𝑁 · 𝑚)..^((𝑁 · 𝑚) + 𝑁))(𝑋‘(𝐿𝑛)) = Σ𝑛 ∈ (0..^𝑁)(𝑋‘(𝐿𝑛))))
11783nn0zd 12619 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑚 ∈ ℕ0) → (𝑁 · 𝑚) ∈ ℤ)
118117adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑁 · 𝑚) ∈ ℤ)
119 nn0z 12618 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ ℕ0𝑘 ∈ ℤ)
120 zaddcl 12637 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 · 𝑚) ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑁 · 𝑚) + 𝑘) ∈ ℤ)
121117, 119, 120syl2an 596 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝑁 · 𝑚) + 𝑘) ∈ ℤ)
122 peano2zm 12640 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 · 𝑚) + 𝑘) ∈ ℤ → (((𝑁 · 𝑚) + 𝑘) − 1) ∈ ℤ)
123121, 122syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (((𝑁 · 𝑚) + 𝑘) − 1) ∈ ℤ)
12434ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑛 ∈ ((𝑁 · 𝑚)...(((𝑁 · 𝑚) + 𝑘) − 1))) → 𝑋𝐷)
125 elfzelz 13546 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ((𝑁 · 𝑚)...(((𝑁 · 𝑚) + 𝑘) − 1)) → 𝑛 ∈ ℤ)
126125adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑛 ∈ ((𝑁 · 𝑚)...(((𝑁 · 𝑚) + 𝑘) − 1))) → 𝑛 ∈ ℤ)
12730, 31, 32, 33, 124, 126dchrzrhcl 27213 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑛 ∈ ((𝑁 · 𝑚)...(((𝑁 · 𝑚) + 𝑘) − 1))) → (𝑋‘(𝐿𝑛)) ∈ ℂ)
128 2fveq3 6886 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = (𝑖 + (𝑁 · 𝑚)) → (𝑋‘(𝐿𝑛)) = (𝑋‘(𝐿‘(𝑖 + (𝑁 · 𝑚)))))
129118, 118, 123, 127, 128fsumshftm 15802 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → Σ𝑛 ∈ ((𝑁 · 𝑚)...(((𝑁 · 𝑚) + 𝑘) − 1))(𝑋‘(𝐿𝑛)) = Σ𝑖 ∈ (((𝑁 · 𝑚) − (𝑁 · 𝑚))...((((𝑁 · 𝑚) + 𝑘) − 1) − (𝑁 · 𝑚)))(𝑋‘(𝐿‘(𝑖 + (𝑁 · 𝑚)))))
130 fzoval 13682 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 · 𝑚) + 𝑘) ∈ ℤ → ((𝑁 · 𝑚)..^((𝑁 · 𝑚) + 𝑘)) = ((𝑁 · 𝑚)...(((𝑁 · 𝑚) + 𝑘) − 1)))
131121, 130syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝑁 · 𝑚)..^((𝑁 · 𝑚) + 𝑘)) = ((𝑁 · 𝑚)...(((𝑁 · 𝑚) + 𝑘) − 1)))
132131sumeq1d 15721 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → Σ𝑛 ∈ ((𝑁 · 𝑚)..^((𝑁 · 𝑚) + 𝑘))(𝑋‘(𝐿𝑛)) = Σ𝑛 ∈ ((𝑁 · 𝑚)...(((𝑁 · 𝑚) + 𝑘) − 1))(𝑋‘(𝐿𝑛)))
133119adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℤ)
134 fzoval 13682 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ ℤ → (0..^𝑘) = (0...(𝑘 − 1)))
135133, 134syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (0..^𝑘) = (0...(𝑘 − 1)))
