![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prmrp | Structured version Visualization version GIF version |
Description: Unequal prime numbers are relatively prime. (Contributed by Mario Carneiro, 23-Feb-2014.) |
Ref | Expression |
---|---|
prmrp | ⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → ((𝑃 gcd 𝑄) = 1 ↔ 𝑃 ≠ 𝑄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prmz 16715 | . . 3 ⊢ (𝑄 ∈ ℙ → 𝑄 ∈ ℤ) | |
2 | coprm 16751 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℤ) → (¬ 𝑃 ∥ 𝑄 ↔ (𝑃 gcd 𝑄) = 1)) | |
3 | 1, 2 | sylan2 593 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (¬ 𝑃 ∥ 𝑄 ↔ (𝑃 gcd 𝑄) = 1)) |
4 | prmuz2 16736 | . . . 4 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ≥‘2)) | |
5 | dvdsprm 16743 | . . . 4 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑄 ∈ ℙ) → (𝑃 ∥ 𝑄 ↔ 𝑃 = 𝑄)) | |
6 | 4, 5 | sylan 580 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (𝑃 ∥ 𝑄 ↔ 𝑃 = 𝑄)) |
7 | 6 | necon3bbid 2977 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (¬ 𝑃 ∥ 𝑄 ↔ 𝑃 ≠ 𝑄)) |
8 | 3, 7 | bitr3d 281 | 1 ⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → ((𝑃 gcd 𝑄) = 1 ↔ 𝑃 ≠ 𝑄)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1538 ∈ wcel 2107 ≠ wne 2939 class class class wbr 5149 ‘cfv 6566 (class class class)co 7435 1c1 11160 2c2 12325 ℤcz 12617 ℤ≥cuz 12882 ∥ cdvds 16293 gcd cgcd 16534 ℙcprime 16711 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5303 ax-nul 5313 ax-pow 5372 ax-pr 5439 ax-un 7758 ax-cnex 11215 ax-resscn 11216 ax-1cn 11217 ax-icn 11218 ax-addcl 11219 ax-addrcl 11220 ax-mulcl 11221 ax-mulrcl 11222 ax-mulcom 11223 ax-addass 11224 ax-mulass 11225 ax-distr 11226 ax-i2m1 11227 ax-1ne0 11228 ax-1rid 11229 ax-rnegex 11230 ax-rrecex 11231 ax-cnre 11232 ax-pre-lttri 11233 ax-pre-lttrn 11234 ax-pre-ltadd 11235 ax-pre-mulgt0 11236 ax-pre-sup 11237 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3435 df-v 3481 df-sbc 3793 df-csb 3910 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-pss 3984 df-nul 4341 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4914 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5584 df-eprel 5590 df-po 5598 df-so 5599 df-fr 5642 df-we 5644 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-dm 5700 df-rn 5701 df-res 5702 df-ima 5703 df-pred 6326 df-ord 6392 df-on 6393 df-lim 6394 df-suc 6395 df-iota 6519 df-fun 6568 df-fn 6569 df-f 6570 df-f1 6571 df-fo 6572 df-f1o 6573 df-fv 6574 df-riota 7392 df-ov 7438 df-oprab 7439 df-mpo 7440 df-om 7892 df-2nd 8020 df-frecs 8311 df-wrecs 8342 df-recs 8416 df-rdg 8455 df-1o 8511 df-2o 8512 df-er 8750 df-en 8991 df-dom 8992 df-sdom 8993 df-fin 8994 df-sup 9486 df-inf 9487 df-pnf 11301 df-mnf 11302 df-xr 11303 df-ltxr 11304 df-le 11305 df-sub 11498 df-neg 11499 df-div 11925 df-nn 12271 df-2 12333 df-3 12334 df-n0 12531 df-z 12618 df-uz 12883 df-rp 13039 df-seq 14046 df-exp 14106 df-cj 15141 df-re 15142 df-im 15143 df-sqrt 15277 df-abs 15278 df-dvds 16294 df-gcd 16535 df-prm 16712 |
This theorem is referenced by: 3lcm2e6 16772 fvprmselgcd1 17085 ablfac1b 20111 2logb9irr 26861 logbprmirr 26862 lgseisenlem1 27442 lgseisenlem2 27443 lgsquadlem2 27448 lgsquadlem3 27449 lgsquad2lem2 27452 lgsquad2 27453 2lgsoddprm 27483 ostth3 27705 12gcd5e1 41997 60gcd7e1 41999 nzprmdif 44329 odz2prm2pw 47499 fmtnoprmfac1 47501 fmtnoprmfac2 47503 |
Copyright terms: Public domain | W3C validator |