MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  moddiffl Structured version   Visualization version   GIF version

Theorem moddiffl 13929
Description: Value of the modulo operation rewritten to give two ways of expressing the quotient when "𝐴 is divided by 𝐵 using Euclidean division." Multiplying both sides by 𝐵, this implies that 𝐴 mod 𝐵 differs from 𝐴 by an integer multiple of 𝐵. (Contributed by Jeff Madsen, 17-Jun-2010.) (Revised by Mario Carneiro, 6-Sep-2016.)
Assertion
Ref Expression
moddiffl ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 − (𝐴 mod 𝐵)) / 𝐵) = (⌊‘(𝐴 / 𝐵)))

Proof of Theorem moddiffl
StepHypRef Expression
1 modval 13918 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 mod 𝐵) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))))
21oveq2d 7461 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 − (𝐴 mod 𝐵)) = (𝐴 − (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵))))))
3 simpl 482 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐴 ∈ ℝ)
43recnd 11314 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐴 ∈ ℂ)
5 rpcn 13063 . . . . . . 7 (𝐵 ∈ ℝ+𝐵 ∈ ℂ)
65adantl 481 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℂ)
7 rerpdivcl 13083 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ)
87flcld 13845 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌊‘(𝐴 / 𝐵)) ∈ ℤ)
98zcnd 12744 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌊‘(𝐴 / 𝐵)) ∈ ℂ)
106, 9mulcld 11306 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐵 · (⌊‘(𝐴 / 𝐵))) ∈ ℂ)
114, 10nncand 11648 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 − (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵))))) = (𝐵 · (⌊‘(𝐴 / 𝐵))))
122, 11eqtrd 2774 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 − (𝐴 mod 𝐵)) = (𝐵 · (⌊‘(𝐴 / 𝐵))))
1312oveq1d 7460 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 − (𝐴 mod 𝐵)) / 𝐵) = ((𝐵 · (⌊‘(𝐴 / 𝐵))) / 𝐵))
14 rpne0 13069 . . . 4 (𝐵 ∈ ℝ+𝐵 ≠ 0)
1514adantl 481 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐵 ≠ 0)
169, 6, 15divcan3d 12071 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐵 · (⌊‘(𝐴 / 𝐵))) / 𝐵) = (⌊‘(𝐴 / 𝐵)))
1713, 16eqtrd 2774 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 − (𝐴 mod 𝐵)) / 𝐵) = (⌊‘(𝐴 / 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2103  wne 2942  cfv 6572  (class class class)co 7445  cc 11178  cr 11179  0cc0 11180   · cmul 11185  cmin 11516   / cdiv 11943  +crp 13053  cfl 13837   mod cmo 13916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2105  ax-9 2113  ax-10 2136  ax-11 2153  ax-12 2173  ax-ext 2705  ax-sep 5320  ax-nul 5327  ax-pow 5386  ax-pr 5450  ax-un 7766  ax-cnex 11236  ax-resscn 11237  ax-1cn 11238  ax-icn 11239  ax-addcl 11240  ax-addrcl 11241  ax-mulcl 11242  ax-mulrcl 11243  ax-mulcom 11244  ax-addass 11245  ax-mulass 11246  ax-distr 11247  ax-i2m1 11248  ax-1ne0 11249  ax-1rid 11250  ax-rnegex 11251  ax-rrecex 11252  ax-cnre 11253  ax-pre-lttri 11254  ax-pre-lttrn 11255  ax-pre-ltadd 11256  ax-pre-mulgt0 11257  ax-pre-sup 11258
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2890  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-rmo 3383  df-reu 3384  df-rab 3439  df-v 3484  df-sbc 3799  df-csb 3916  df-dif 3973  df-un 3975  df-in 3977  df-ss 3987  df-pss 3990  df-nul 4348  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5021  df-br 5170  df-opab 5232  df-mpt 5253  df-tr 5287  df-id 5597  df-eprel 5603  df-po 5611  df-so 5612  df-fr 5654  df-we 5656  df-xp 5705  df-rel 5706  df-cnv 5707  df-co 5708  df-dm 5709  df-rn 5710  df-res 5711  df-ima 5712  df-pred 6331  df-ord 6397  df-on 6398  df-lim 6399  df-suc 6400  df-iota 6524  df-fun 6574  df-fn 6575  df-f 6576  df-f1 6577  df-fo 6578  df-f1o 6579  df-fv 6580  df-riota 7401  df-ov 7448  df-oprab 7449  df-mpo 7450  df-om 7900  df-2nd 8027  df-frecs 8318  df-wrecs 8349  df-recs 8423  df-rdg 8462  df-er 8759  df-en 9000  df-dom 9001  df-sdom 9002  df-sup 9507  df-inf 9508  df-pnf 11322  df-mnf 11323  df-xr 11324  df-ltxr 11325  df-le 11326  df-sub 11518  df-neg 11519  df-div 11944  df-nn 12290  df-n0 12550  df-z 12636  df-uz 12900  df-rp 13054  df-fl 13839  df-mod 13917
This theorem is referenced by:  moddifz  13930  modmuladdnn0  13962  bitsinv1lem  16481  bitsres  16513  lefldiveq  45141
  Copyright terms: Public domain W3C validator