136118zcnd 12703 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑁 · 𝑚) ∈ ℂ)
137136subidd 11587 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝑁 · 𝑚) − (𝑁 · 𝑚)) = 0)
138121zcnd 12703 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝑁 · 𝑚) + 𝑘) ∈ ℂ)
139 1cnd 11235 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 1 ∈ ℂ)
140138, 139, 136sub32d 11631 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((((𝑁 · 𝑚) + 𝑘) − 1) − (𝑁 · 𝑚)) = ((((𝑁 · 𝑚) + 𝑘) − (𝑁 · 𝑚)) − 1))
141 nn0cn 12516 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
142141adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℂ)
143136, 142pncan2d 11601 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (((𝑁 · 𝑚) + 𝑘) − (𝑁 · 𝑚)) = 𝑘)
144143oveq1d 7425 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((((𝑁 · 𝑚) + 𝑘) − (𝑁 · 𝑚)) − 1) = (𝑘 − 1))
145140, 144eqtrd 2771 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((((𝑁 · 𝑚) + 𝑘) − 1) − (𝑁 · 𝑚)) = (𝑘 − 1))
146137, 145oveq12d 7428 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (((𝑁 · 𝑚) − (𝑁 · 𝑚))...((((𝑁 · 𝑚) + 𝑘) − 1) − (𝑁 · 𝑚))) = (0...(𝑘 − 1)))
147135, 146eqtr4d 2774 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (0..^𝑘) = (((𝑁 · 𝑚) − (𝑁 · 𝑚))...((((𝑁 · 𝑚) + 𝑘) − 1) − (𝑁 · 𝑚))))
148147sumeq1d 15721 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → Σ𝑖 ∈ (0..^𝑘)(𝑋‘(𝐿‘(𝑖 + (𝑁 · 𝑚)))) = Σ𝑖 ∈ (((𝑁 · 𝑚) − (𝑁 · 𝑚))...((((𝑁 · 𝑚) + 𝑘) − 1) − (𝑁 · 𝑚)))(𝑋‘(𝐿‘(𝑖 + (𝑁 · 𝑚)))))
149129, 132, 1483eqtr4d 2781 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → Σ𝑛 ∈ ((𝑁 · 𝑚)..^((𝑁 · 𝑚) + 𝑘))(𝑋‘(𝐿𝑛)) = Σ𝑖 ∈ (0..^𝑘)(𝑋‘(𝐿‘(𝑖 + (𝑁 · 𝑚)))))
1503nnzd 12620 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝑁 ∈ ℤ)
151 nn0z 12618 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑚 ∈ ℕ0𝑚 ∈ ℤ)
152 dvdsmul1 16302 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℤ) → 𝑁 ∥ (𝑁 · 𝑚))
153150, 151, 152syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑚 ∈ ℕ0) → 𝑁 ∥ (𝑁 · 𝑚))
154153ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖 ∈ (0..^𝑘)) → 𝑁 ∥ (𝑁 · 𝑚))
155 elfzoelz 13681 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑖 ∈ (0..^𝑘) → 𝑖 ∈ ℤ)
156155adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖 ∈ (0..^𝑘)) → 𝑖 ∈ ℤ)
