MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmdiv Structured version   Visualization version   GIF version

Theorem prmdiv 16112
Description: Show an explicit expression for the modular inverse of 𝐴 mod 𝑃. (Contributed by Mario Carneiro, 24-Jan-2015.)
Hypothesis
Ref Expression
prmdiv.1 𝑅 = ((𝐴↑(𝑃 − 2)) mod 𝑃)
Assertion
Ref Expression
prmdiv ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑅 ∈ (1...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑅) − 1)))

Proof of Theorem prmdiv
StepHypRef Expression
1 nprmdvds1 16040 . . . . . 6 (𝑃 ∈ ℙ → ¬ 𝑃 ∥ 1)
213ad2ant1 1130 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ¬ 𝑃 ∥ 1)
3 prmz 16009 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
433ad2ant1 1130 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 𝑃 ∈ ℤ)
5 prmnn 16008 . . . . . . . . . . . 12 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
653ad2ant1 1130 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 𝑃 ∈ ℕ)
7 simp2 1134 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 𝐴 ∈ ℤ)
8 gcdcom 15852 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝐴 gcd 𝑃) = (𝑃 gcd 𝐴))
97, 4, 8syl2anc 587 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴 gcd 𝑃) = (𝑃 gcd 𝐴))
10 coprm 16045 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (¬ 𝑃𝐴 ↔ (𝑃 gcd 𝐴) = 1))
1110biimp3a 1466 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑃 gcd 𝐴) = 1)
129, 11eqtrd 2833 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴 gcd 𝑃) = 1)
13 eulerth 16110 . . . . . . . . . . 11 ((𝑃 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → ((𝐴↑(ϕ‘𝑃)) mod 𝑃) = (1 mod 𝑃))
146, 7, 12, 13syl3anc 1368 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝐴↑(ϕ‘𝑃)) mod 𝑃) = (1 mod 𝑃))
15 phiprm 16104 . . . . . . . . . . . . . 14 (𝑃 ∈ ℙ → (ϕ‘𝑃) = (𝑃 − 1))
16153ad2ant1 1130 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (ϕ‘𝑃) = (𝑃 − 1))
17 nnm1nn0 11926 . . . . . . . . . . . . . 14 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
186, 17syl 17 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑃 − 1) ∈ ℕ0)
1916, 18eqeltrd 2890 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (ϕ‘𝑃) ∈ ℕ0)
20 zexpcl 13440 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ (ϕ‘𝑃) ∈ ℕ0) → (𝐴↑(ϕ‘𝑃)) ∈ ℤ)
217, 19, 20syl2anc 587 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴↑(ϕ‘𝑃)) ∈ ℤ)
22 1zzd 12001 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 1 ∈ ℤ)
23 moddvds 15610 . . . . . . . . . . 11 ((𝑃 ∈ ℕ ∧ (𝐴↑(ϕ‘𝑃)) ∈ ℤ ∧ 1 ∈ ℤ) → (((𝐴↑(ϕ‘𝑃)) mod 𝑃) = (1 mod 𝑃) ↔ 𝑃 ∥ ((𝐴↑(ϕ‘𝑃)) − 1)))
246, 21, 22, 23syl3anc 1368 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (((𝐴↑(ϕ‘𝑃)) mod 𝑃) = (1 mod 𝑃) ↔ 𝑃 ∥ ((𝐴↑(ϕ‘𝑃)) − 1)))
2514, 24mpbid 235 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 𝑃 ∥ ((𝐴↑(ϕ‘𝑃)) − 1))
26 prmuz2 16030 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
27263ad2ant1 1130 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 𝑃 ∈ (ℤ‘2))
28 uznn0sub 12265 . . . . . . . . . . . . . . . 16 (𝑃 ∈ (ℤ‘2) → (𝑃 − 2) ∈ ℕ0)
2927, 28syl 17 . . . . . . . . . . . . . . 15 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑃 − 2) ∈ ℕ0)
30 zexpcl 13440 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ (𝑃 − 2) ∈ ℕ0) → (𝐴↑(𝑃 − 2)) ∈ ℤ)
317, 29, 30syl2anc 587 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴↑(𝑃 − 2)) ∈ ℤ)
3231zred 12075 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴↑(𝑃 − 2)) ∈ ℝ)
3332, 6nndivred 11679 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝐴↑(𝑃 − 2)) / 𝑃) ∈ ℝ)
3433flcld 13163 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃)) ∈ ℤ)
357, 34zmulcld 12081 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃))) ∈ ℤ)
36 dvdsmul1 15623 . . . . . . . . . 10 ((𝑃 ∈ ℤ ∧ (𝐴 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃))) ∈ ℤ) → 𝑃 ∥ (𝑃 · (𝐴 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃)))))
374, 35, 36syl2anc 587 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 𝑃 ∥ (𝑃 · (𝐴 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃)))))
