MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmdiv Structured version   Visualization version   GIF version

Theorem prmdiv 16832
Description: Show an explicit expression for the modular inverse of 𝐴 mod 𝑃. (Contributed by Mario Carneiro, 24-Jan-2015.)
Hypothesis
Ref Expression
prmdiv.1 𝑅 = ((𝐴↑(𝑃 − 2)) mod 𝑃)
Assertion
Ref Expression
prmdiv ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑅 ∈ (1...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑅) − 1)))

Proof of Theorem prmdiv
StepHypRef Expression
1 nprmdvds1 16753 . . . . . 6 (𝑃 ∈ ℙ → ¬ 𝑃 ∥ 1)
213ad2ant1 1133 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ¬ 𝑃 ∥ 1)
3 prmz 16722 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
433ad2ant1 1133 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 𝑃 ∈ ℤ)
5 simp2 1137 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 𝐴 ∈ ℤ)
6 phiprm 16824 . . . . . . . . . . . . 13 (𝑃 ∈ ℙ → (ϕ‘𝑃) = (𝑃 − 1))
763ad2ant1 1133 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (ϕ‘𝑃) = (𝑃 − 1))
8 prmnn 16721 . . . . . . . . . . . . . 14 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
983ad2ant1 1133 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 𝑃 ∈ ℕ)
10 nnm1nn0 12594 . . . . . . . . . . . . 13 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
119, 10syl 17 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑃 − 1) ∈ ℕ0)
127, 11eqeltrd 2844 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (ϕ‘𝑃) ∈ ℕ0)
13 zexpcl 14127 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ (ϕ‘𝑃) ∈ ℕ0) → (𝐴↑(ϕ‘𝑃)) ∈ ℤ)
145, 12, 13syl2anc 583 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴↑(ϕ‘𝑃)) ∈ ℤ)
15 1z 12673 . . . . . . . . . 10 1 ∈ ℤ
16 zsubcl 12685 . . . . . . . . . 10 (((𝐴↑(ϕ‘𝑃)) ∈ ℤ ∧ 1 ∈ ℤ) → ((𝐴↑(ϕ‘𝑃)) − 1) ∈ ℤ)
1714, 15, 16sylancl 585 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝐴↑(ϕ‘𝑃)) − 1) ∈ ℤ)
18 prmuz2 16743 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
19183ad2ant1 1133 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 𝑃 ∈ (ℤ‘2))
20 uznn0sub 12942 . . . . . . . . . . . . . . . 16 (𝑃 ∈ (ℤ‘2) → (𝑃 − 2) ∈ ℕ0)
2119, 20syl 17 . . . . . . . . . . . . . . 15 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑃 − 2) ∈ ℕ0)
22 zexpcl 14127 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ (𝑃 − 2) ∈ ℕ0) → (𝐴↑(𝑃 − 2)) ∈ ℤ)
235, 21, 22syl2anc 583 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴↑(𝑃 − 2)) ∈ ℤ)
2423zred 12747 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴↑(𝑃 − 2)) ∈ ℝ)
2524, 9nndivred 12347 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝐴↑(𝑃 − 2)) / 𝑃) ∈ ℝ)
2625flcld 13849 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃)) ∈ ℤ)
275, 26zmulcld 12753 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃))) ∈ ℤ)
284, 27zmulcld 12753 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑃 · (𝐴 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃)))) ∈ ℤ)
295, 4gcdcomd 16560 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴 gcd 𝑃) = (𝑃 gcd 𝐴))
30 coprm 16758 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (¬ 𝑃𝐴 ↔ (𝑃 gcd 𝐴) = 1))
3130biimp3a 1469 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑃 gcd 𝐴) = 1)
3229, 31eqtrd 2780 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴 gcd 𝑃) = 1)
33 eulerth 16830 . . . . . . . . . . 11 ((𝑃 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → ((𝐴↑(ϕ‘𝑃)) mod 𝑃) = (1 mod 𝑃))
349, 5, 32, 33syl3anc 1371 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝐴↑(ϕ‘𝑃)) mod 𝑃) = (1 mod 𝑃))
35 1zzd 12674 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 1 ∈ ℤ)
36 moddvds 16313 . . . . . . . . . . 11 ((𝑃 ∈ ℕ ∧ (𝐴↑(ϕ‘𝑃)) ∈ ℤ ∧ 1 ∈ ℤ) → (((𝐴↑(ϕ‘𝑃)) mod 𝑃) = (1 mod 𝑃) ↔ 𝑃 ∥ ((𝐴↑(ϕ‘𝑃)) − 1)))
379, 14, 35, 36syl3anc 1371 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (((𝐴↑(ϕ‘𝑃)) mod 𝑃) = (1 mod 𝑃) ↔ 𝑃 ∥ ((𝐴↑(ϕ‘𝑃)) − 1)))
3834, 37mpbid 232 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 𝑃 ∥ ((𝐴↑(ϕ‘𝑃)) − 1))