157156zcnd 12703 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖 ∈ (0..^𝑘)) → 𝑖 ∈ ℂ)
158136adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖 ∈ (0..^𝑘)) → (𝑁 · 𝑚) ∈ ℂ)
159157, 158pncan2d 11601 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖 ∈ (0..^𝑘)) → ((𝑖 + (𝑁 · 𝑚)) − 𝑖) = (𝑁 · 𝑚))
160154, 159breqtrrd 5152 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖 ∈ (0..^𝑘)) → 𝑁 ∥ ((𝑖 + (𝑁 · 𝑚)) − 𝑖))
16176nnnn0d 12567 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑚 ∈ ℕ0) → 𝑁 ∈ ℕ0)
162161ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖 ∈ (0..^𝑘)) → 𝑁 ∈ ℕ0)
163 zaddcl 12637 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑖 ∈ ℤ ∧ (𝑁 · 𝑚) ∈ ℤ) → (𝑖 + (𝑁 · 𝑚)) ∈ ℤ)
164155, 118, 163syl2anr 597 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖 ∈ (0..^𝑘)) → (𝑖 + (𝑁 · 𝑚)) ∈ ℤ)
16531, 33zndvds 21515 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℕ0 ∧ (𝑖 + (𝑁 · 𝑚)) ∈ ℤ ∧ 𝑖 ∈ ℤ) → ((𝐿‘(𝑖 + (𝑁 · 𝑚))) = (𝐿𝑖) ↔ 𝑁 ∥ ((𝑖 + (𝑁 · 𝑚)) − 𝑖)))
166162, 164, 156, 165syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖 ∈ (0..^𝑘)) → ((𝐿‘(𝑖 + (𝑁 · 𝑚))) = (𝐿𝑖) ↔ 𝑁 ∥ ((𝑖 + (𝑁 · 𝑚)) − 𝑖)))
167160, 166mpbird 257 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖 ∈ (0..^𝑘)) → (𝐿‘(𝑖 + (𝑁 · 𝑚))) = (𝐿𝑖))
168167fveq2d 6885 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑖 ∈ (0..^𝑘)) → (𝑋‘(𝐿‘(𝑖 + (𝑁 · 𝑚)))) = (𝑋‘(𝐿𝑖)))
169168sumeq2dv 15723 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → Σ𝑖 ∈ (0..^𝑘)(𝑋‘(𝐿‘(𝑖 + (𝑁 · 𝑚)))) = Σ𝑖 ∈ (0..^𝑘)(𝑋‘(𝐿𝑖)))
170 2fveq3 6886 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 𝑛 → (𝑋‘(𝐿𝑖)) = (𝑋‘(𝐿𝑛)))
171170cbvsumv 15717 . . . . . . . . . . . . . . . . . . 19 Σ𝑖 ∈ (0..^𝑘)(𝑋‘(𝐿𝑖)) = Σ𝑛 ∈ (0..^𝑘)(𝑋‘(𝐿𝑛))
172169, 171eqtrdi 2787 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → Σ𝑖 ∈ (0..^𝑘)(𝑋‘(𝐿‘(𝑖 + (𝑁 · 𝑚)))) = Σ𝑛 ∈ (0..^𝑘)(𝑋‘(𝐿𝑛)))
173149, 172eqtrd 2771 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → Σ𝑛 ∈ ((𝑁 · 𝑚)..^((𝑁 · 𝑚) + 𝑘))(𝑋‘(𝐿𝑛)) = Σ𝑛 ∈ (0..^𝑘)(𝑋‘(𝐿𝑛)))
174173ralrimiva 3133 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ ℕ0) → ∀𝑘 ∈ ℕ0 Σ𝑛 ∈ ((𝑁 · 𝑚)..^((𝑁 · 𝑚) + 𝑘))(𝑋‘(𝐿𝑛)) = Σ𝑛 ∈ (0..^𝑘)(𝑋‘(𝐿𝑛)))
175116, 174, 161rspcdva 3607 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℕ0) → Σ𝑛 ∈ ((𝑁 · 𝑚)..^((𝑁 · 𝑚) + 𝑁))(𝑋‘(𝐿𝑛)) = Σ𝑛 ∈ (0..^𝑁)(𝑋‘(𝐿𝑛)))