38 1z 12000 . . . . . . . . . 10 1 ∈ ℤ
39 zsubcl 12012 . . . . . . . . . 10 (((𝐴↑(ϕ‘𝑃)) ∈ ℤ ∧ 1 ∈ ℤ) → ((𝐴↑(ϕ‘𝑃)) − 1) ∈ ℤ)
4021, 38, 39sylancl 589 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝐴↑(ϕ‘𝑃)) − 1) ∈ ℤ)
414, 35zmulcld 12081 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑃 · (𝐴 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃)))) ∈ ℤ)
424, 25, 37, 40, 41dvds2subd 15637 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 𝑃 ∥ (((𝐴↑(ϕ‘𝑃)) − 1) − (𝑃 · (𝐴 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃))))))
437zcnd 12076 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 𝐴 ∈ ℂ)
4431zcnd 12076 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴↑(𝑃 − 2)) ∈ ℂ)
454, 34zmulcld 12081 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑃 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃))) ∈ ℤ)
4645zcnd 12076 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑃 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃))) ∈ ℂ)
4743, 44, 46subdid 11085 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴 · ((𝐴↑(𝑃 − 2)) − (𝑃 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃))))) = ((𝐴 · (𝐴↑(𝑃 − 2))) − (𝐴 · (𝑃 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃))))))
48 prmdiv.1 . . . . . . . . . . . . 13 𝑅 = ((𝐴↑(𝑃 − 2)) mod 𝑃)
496nnrpd 12417 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 𝑃 ∈ ℝ+)
50 modval 13234 . . . . . . . . . . . . . 14 (((𝐴↑(𝑃 − 2)) ∈ ℝ ∧ 𝑃 ∈ ℝ+) → ((𝐴↑(𝑃 − 2)) mod 𝑃) = ((𝐴↑(𝑃 − 2)) − (𝑃 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃)))))
5132, 49, 50syl2anc 587 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝐴↑(𝑃 − 2)) mod 𝑃) = ((𝐴↑(𝑃 − 2)) − (𝑃 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃)))))
5248, 51syl5eq 2845 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 𝑅 = ((𝐴↑(𝑃 − 2)) − (𝑃 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃)))))
5352oveq2d 7151 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴 · 𝑅) = (𝐴 · ((𝐴↑(𝑃 − 2)) − (𝑃 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃))))))
54 2m1e1 11751 . . . . . . . . . . . . . . . . 17 (2 − 1) = 1
5554oveq2i 7146 . . . . . . . . . . . . . . . 16 (𝑃 − (2 − 1)) = (𝑃 − 1)
5616, 55eqtr4di 2851 . . . . . . . . . . . . . . 15 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (ϕ‘𝑃) = (𝑃 − (2 − 1)))
576nncnd 11641 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 𝑃 ∈ ℂ)
58 2cnd 11703 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 2 ∈ ℂ)
59 1cnd 10625 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 1 ∈ ℂ)
6057, 58, 59subsubd 11014 . . . . . . . . . . . . . . 15 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑃 − (2 − 1)) = ((𝑃 − 2) + 1))
6156, 60eqtrd 2833 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (ϕ‘𝑃) = ((𝑃 − 2) + 1))
6261oveq2d 7151 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴↑(ϕ‘𝑃)) = (𝐴↑((𝑃 − 2) + 1)))
6343, 29expp1d 13507 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴↑((𝑃 − 2) + 1)) = ((𝐴↑(𝑃 − 2)) · 𝐴))
6444, 43mulcomd 10651 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝐴↑(𝑃 − 2)) · 𝐴) = (𝐴 · (𝐴↑(𝑃 − 2))))
6562, 63, 643eqtrd 2837 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴↑(ϕ‘𝑃)) = (𝐴 · (𝐴↑(𝑃 − 2))))
6634zcnd 12076 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃)) ∈ ℂ)
6757, 43, 66mul12d 10838 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑃 · (𝐴 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃)))) = (𝐴 · (𝑃 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃)))))
6865, 67oveq12d 7153 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝐴↑(ϕ‘𝑃)) − (𝑃 · (𝐴 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃))))) = ((𝐴 · (𝐴↑(𝑃 − 2))) − (𝐴 · (𝑃 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃))))))
6947, 53, 683eqtr4d 2843 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴 · 𝑅) = ((𝐴↑(ϕ‘𝑃)) − (𝑃 · (𝐴 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃))))))
7069oveq1d 7150 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝐴 · 𝑅) − 1) = (((𝐴↑(ϕ‘𝑃)) − (𝑃 · (𝐴 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃))))) − 1))