39 dvdsmul1 16326 . . . . . . . . . 10 ((𝑃 ∈ ℤ ∧ (𝐴 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃))) ∈ ℤ) → 𝑃 ∥ (𝑃 · (𝐴 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃)))))
404, 27, 39syl2anc 583 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 𝑃 ∥ (𝑃 · (𝐴 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃)))))
414, 17, 28, 38, 40dvds2subd 16341 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 𝑃 ∥ (((𝐴↑(ϕ‘𝑃)) − 1) − (𝑃 · (𝐴 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃))))))
425zcnd 12748 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 𝐴 ∈ ℂ)
4323zcnd 12748 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴↑(𝑃 − 2)) ∈ ℂ)
444, 26zmulcld 12753 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑃 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃))) ∈ ℤ)
4544zcnd 12748 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑃 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃))) ∈ ℂ)
4642, 43, 45subdid 11746 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴 · ((𝐴↑(𝑃 − 2)) − (𝑃 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃))))) = ((𝐴 · (𝐴↑(𝑃 − 2))) − (𝐴 · (𝑃 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃))))))
47 prmdiv.1 . . . . . . . . . . . . 13 𝑅 = ((𝐴↑(𝑃 − 2)) mod 𝑃)
489nnrpd 13097 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 𝑃 ∈ ℝ+)
49 modval 13922 . . . . . . . . . . . . . 14 (((𝐴↑(𝑃 − 2)) ∈ ℝ ∧ 𝑃 ∈ ℝ+) → ((𝐴↑(𝑃 − 2)) mod 𝑃) = ((𝐴↑(𝑃 − 2)) − (𝑃 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃)))))
5024, 48, 49syl2anc 583 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝐴↑(𝑃 − 2)) mod 𝑃) = ((𝐴↑(𝑃 − 2)) − (𝑃 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃)))))
5147, 50eqtrid 2792 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 𝑅 = ((𝐴↑(𝑃 − 2)) − (𝑃 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃)))))
5251oveq2d 7464 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴 · 𝑅) = (𝐴 · ((𝐴↑(𝑃 − 2)) − (𝑃 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃))))))
53 2m1e1 12419 . . . . . . . . . . . . . . . . 17 (2 − 1) = 1
5453oveq2i 7459 . . . . . . . . . . . . . . . 16 (𝑃 − (2 − 1)) = (𝑃 − 1)
557, 54eqtr4di 2798 . . . . . . . . . . . . . . 15 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (ϕ‘𝑃) = (𝑃 − (2 − 1)))
569nncnd 12309 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 𝑃 ∈ ℂ)
57 2cnd 12371 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 2 ∈ ℂ)
58 1cnd 11285 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 1 ∈ ℂ)
5956, 57, 58subsubd 11675 . . . . . . . . . . . . . . 15 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑃 − (2 − 1)) = ((𝑃 − 2) + 1))
6055, 59eqtrd 2780 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (ϕ‘𝑃) = ((𝑃 − 2) + 1))
6160oveq2d 7464 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴↑(ϕ‘𝑃)) = (𝐴↑((𝑃 − 2) + 1)))
6242, 21expp1d 14197 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴↑((𝑃 − 2) + 1)) = ((𝐴↑(𝑃 − 2)) · 𝐴))
6343, 42mulcomd 11311 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝐴↑(𝑃 − 2)) · 𝐴) = (𝐴 · (𝐴↑(𝑃 − 2))))
6461, 62, 633eqtrd 2784 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴↑(ϕ‘𝑃)) = (𝐴 · (𝐴↑(𝑃 − 2))))
6526zcnd 12748 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃)) ∈ ℂ)
6656, 42, 65mul12d 11499 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑃 · (𝐴 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃)))) = (𝐴 · (𝑃 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃)))))
6764, 66oveq12d 7466 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝐴↑(ϕ‘𝑃)) − (𝑃 · (𝐴 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃))))) = ((𝐴 · (𝐴↑(𝑃 − 2))) − (𝐴 · (𝑃 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃))))))
6846, 52, 673eqtr4d 2790 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴 · 𝑅) = ((𝐴↑(ϕ‘𝑃)) − (𝑃 · (𝐴 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃))))))
6968oveq1d 7463 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝐴 · 𝑅) − 1) = (((𝐴↑(ϕ‘𝑃)) − (𝑃 · (𝐴 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃))))) − 1))