176 fveq2 6881 . . . . . . . . . . . . . . . . . 18 (𝑘 = (𝐿𝑛) → (𝑋𝑘) = (𝑋‘(𝐿𝑛)))
1773nnne0d 12295 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑁 ≠ 0)
178 ifnefalse 4517 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ≠ 0 → if(𝑁 = 0, ℤ, (0..^𝑁)) = (0..^𝑁))
179177, 178syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → if(𝑁 = 0, ℤ, (0..^𝑁)) = (0..^𝑁))
180 fzofi 13997 . . . . . . . . . . . . . . . . . . 19 (0..^𝑁) ∈ Fin
181179, 180eqeltrdi 2843 . . . . . . . . . . . . . . . . . 18 (𝜑 → if(𝑁 = 0, ℤ, (0..^𝑁)) ∈ Fin)
182 eqid 2736 . . . . . . . . . . . . . . . . . . . 20 (Base‘𝑍) = (Base‘𝑍)
18333reseq1i 5967 . . . . . . . . . . . . . . . . . . . 20 (𝐿 ↾ if(𝑁 = 0, ℤ, (0..^𝑁))) = ((ℤRHom‘𝑍) ↾ if(𝑁 = 0, ℤ, (0..^𝑁)))
184 eqid 2736 . . . . . . . . . . . . . . . . . . . 20 if(𝑁 = 0, ℤ, (0..^𝑁)) = if(𝑁 = 0, ℤ, (0..^𝑁))
18531, 182, 183, 184znf1o 21517 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0 → (𝐿 ↾ if(𝑁 = 0, ℤ, (0..^𝑁))):if(𝑁 = 0, ℤ, (0..^𝑁))–1-1-onto→(Base‘𝑍))
1864, 185syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐿 ↾ if(𝑁 = 0, ℤ, (0..^𝑁))):if(𝑁 = 0, ℤ, (0..^𝑁))–1-1-onto→(Base‘𝑍))
187 fvres 6900 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ if(𝑁 = 0, ℤ, (0..^𝑁)) → ((𝐿 ↾ if(𝑁 = 0, ℤ, (0..^𝑁)))‘𝑛) = (𝐿𝑛))
188187adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ if(𝑁 = 0, ℤ, (0..^𝑁))) → ((𝐿 ↾ if(𝑁 = 0, ℤ, (0..^𝑁)))‘𝑛) = (𝐿𝑛))
18930, 31, 32, 182, 34dchrf 27210 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑋:(Base‘𝑍)⟶ℂ)
190189ffvelcdmda 7079 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ (Base‘𝑍)) → (𝑋𝑘) ∈ ℂ)
191176, 181, 186, 188, 190fsumf1o 15744 . . . . . . . . . . . . . . . . 17 (𝜑 → Σ𝑘 ∈ (Base‘𝑍)(𝑋𝑘) = Σ𝑛 ∈ if (𝑁 = 0, ℤ, (0..^𝑁))(𝑋‘(𝐿𝑛)))
192 rpvmasum.1 . . . . . . . . . . . . . . . . . . 19 1 = (0g𝐺)
19330, 31, 32, 192, 34, 182dchrsum 27237 . . . . . . . . . . . . . . . . . 18 (𝜑 → Σ𝑘 ∈ (Base‘𝑍)(𝑋𝑘) = if(𝑋 = 1 , (ϕ‘𝑁), 0))
194 dchrisum.n1 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑋1 )
195 ifnefalse 4517 . . . . . . . . . . . . . . . . . . 19 (𝑋1 → if(𝑋 = 1 , (ϕ‘𝑁), 0) = 0)
196194, 195syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → if(𝑋 = 1 , (ϕ‘𝑁), 0) = 0)
197193, 196eqtrd 2771 . . . . . . . . . . . . . . . . 17 (𝜑 → Σ𝑘 ∈ (Base‘𝑍)(𝑋𝑘) = 0)