7121zcnd 12076 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴↑(ϕ‘𝑃)) ∈ ℂ)
7241zcnd 12076 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑃 · (𝐴 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃)))) ∈ ℂ)
7371, 72, 59sub32d 11018 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (((𝐴↑(ϕ‘𝑃)) − (𝑃 · (𝐴 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃))))) − 1) = (((𝐴↑(ϕ‘𝑃)) − 1) − (𝑃 · (𝐴 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃))))))
7470, 73eqtrd 2833 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝐴 · 𝑅) − 1) = (((𝐴↑(ϕ‘𝑃)) − 1) − (𝑃 · (𝐴 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃))))))
7542, 74breqtrrd 5058 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 𝑃 ∥ ((𝐴 · 𝑅) − 1))
76 oveq2 7143 . . . . . . . . 9 (𝑅 = 0 → (𝐴 · 𝑅) = (𝐴 · 0))
7776oveq1d 7150 . . . . . . . 8 (𝑅 = 0 → ((𝐴 · 𝑅) − 1) = ((𝐴 · 0) − 1))
7877breq2d 5042 . . . . . . 7 (𝑅 = 0 → (𝑃 ∥ ((𝐴 · 𝑅) − 1) ↔ 𝑃 ∥ ((𝐴 · 0) − 1)))
7975, 78syl5ibcom 248 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑅 = 0 → 𝑃 ∥ ((𝐴 · 0) − 1)))
8043mul01d 10828 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴 · 0) = 0)
8180oveq1d 7150 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝐴 · 0) − 1) = (0 − 1))
82 df-neg 10862 . . . . . . . . 9 -1 = (0 − 1)
8381, 82eqtr4di 2851 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝐴 · 0) − 1) = -1)
8483breq2d 5042 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑃 ∥ ((𝐴 · 0) − 1) ↔ 𝑃 ∥ -1))
85 dvdsnegb 15619 . . . . . . . 8 ((𝑃 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑃 ∥ 1 ↔ 𝑃 ∥ -1))
864, 38, 85sylancl 589 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑃 ∥ 1 ↔ 𝑃 ∥ -1))
8784, 86bitr4d 285 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑃 ∥ ((𝐴 · 0) − 1) ↔ 𝑃 ∥ 1))
8879, 87sylibd 242 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑅 = 0 → 𝑃 ∥ 1))
892, 88mtod 201 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ¬ 𝑅 = 0)
90 zmodfz 13256 . . . . . . . 8 (((𝐴↑(𝑃 − 2)) ∈ ℤ ∧ 𝑃 ∈ ℕ) → ((𝐴↑(𝑃 − 2)) mod 𝑃) ∈ (0...(𝑃 − 1)))
9131, 6, 90syl2anc 587 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝐴↑(𝑃 − 2)) mod 𝑃) ∈ (0...(𝑃 − 1)))
9248, 91eqeltrid 2894 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 𝑅 ∈ (0...(𝑃 − 1)))
93 nn0uz 12268 . . . . . . . 8 0 = (ℤ‘0)
9418, 93eleqtrdi 2900 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑃 − 1) ∈ (ℤ‘0))
95 elfzp12 12981 . . . . . . 7 ((𝑃 − 1) ∈ (ℤ‘0) → (𝑅 ∈ (0...(𝑃 − 1)) ↔ (𝑅 = 0 ∨ 𝑅 ∈ ((0 + 1)...(𝑃 − 1)))))
9694, 95syl 17 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑅 ∈ (0...(𝑃 − 1)) ↔ (𝑅 = 0 ∨ 𝑅 ∈ ((0 + 1)...(𝑃 − 1)))))
9792, 96mpbid 235 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑅 = 0 ∨ 𝑅 ∈ ((0 + 1)...(𝑃 − 1))))
9897ord 861 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (¬ 𝑅 = 0 → 𝑅 ∈ ((0 + 1)...(𝑃 − 1))))
9989, 98mpd 15 . . 3 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 𝑅 ∈ ((0 + 1)...(𝑃 − 1)))
100 1e0p1 12128 . . . 4 1 = (0 + 1)
101100oveq1i 7145 . . 3 (1...(𝑃 − 1)) = ((0 + 1)...(𝑃 − 1))
10299, 101eleqtrrdi 2901 . 2 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 𝑅 ∈ (1...(𝑃 − 1)))
103102, 75jca 515 1 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑅 ∈ (1...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑅) − 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2111   class class class wbr 5030  cfv 6324  (class class class)co 7135  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531  cmin 10859  -cneg 10860   / cdiv 11286  cn 11625  2c2 11680  0cn0 11885  cz 11969  cuz 12231  +crp 12377  ...cfz 12885  cfl 13155   mod cmo 13232  cexp 13425  cdvds 15599   gcd cgcd 15833  cprime 16005  ϕcphi 16091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-dvds 15600  df-gcd 15834  df-prm 16006  df-phi 16093
This theorem is referenced by:  prmdiveq  16113  prmdivdiv  16114  modprminv  16126  wilthlem2  25654  wilthlem3  25655
  Copyright terms: Public domain W3C validator