MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmdiv Structured version   Visualization version   GIF version

Theorem prmdiv 16114
Description: Show an explicit expression for the modular inverse of 𝐴 mod 𝑃. (Contributed by Mario Carneiro, 24-Jan-2015.)
Hypothesis
Ref Expression
prmdiv.1 𝑅 = ((𝐴↑(𝑃 − 2)) mod 𝑃)
Assertion
Ref Expression
prmdiv ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑅 ∈ (1...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑅) − 1)))

Proof of Theorem prmdiv
StepHypRef Expression
1 nprmdvds1 16042 . . . . . 6 (𝑃 ∈ ℙ → ¬ 𝑃 ∥ 1)
213ad2ant1 1127 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ¬ 𝑃 ∥ 1)
3 prmz 16011 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
433ad2ant1 1127 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 𝑃 ∈ ℤ)
5 prmnn 16010 . . . . . . . . . . . 12 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
653ad2ant1 1127 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 𝑃 ∈ ℕ)
7 simp2 1131 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 𝐴 ∈ ℤ)
8 gcdcom 15854 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝐴 gcd 𝑃) = (𝑃 gcd 𝐴))
97, 4, 8syl2anc 584 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴 gcd 𝑃) = (𝑃 gcd 𝐴))
10 coprm 16047 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (¬ 𝑃𝐴 ↔ (𝑃 gcd 𝐴) = 1))
1110biimp3a 1462 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑃 gcd 𝐴) = 1)
129, 11eqtrd 2860 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴 gcd 𝑃) = 1)
13 eulerth 16112 . . . . . . . . . . 11 ((𝑃 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → ((𝐴↑(ϕ‘𝑃)) mod 𝑃) = (1 mod 𝑃))
146, 7, 12, 13syl3anc 1365 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝐴↑(ϕ‘𝑃)) mod 𝑃) = (1 mod 𝑃))
15 phiprm 16106 . . . . . . . . . . . . . 14 (𝑃 ∈ ℙ → (ϕ‘𝑃) = (𝑃 − 1))
16153ad2ant1 1127 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (ϕ‘𝑃) = (𝑃 − 1))
17 nnm1nn0 11930 . . . . . . . . . . . . . 14 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
186, 17syl 17 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑃 − 1) ∈ ℕ0)
1916, 18eqeltrd 2917 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (ϕ‘𝑃) ∈ ℕ0)
20 zexpcl 13437 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ (ϕ‘𝑃) ∈ ℕ0) → (𝐴↑(ϕ‘𝑃)) ∈ ℤ)
217, 19, 20syl2anc 584 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴↑(ϕ‘𝑃)) ∈ ℤ)
22 1zzd 12005 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 1 ∈ ℤ)
23 moddvds 15610 . . . . . . . . . . 11 ((𝑃 ∈ ℕ ∧ (𝐴↑(ϕ‘𝑃)) ∈ ℤ ∧ 1 ∈ ℤ) → (((𝐴↑(ϕ‘𝑃)) mod 𝑃) = (1 mod 𝑃) ↔ 𝑃 ∥ ((𝐴↑(ϕ‘𝑃)) − 1)))
246, 21, 22, 23syl3anc 1365 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (((𝐴↑(ϕ‘𝑃)) mod 𝑃) = (1 mod 𝑃) ↔ 𝑃 ∥ ((𝐴↑(ϕ‘𝑃)) − 1)))
2514, 24mpbid 233 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 𝑃 ∥ ((𝐴↑(ϕ‘𝑃)) − 1))
26 prmuz2 16032 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
27263ad2ant1 1127 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 𝑃 ∈ (ℤ‘2))
28 uznn0sub 12269 . . . . . . . . . . . . . . . 16 (𝑃 ∈ (ℤ‘2) → (𝑃 − 2) ∈ ℕ0)
2927, 28syl 17 . . . . . . . . . . . . . . 15 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑃 − 2) ∈ ℕ0)
30 zexpcl 13437 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ (𝑃 − 2) ∈ ℕ0) → (𝐴↑(𝑃 − 2)) ∈ ℤ)
317, 29, 30syl2anc 584 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴↑(𝑃 − 2)) ∈ ℤ)
3231zred 12079 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴↑(𝑃 − 2)) ∈ ℝ)
3332, 6nndivred 11683 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝐴↑(𝑃 − 2)) / 𝑃) ∈ ℝ)
3433flcld 13161 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃)) ∈ ℤ)
357, 34zmulcld 12085 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃))) ∈ ℤ)
36 dvdsmul1 15623 . . . . . . . . . 10 ((𝑃 ∈ ℤ ∧ (𝐴 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃))) ∈ ℤ) → 𝑃 ∥ (𝑃 · (𝐴 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃)))))
374, 35, 36syl2anc 584 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 𝑃 ∥ (𝑃 · (𝐴 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃)))))
38 1z 12004 . . . . . . . . . 10 1 ∈ ℤ
39 zsubcl 12016 . . . . . . . . . 10 (((𝐴↑(ϕ‘𝑃)) ∈ ℤ ∧ 1 ∈ ℤ) → ((𝐴↑(ϕ‘𝑃)) − 1) ∈ ℤ)