198179sumeq1d 15721 . . . . . . . . . . . . . . . . 17 (𝜑 → Σ𝑛 ∈ if (𝑁 = 0, ℤ, (0..^𝑁))(𝑋‘(𝐿𝑛)) = Σ𝑛 ∈ (0..^𝑁)(𝑋‘(𝐿𝑛)))
199191, 197, 1983eqtr3rd 2780 . . . . . . . . . . . . . . . 16 (𝜑 → Σ𝑛 ∈ (0..^𝑁)(𝑋‘(𝐿𝑛)) = 0)
200199adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℕ0) → Σ𝑛 ∈ (0..^𝑁)(𝑋‘(𝐿𝑛)) = 0)
201110, 175, 2003eqtrd 2775 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ0) → Σ𝑛 ∈ ((𝑁 · 𝑚)..^(𝑁 · (𝑚 + 1)))(𝑋‘(𝐿𝑛)) = 0)
202201oveq2d 7426 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ0) → (0 + Σ𝑛 ∈ ((𝑁 · 𝑚)..^(𝑁 · (𝑚 + 1)))(𝑋‘(𝐿𝑛))) = (0 + 0))
203 00id 11415 . . . . . . . . . . . . 13 (0 + 0) = 0
204202, 203eqtr2di 2788 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ0) → 0 = (0 + Σ𝑛 ∈ ((𝑁 · 𝑚)..^(𝑁 · (𝑚 + 1)))(𝑋‘(𝐿𝑛))))
205101, 204eqeq12d 2752 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ0) → (Σ𝑛 ∈ (0..^(𝑁 · (𝑚 + 1)))(𝑋‘(𝐿𝑛)) = 0 ↔ (Σ𝑛 ∈ (0..^(𝑁 · 𝑚))(𝑋‘(𝐿𝑛)) + Σ𝑛 ∈ ((𝑁 · 𝑚)..^(𝑁 · (𝑚 + 1)))(𝑋‘(𝐿𝑛))) = (0 + Σ𝑛 ∈ ((𝑁 · 𝑚)..^(𝑁 · (𝑚 + 1)))(𝑋‘(𝐿𝑛)))))
20668, 205imbitrrid 246 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ0) → (Σ𝑛 ∈ (0..^(𝑁 · 𝑚))(𝑋‘(𝐿𝑛)) = 0 → Σ𝑛 ∈ (0..^(𝑁 · (𝑚 + 1)))(𝑋‘(𝐿𝑛)) = 0))
207206expcom 413 . . . . . . . . 9 (𝑚 ∈ ℕ0 → (𝜑 → (Σ𝑛 ∈ (0..^(𝑁 · 𝑚))(𝑋‘(𝐿𝑛)) = 0 → Σ𝑛 ∈ (0..^(𝑁 · (𝑚 + 1)))(𝑋‘(𝐿𝑛)) = 0)))
208207a2d 29 . . . . . . . 8 (𝑚 ∈ ℕ0 → ((𝜑 → Σ𝑛 ∈ (0..^(𝑁 · 𝑚))(𝑋‘(𝐿𝑛)) = 0) → (𝜑 → Σ𝑛 ∈ (0..^(𝑁 · (𝑚 + 1)))(𝑋‘(𝐿𝑛)) = 0)))
20944, 49, 54, 59, 67, 208nn0ind 12693 . . . . . . 7 ((⌊‘(𝑈 / 𝑁)) ∈ ℕ0 → (𝜑 → Σ𝑛 ∈ (0..^(𝑁 · (⌊‘(𝑈 / 𝑁))))(𝑋‘(𝐿𝑛)) = 0))
210209impcom 407 . . . . . 6 ((𝜑 ∧ (⌊‘(𝑈 / 𝑁)) ∈ ℕ0) → Σ𝑛 ∈ (0..^(𝑁 · (⌊‘(𝑈 / 𝑁))))(𝑋‘(𝐿𝑛)) = 0)
21115, 210syldan 591 . . . . 5 ((𝜑𝑈 ∈ ℕ0) → Σ𝑛 ∈ (0..^(𝑁 · (⌊‘(𝑈 / 𝑁))))(𝑋‘(𝐿𝑛)) = 0)
212 modval 13893 . . . . . . . . . . 11 ((𝑈 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (𝑈 mod 𝑁) = (𝑈 − (𝑁 · (⌊‘(𝑈 / 𝑁)))))
2137, 10, 212syl2anc 584 . . . . . . . . . 10 ((𝜑𝑈 ∈ ℕ0) → (𝑈 mod 𝑁) = (𝑈 − (𝑁 · (⌊‘(𝑈 / 𝑁)))))
214213oveq2d 7426 . . . . . . . . 9 ((𝜑𝑈 ∈ ℕ0) → ((𝑁 · (⌊‘(𝑈 / 𝑁))) + (𝑈 mod 𝑁)) = ((𝑁 · (⌊‘(𝑈 / 𝑁))) + (𝑈 − (𝑁 · (⌊‘(𝑈 / 𝑁))))))
21516nn0cnd 12569 . . . . . . . . . 10 ((𝜑𝑈 ∈ ℕ0) → (𝑁 · (⌊‘(𝑈 / 𝑁))) ∈ ℂ)
216 nn0cn 12516 . . . . . . . . . . 11 (𝑈 ∈ ℕ0𝑈 ∈ ℂ)
217216adantl 481 . . . . . . . . . 10 ((𝜑𝑈 ∈ ℕ0) → 𝑈 ∈ ℂ)