7014zcnd 12748 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴↑(ϕ‘𝑃)) ∈ ℂ)
7128zcnd 12748 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑃 · (𝐴 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃)))) ∈ ℂ)
7270, 71, 58sub32d 11679 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (((𝐴↑(ϕ‘𝑃)) − (𝑃 · (𝐴 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃))))) − 1) = (((𝐴↑(ϕ‘𝑃)) − 1) − (𝑃 · (𝐴 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃))))))
7369, 72eqtrd 2780 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝐴 · 𝑅) − 1) = (((𝐴↑(ϕ‘𝑃)) − 1) − (𝑃 · (𝐴 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃))))))
7441, 73breqtrrd 5194 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 𝑃 ∥ ((𝐴 · 𝑅) − 1))
75 oveq2 7456 . . . . . . . . 9 (𝑅 = 0 → (𝐴 · 𝑅) = (𝐴 · 0))
7675oveq1d 7463 . . . . . . . 8 (𝑅 = 0 → ((𝐴 · 𝑅) − 1) = ((𝐴 · 0) − 1))
7776breq2d 5178 . . . . . . 7 (𝑅 = 0 → (𝑃 ∥ ((𝐴 · 𝑅) − 1) ↔ 𝑃 ∥ ((𝐴 · 0) − 1)))
7874, 77syl5ibcom 245 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑅 = 0 → 𝑃 ∥ ((𝐴 · 0) − 1)))
7942mul01d 11489 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴 · 0) = 0)
8079oveq1d 7463 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝐴 · 0) − 1) = (0 − 1))
81 df-neg 11523 . . . . . . . . 9 -1 = (0 − 1)
8280, 81eqtr4di 2798 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝐴 · 0) − 1) = -1)
8382breq2d 5178 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑃 ∥ ((𝐴 · 0) − 1) ↔ 𝑃 ∥ -1))
84 dvdsnegb 16322 . . . . . . . 8 ((𝑃 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑃 ∥ 1 ↔ 𝑃 ∥ -1))
854, 15, 84sylancl 585 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑃 ∥ 1 ↔ 𝑃 ∥ -1))
8683, 85bitr4d 282 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑃 ∥ ((𝐴 · 0) − 1) ↔ 𝑃 ∥ 1))
8778, 86sylibd 239 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑅 = 0 → 𝑃 ∥ 1))
882, 87mtod 198 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ¬ 𝑅 = 0)
89 zmodfz 13944 . . . . . . . 8 (((𝐴↑(𝑃 − 2)) ∈ ℤ ∧ 𝑃 ∈ ℕ) → ((𝐴↑(𝑃 − 2)) mod 𝑃) ∈ (0...(𝑃 − 1)))
9023, 9, 89syl2anc 583 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝐴↑(𝑃 − 2)) mod 𝑃) ∈ (0...(𝑃 − 1)))
9147, 90eqeltrid 2848 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 𝑅 ∈ (0...(𝑃 − 1)))
92 nn0uz 12945 . . . . . . . 8 0 = (ℤ‘0)
9311, 92eleqtrdi 2854 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑃 − 1) ∈ (ℤ‘0))
94 elfzp12 13663 . . . . . . 7 ((𝑃 − 1) ∈ (ℤ‘0) → (𝑅 ∈ (0...(𝑃 − 1)) ↔ (𝑅 = 0 ∨ 𝑅 ∈ ((0 + 1)...(𝑃 − 1)))))
9593, 94syl 17 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑅 ∈ (0...(𝑃 − 1)) ↔ (𝑅 = 0 ∨ 𝑅 ∈ ((0 + 1)...(𝑃 − 1)))))
9691, 95mpbid 232 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑅 = 0 ∨ 𝑅 ∈ ((0 + 1)...(𝑃 − 1))))
9796ord 863 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (¬ 𝑅 = 0 → 𝑅 ∈ ((0 + 1)...(𝑃 − 1))))
9888, 97mpd 15 . . 3 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 𝑅 ∈ ((0 + 1)...(𝑃 − 1)))
99 1e0p1 12800 . . . 4 1 = (0 + 1)
10099oveq1i 7458 . . 3 (1...(𝑃 − 1)) = ((0 + 1)...(𝑃 − 1))
10198, 100eleqtrrdi 2855 . 2 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 𝑅 ∈ (1...(𝑃 − 1)))
102101, 74jca 511 1 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑅 ∈ (1...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑅) − 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108   class class class wbr 5166  cfv 6573  (class class class)co 7448  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  cmin 11520  -cneg 11521   / cdiv 11947  cn 12293  2c2 12348  0cn0 12553  cz 12639  cuz 12903  +crp 13057  ...cfz 13567  cfl 13841   mod cmo 13920  cexp 14112  cdvds 16302   gcd cgcd 16540  cprime 16718  ϕcphi 16811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-dvds 16303  df-gcd 16541  df-prm 16719  df-phi 16813
This theorem is referenced by:  prmdiveq  16833  prmdivdiv  16834  modprminv  16846  wilthlem2  27130  wilthlem3  27131
  Copyright terms: Public domain W3C validator