4021, 38, 39sylancl 586 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝐴↑(ϕ‘𝑃)) − 1) ∈ ℤ)
414, 35zmulcld 12085 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑃 · (𝐴 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃)))) ∈ ℤ)
424, 25, 37, 40, 41dvds2subd 15637 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 𝑃 ∥ (((𝐴↑(ϕ‘𝑃)) − 1) − (𝑃 · (𝐴 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃))))))
437zcnd 12080 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 𝐴 ∈ ℂ)
4431zcnd 12080 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴↑(𝑃 − 2)) ∈ ℂ)
454, 34zmulcld 12085 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑃 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃))) ∈ ℤ)
4645zcnd 12080 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑃 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃))) ∈ ℂ)
4743, 44, 46subdid 11088 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴 · ((𝐴↑(𝑃 − 2)) − (𝑃 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃))))) = ((𝐴 · (𝐴↑(𝑃 − 2))) − (𝐴 · (𝑃 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃))))))
48 prmdiv.1 . . . . . . . . . . . . 13 𝑅 = ((𝐴↑(𝑃 − 2)) mod 𝑃)
496nnrpd 12422 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 𝑃 ∈ ℝ+)
50 modval 13232 . . . . . . . . . . . . . 14 (((𝐴↑(𝑃 − 2)) ∈ ℝ ∧ 𝑃 ∈ ℝ+) → ((𝐴↑(𝑃 − 2)) mod 𝑃) = ((𝐴↑(𝑃 − 2)) − (𝑃 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃)))))
5132, 49, 50syl2anc 584 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝐴↑(𝑃 − 2)) mod 𝑃) = ((𝐴↑(𝑃 − 2)) − (𝑃 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃)))))
5248, 51syl5eq 2872 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 𝑅 = ((𝐴↑(𝑃 − 2)) − (𝑃 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃)))))
5352oveq2d 7167 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴 · 𝑅) = (𝐴 · ((𝐴↑(𝑃 − 2)) − (𝑃 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃))))))
54 2m1e1 11755 . . . . . . . . . . . . . . . . 17 (2 − 1) = 1
5554oveq2i 7162 . . . . . . . . . . . . . . . 16 (𝑃 − (2 − 1)) = (𝑃 − 1)
5616, 55syl6eqr 2878 . . . . . . . . . . . . . . 15 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (ϕ‘𝑃) = (𝑃 − (2 − 1)))
576nncnd 11646 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 𝑃 ∈ ℂ)
58 2cnd 11707 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 2 ∈ ℂ)
59 1cnd 10628 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 1 ∈ ℂ)
6057, 58, 59subsubd 11017 . . . . . . . . . . . . . . 15 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑃 − (2 − 1)) = ((𝑃 − 2) + 1))
6156, 60eqtrd 2860 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (ϕ‘𝑃) = ((𝑃 − 2) + 1))
6261oveq2d 7167 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴↑(ϕ‘𝑃)) = (𝐴↑((𝑃 − 2) + 1)))
6343, 29expp1d 13504 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴↑((𝑃 − 2) + 1)) = ((𝐴↑(𝑃 − 2)) · 𝐴))
6444, 43mulcomd 10654 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝐴↑(𝑃 − 2)) · 𝐴) = (𝐴 · (𝐴↑(𝑃 − 2))))
6562, 63, 643eqtrd 2864 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴↑(ϕ‘𝑃)) = (𝐴 · (𝐴↑(𝑃 − 2))))
6634zcnd 12080 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃)) ∈ ℂ)
6757, 43, 66mul12d 10841 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑃 · (𝐴 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃)))) = (𝐴 · (𝑃 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃)))))
6865, 67oveq12d 7169 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝐴↑(ϕ‘𝑃)) − (𝑃 · (𝐴 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃))))) = ((𝐴 · (𝐴↑(𝑃 − 2))) − (𝐴 · (𝑃 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃))))))
6947, 53, 683eqtr4d 2870 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴 · 𝑅) = ((𝐴↑(ϕ‘𝑃)) − (𝑃 · (𝐴 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃))))))
7069oveq1d 7166 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝐴 · 𝑅) − 1) = (((𝐴↑(ϕ‘𝑃)) − (𝑃 · (𝐴 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃))))) − 1))
7121zcnd 12080 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴↑(ϕ‘𝑃)) ∈ ℂ)
7241zcnd 12080 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑃 · (𝐴 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃)))) ∈ ℂ)