218215, 217pncan3d 11602 . . . . . . . . 9 ((𝜑𝑈 ∈ ℕ0) → ((𝑁 · (⌊‘(𝑈 / 𝑁))) + (𝑈 − (𝑁 · (⌊‘(𝑈 / 𝑁))))) = 𝑈)
219214, 218eqtr2d 2772 . . . . . . . 8 ((𝜑𝑈 ∈ ℕ0) → 𝑈 = ((𝑁 · (⌊‘(𝑈 / 𝑁))) + (𝑈 mod 𝑁)))
220219oveq2d 7426 . . . . . . 7 ((𝜑𝑈 ∈ ℕ0) → ((𝑁 · (⌊‘(𝑈 / 𝑁)))..^𝑈) = ((𝑁 · (⌊‘(𝑈 / 𝑁)))..^((𝑁 · (⌊‘(𝑈 / 𝑁))) + (𝑈 mod 𝑁))))
221220sumeq1d 15721 . . . . . 6 ((𝜑𝑈 ∈ ℕ0) → Σ𝑛 ∈ ((𝑁 · (⌊‘(𝑈 / 𝑁)))..^𝑈)(𝑋‘(𝐿𝑛)) = Σ𝑛 ∈ ((𝑁 · (⌊‘(𝑈 / 𝑁)))..^((𝑁 · (⌊‘(𝑈 / 𝑁))) + (𝑈 mod 𝑁)))(𝑋‘(𝐿𝑛)))
222 nn0z 12618 . . . . . . . 8 (𝑈 ∈ ℕ0𝑈 ∈ ℤ)
223 zmodcl 13913 . . . . . . . 8 ((𝑈 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑈 mod 𝑁) ∈ ℕ0)
224222, 3, 223syl2anr 597 . . . . . . 7 ((𝜑𝑈 ∈ ℕ0) → (𝑈 mod 𝑁) ∈ ℕ0)
225174ralrimiva 3133 . . . . . . . 8 (𝜑 → ∀𝑚 ∈ ℕ0𝑘 ∈ ℕ0 Σ𝑛 ∈ ((𝑁 · 𝑚)..^((𝑁 · 𝑚) + 𝑘))(𝑋‘(𝐿𝑛)) = Σ𝑛 ∈ (0..^𝑘)(𝑋‘(𝐿𝑛)))
226225adantr 480 . . . . . . 7 ((𝜑𝑈 ∈ ℕ0) → ∀𝑚 ∈ ℕ0𝑘 ∈ ℕ0 Σ𝑛 ∈ ((𝑁 · 𝑚)..^((𝑁 · 𝑚) + 𝑘))(𝑋‘(𝐿𝑛)) = Σ𝑛 ∈ (0..^𝑘)(𝑋‘(𝐿𝑛)))
227 oveq2 7418 . . . . . . . . . . 11 (𝑚 = (⌊‘(𝑈 / 𝑁)) → (𝑁 · 𝑚) = (𝑁 · (⌊‘(𝑈 / 𝑁))))
228227oveq1d 7425 . . . . . . . . . . 11 (𝑚 = (⌊‘(𝑈 / 𝑁)) → ((𝑁 · 𝑚) + 𝑘) = ((𝑁 · (⌊‘(𝑈 / 𝑁))) + 𝑘))
229227, 228oveq12d 7428 . . . . . . . . . 10 (𝑚 = (⌊‘(𝑈 / 𝑁)) → ((𝑁 · 𝑚)..^((𝑁 · 𝑚) + 𝑘)) = ((𝑁 · (⌊‘(𝑈 / 𝑁)))..^((𝑁 · (⌊‘(𝑈 / 𝑁))) + 𝑘)))
230229sumeq1d 15721 . . . . . . . . 9 (𝑚 = (⌊‘(𝑈 / 𝑁)) → Σ𝑛 ∈ ((𝑁 · 𝑚)..^((𝑁 · 𝑚) + 𝑘))(𝑋‘(𝐿𝑛)) = Σ𝑛 ∈ ((𝑁 · (⌊‘(𝑈 / 𝑁)))..^((𝑁 · (⌊‘(𝑈 / 𝑁))) + 𝑘))(𝑋‘(𝐿𝑛)))
231230eqeq1d 2738 . . . . . . . 8 (𝑚 = (⌊‘(𝑈 / 𝑁)) → (Σ𝑛 ∈ ((𝑁 · 𝑚)..^((𝑁 · 𝑚) + 𝑘))(𝑋‘(𝐿𝑛)) = Σ𝑛 ∈ (0..^𝑘)(𝑋‘(𝐿𝑛)) ↔ Σ𝑛 ∈ ((𝑁 · (⌊‘(𝑈 / 𝑁)))..^((𝑁 · (⌊‘(𝑈 / 𝑁))) + 𝑘))(𝑋‘(𝐿𝑛)) = Σ𝑛 ∈ (0..^𝑘)(𝑋‘(𝐿𝑛))))
232 oveq2 7418 . . . . . . . . . . 11 (𝑘 = (𝑈 mod 𝑁) → ((𝑁 · (⌊‘(𝑈 / 𝑁))) + 𝑘) = ((𝑁 · (⌊‘(𝑈 / 𝑁))) + (𝑈 mod 𝑁)))
233232oveq2d 7426 . . . . . . . . . 10 (𝑘 = (𝑈 mod 𝑁) → ((𝑁 · (⌊‘(𝑈 / 𝑁)))..^((𝑁 · (⌊‘(𝑈 / 𝑁))) + 𝑘)) = ((𝑁 · (⌊‘(𝑈 / 𝑁)))..^((𝑁 · (⌊‘(𝑈 / 𝑁))) + (𝑈 mod 𝑁))))
234233sumeq1d 15721 . . . . . . . . 9 (𝑘 = (𝑈 mod 𝑁) → Σ𝑛 ∈ ((𝑁 · (⌊‘(𝑈 / 𝑁)))..^((𝑁 · (⌊‘(𝑈 / 𝑁))) + 𝑘))(𝑋‘(𝐿𝑛)) = Σ𝑛 ∈ ((𝑁 · (⌊‘(𝑈 / 𝑁)))..^((𝑁 · (⌊‘(𝑈 / 𝑁))) + (𝑈 mod 𝑁)))(𝑋‘(𝐿𝑛)))
235 oveq2 7418 . . . . . . . . . 10 (𝑘 = (𝑈 mod 𝑁) → (0..^𝑘) = (0..^(𝑈 mod 𝑁)))
236235sumeq1d 15721 . . . . . . . . 9 (𝑘 = (𝑈 mod 𝑁) → Σ𝑛 ∈ (0..^𝑘)(𝑋‘(𝐿𝑛)) = Σ𝑛 ∈ (0..^(𝑈 mod 𝑁))(𝑋‘(𝐿𝑛)))
237234, 236eqeq12d 2752 . . . . . . . 8 (𝑘 = (𝑈 mod 𝑁) → (Σ𝑛 ∈ ((𝑁 · (⌊‘(𝑈 / 𝑁)))..^((𝑁 · (⌊‘(𝑈 / 𝑁))) + 𝑘))(𝑋‘(𝐿𝑛)) = Σ𝑛 ∈ (0..^𝑘)(𝑋‘(𝐿𝑛)) ↔ Σ𝑛 ∈ ((𝑁 · (⌊‘(𝑈 / 𝑁)))..^((𝑁 · (⌊‘(𝑈 / 𝑁))) + (𝑈 mod 𝑁)))(𝑋‘(𝐿𝑛)) = Σ𝑛 ∈ (0..^(𝑈 mod 𝑁))(𝑋‘(𝐿𝑛))))
238231, 237rspc2va 3618 . . . . . . 7 ((((⌊‘(𝑈 / 𝑁)) ∈ ℕ0 ∧ (𝑈 mod 𝑁) ∈ ℕ0) ∧ ∀𝑚 ∈ ℕ0𝑘 ∈ ℕ0 Σ𝑛 ∈ ((𝑁 · 𝑚)..^((𝑁 · 𝑚) + 𝑘))(𝑋‘(𝐿𝑛)) = Σ𝑛 ∈ (0..^𝑘)(𝑋‘(𝐿𝑛))) → Σ𝑛 ∈ ((𝑁 · (⌊‘(𝑈 / 𝑁)))..^((𝑁 · (⌊‘(𝑈 / 𝑁))) + (𝑈 mod 𝑁)))(𝑋‘(𝐿𝑛)) = Σ𝑛 ∈ (0..^(𝑈 mod 𝑁))(𝑋‘(𝐿𝑛)))
23915, 224, 226, 238syl21anc 837 . . . . . 6 ((𝜑𝑈 ∈ ℕ0) → Σ𝑛 ∈ ((𝑁 · (⌊‘(𝑈 / 𝑁)))..^((𝑁 · (⌊‘(𝑈 / 𝑁))) + (𝑈 mod 𝑁)))(𝑋‘(𝐿𝑛)) = Σ𝑛 ∈ (0..^(𝑈 mod 𝑁))(𝑋‘(𝐿𝑛)))
240221, 239eqtrd 2771 . . . . 5 ((𝜑𝑈 ∈ ℕ0) → Σ𝑛 ∈ ((𝑁 · (⌊‘(𝑈 / 𝑁)))..^𝑈)(𝑋‘(𝐿𝑛)) = Σ𝑛 ∈ (0..^(𝑈 mod 𝑁))(𝑋‘(𝐿𝑛)))
241211, 240oveq12d 7428 . . . 4 ((𝜑𝑈 ∈ ℕ0) → (Σ𝑛 ∈ (0..^(𝑁 · (⌊‘(𝑈 / 𝑁))))(𝑋‘(𝐿𝑛)) + Σ𝑛 ∈ ((𝑁 · (⌊‘(𝑈 / 𝑁)))..^𝑈)(𝑋‘(𝐿𝑛))) = (0 + Σ𝑛 ∈ (0..^(𝑈 mod 𝑁))(𝑋‘(𝐿𝑛))))
242 fzofi 13997 . . . . . . 7 (0..^(𝑈 mod 𝑁)) ∈ Fin
243242a1i 11 . . . . . 6 ((𝜑𝑈 ∈ ℕ0) → (0..^(𝑈 mod 𝑁)) ∈ Fin)
24434ad2antrr 726 . . . . . . 7 (((𝜑𝑈 ∈ ℕ0) ∧ 𝑛 ∈ (0..^(𝑈 mod 𝑁))) → 𝑋𝐷)
245 elfzoelz 13681 . . . . . . . 8 (𝑛 ∈ (0..^(𝑈 mod 𝑁)) → 𝑛 ∈ ℤ)
246245adantl 481 . . . . . . 7 (((𝜑𝑈 ∈ ℕ0) ∧ 𝑛 ∈ (0..^(𝑈 mod 𝑁))) → 𝑛 ∈ ℤ)
24730, 31, 32, 33, 244, 246dchrzrhcl 27213 . . . . . 6 (((𝜑𝑈 ∈ ℕ0) ∧ 𝑛 ∈ (0..^(𝑈 mod 𝑁))) → (𝑋‘(𝐿𝑛)) ∈ ℂ)
248243, 247fsumcl 15754 . . . . 5 ((𝜑𝑈 ∈ ℕ0) → Σ𝑛 ∈ (0..^(𝑈 mod 𝑁))(𝑋‘(𝐿𝑛)) ∈ ℂ)
249248addlidd 11441 . . . 4 ((𝜑𝑈 ∈ ℕ0) → (0 + Σ𝑛 ∈ (0..^(𝑈 mod 𝑁))(𝑋‘(𝐿𝑛))) = Σ𝑛 ∈ (0..^(𝑈 mod 𝑁))(𝑋‘(𝐿𝑛)))
25039, 241, 2493eqtrd 2775 . . 3 ((𝜑𝑈 ∈ ℕ0) → Σ𝑛 ∈ (0..^𝑈)(𝑋‘(𝐿𝑛)) = Σ𝑛 ∈ (0..^(𝑈 mod 𝑁))(𝑋‘(𝐿𝑛)))
251250fveq2d 6885 . 2 ((𝜑𝑈 ∈ ℕ0) → (abs‘Σ𝑛 ∈ (0..^𝑈)(𝑋‘(𝐿𝑛))) = (abs‘Σ𝑛 ∈ (0..^(𝑈 mod 𝑁))(𝑋‘(𝐿𝑛))))
252 oveq2 7418 . . . . . 6 (𝑢 = (𝑈 mod 𝑁) → (0..^𝑢) = (0..^(𝑈 mod 𝑁)))
253252sumeq1d 15721 . . . . 5 (𝑢 = (𝑈 mod 𝑁) → Σ𝑛 ∈ (0..^𝑢)(𝑋‘(𝐿𝑛)) = Σ𝑛 ∈ (0..^(𝑈 mod 𝑁))(𝑋‘(𝐿𝑛)))
254253fveq2d 6885 . . . 4 (𝑢 = (𝑈 mod 𝑁) → (abs‘Σ𝑛 ∈ (0..^𝑢)(𝑋‘(𝐿𝑛))) = (abs‘Σ𝑛 ∈ (0..^(𝑈 mod 𝑁))(𝑋‘(𝐿𝑛))))
255254breq1d 5134 . . 3 (𝑢 = (𝑈 mod 𝑁) → ((abs‘Σ𝑛 ∈ (0..^𝑢)(𝑋‘(𝐿𝑛))) ≤ 𝑅 ↔ (abs‘Σ𝑛 ∈ (0..^(𝑈 mod 𝑁))(𝑋‘(𝐿𝑛))) ≤ 𝑅))
256 dchrisum.10 . . . 4 (𝜑 → ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑛 ∈ (0..^𝑢)(𝑋‘(𝐿𝑛))) ≤ 𝑅)