7371, 72, 59sub32d 11021 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (((𝐴↑(ϕ‘𝑃)) − (𝑃 · (𝐴 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃))))) − 1) = (((𝐴↑(ϕ‘𝑃)) − 1) − (𝑃 · (𝐴 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃))))))
7470, 73eqtrd 2860 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝐴 · 𝑅) − 1) = (((𝐴↑(ϕ‘𝑃)) − 1) − (𝑃 · (𝐴 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃))))))
7542, 74breqtrrd 5090 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 𝑃 ∥ ((𝐴 · 𝑅) − 1))
76 oveq2 7159 . . . . . . . . 9 (𝑅 = 0 → (𝐴 · 𝑅) = (𝐴 · 0))
7776oveq1d 7166 . . . . . . . 8 (𝑅 = 0 → ((𝐴 · 𝑅) − 1) = ((𝐴 · 0) − 1))
7877breq2d 5074 . . . . . . 7 (𝑅 = 0 → (𝑃 ∥ ((𝐴 · 𝑅) − 1) ↔ 𝑃 ∥ ((𝐴 · 0) − 1)))
7975, 78syl5ibcom 246 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑅 = 0 → 𝑃 ∥ ((𝐴 · 0) − 1)))
8043mul01d 10831 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴 · 0) = 0)
8180oveq1d 7166 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝐴 · 0) − 1) = (0 − 1))
82 df-neg 10865 . . . . . . . . 9 -1 = (0 − 1)
8381, 82syl6eqr 2878 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝐴 · 0) − 1) = -1)
8483breq2d 5074 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑃 ∥ ((𝐴 · 0) − 1) ↔ 𝑃 ∥ -1))
85 dvdsnegb 15619 . . . . . . . 8 ((𝑃 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑃 ∥ 1 ↔ 𝑃 ∥ -1))
864, 38, 85sylancl 586 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑃 ∥ 1 ↔ 𝑃 ∥ -1))
8784, 86bitr4d 283 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑃 ∥ ((𝐴 · 0) − 1) ↔ 𝑃 ∥ 1))
8879, 87sylibd 240 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑅 = 0 → 𝑃 ∥ 1))
892, 88mtod 199 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ¬ 𝑅 = 0)
90 zmodfz 13254 . . . . . . . 8 (((𝐴↑(𝑃 − 2)) ∈ ℤ ∧ 𝑃 ∈ ℕ) → ((𝐴↑(𝑃 − 2)) mod 𝑃) ∈ (0...(𝑃 − 1)))
9131, 6, 90syl2anc 584 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝐴↑(𝑃 − 2)) mod 𝑃) ∈ (0...(𝑃 − 1)))
9248, 91eqeltrid 2921 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 𝑅 ∈ (0...(𝑃 − 1)))
93 nn0uz 12272 . . . . . . . 8 0 = (ℤ‘0)
9418, 93syl6eleq 2927 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑃 − 1) ∈ (ℤ‘0))
95 elfzp12 12979 . . . . . . 7 ((𝑃 − 1) ∈ (ℤ‘0) → (𝑅 ∈ (0...(𝑃 − 1)) ↔ (𝑅 = 0 ∨ 𝑅 ∈ ((0 + 1)...(𝑃 − 1)))))
9694, 95syl 17 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑅 ∈ (0...(𝑃 − 1)) ↔ (𝑅 = 0 ∨ 𝑅 ∈ ((0 + 1)...(𝑃 − 1)))))
9792, 96mpbid 233 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑅 = 0 ∨ 𝑅 ∈ ((0 + 1)...(𝑃 − 1))))
9897ord 860 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (¬ 𝑅 = 0 → 𝑅 ∈ ((0 + 1)...(𝑃 − 1))))
9989, 98mpd 15 . . 3 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 𝑅 ∈ ((0 + 1)...(𝑃 − 1)))
100 1e0p1 12132 . . . 4 1 = (0 + 1)
101100oveq1i 7161 . . 3 (1...(𝑃 − 1)) = ((0 + 1)...(𝑃 − 1))
10299, 101syl6eleqr 2928 . 2 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 𝑅 ∈ (1...(𝑃 − 1)))
103102, 75jca 512 1 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑅 ∈ (1...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑅) − 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wo 843  w3a 1081   = wceq 1530  wcel 2107   class class class wbr 5062  cfv 6351  (class class class)co 7151  cr 10528  0cc0 10529  1c1 10530   + caddc 10532   · cmul 10534  cmin 10862  -cneg 10863   / cdiv 11289  cn 11630  2c2 11684  0cn0 11889  cz 11973  cuz 12235  +crp 12382  ...cfz 12885  cfl 13153   mod cmo 13230  cexp 13422  cdvds 15599   gcd cgcd 15835  cprime 16007  ϕcphi 16093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8282  df-map 8401  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8898  df-inf 8899  df-dju 9322  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-n0 11890  df-xnn0 11960  df-z 11974  df-uz 12236  df-rp 12383  df-fz 12886  df-fzo 13027  df-fl 13155  df-mod 13231  df-seq 13363  df-exp 13423  df-hash 13684  df-cj 14451  df-re 14452  df-im 14453  df-sqrt 14587  df-abs 14588  df-dvds 15600  df-gcd 15836  df-prm 16008  df-phi 16095
This theorem is referenced by:  prmdiveq  16115  prmdivdiv  16116  modprminv  16128  wilthlem2  25560  wilthlem3  25561
  Copyright terms: Public domain W3C validator