257256adantr 480 . . 3 ((𝜑𝑈 ∈ ℕ0) → ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑛 ∈ (0..^𝑢)(𝑋‘(𝐿𝑛))) ≤ 𝑅)
258 zmodfzo 13916 . . . 4 ((𝑈 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑈 mod 𝑁) ∈ (0..^𝑁))
259222, 3, 258syl2anr 597 . . 3 ((𝜑𝑈 ∈ ℕ0) → (𝑈 mod 𝑁) ∈ (0..^𝑁))
260255, 257, 259rspcdva 3607 . 2 ((𝜑𝑈 ∈ ℕ0) → (abs‘Σ𝑛 ∈ (0..^(𝑈 mod 𝑁))(𝑋‘(𝐿𝑛))) ≤ 𝑅)
261251, 260eqbrtrd 5146 1 ((𝜑𝑈 ∈ ℕ0) → (abs‘Σ𝑛 ∈ (0..^𝑈)(𝑋‘(𝐿𝑛))) ≤ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wral 3052  cun 3929  cin 3930  c0 4313  ifcif 4505   class class class wbr 5124  cmpt 5206  cres 5661  1-1-ontowf1o 6535  cfv 6536  (class class class)co 7410  Fincfn 8964  cc 11132  cr 11133  0cc0 11134  1c1 11135   + caddc 11137   · cmul 11139   < clt 11274  cle 11275  cmin 11471   / cdiv 11899  cn 12245  0cn0 12506  cz 12593  cuz 12857  +crp 13013  ...cfz 13529  ..^cfzo 13676  cfl 13812   mod cmo 13891  abscabs 15258  𝑟 crli 15506  Σcsu 15707  cdvds 16277  ϕcphi 16788  Basecbs 17233  0gc0g 17458  ℤRHomczrh 21465  ℤ/nczn 21468  DChrcdchr 27200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213  ax-mulf 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-tpos 8230  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-oadd 8489  df-er 8724  df-ec 8726  df-qs 8730  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-xnn0 12580  df-z 12594  df-dec 12714  df-uz 12858  df-rp 13014  df-fz 13530  df-fzo 13677  df-fl 13814  df-mod 13892  df-seq 14025  df-exp 14085  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-clim 15509  df-sum 15708  df-dvds 16278  df-gcd 16519  df-phi 16790  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-0g 17460  df-imas 17527  df-qus 17528  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-grp 18924  df-minusg 18925  df-sbg 18926  df-mulg 19056  df-subg 19111  df-nsg 19112  df-eqg 19113  df-ghm 19201  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-cring 20201  df-oppr 20302  df-dvdsr 20322  df-unit 20323  df-invr 20353  df-rhm 20437  df-subrng 20511  df-subrg 20535  df-lmod 20824  df-lss 20894  df-lsp 20934  df-sra 21136  df-rgmod 21137  df-lidl 21174  df-rsp 21175  df-2idl 21216  df-cnfld 21321  df-zring 21413  df-zrh 21469  df-zn 21472  df-dchr 27201
This theorem is referenced by:  dchrisumlem2  27458
  Copyright terms: Public domain W3C validator