MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmrp Structured version   Visualization version   GIF version

Theorem prmrp 16618
Description: Unequal prime numbers are relatively prime. (Contributed by Mario Carneiro, 23-Feb-2014.)
Assertion
Ref Expression
prmrp ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → ((𝑃 gcd 𝑄) = 1 ↔ 𝑃𝑄))

Proof of Theorem prmrp
StepHypRef Expression
1 prmz 16581 . . 3 (𝑄 ∈ ℙ → 𝑄 ∈ ℤ)
2 coprm 16617 . . 3 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℤ) → (¬ 𝑃𝑄 ↔ (𝑃 gcd 𝑄) = 1))
31, 2sylan2 593 . 2 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (¬ 𝑃𝑄 ↔ (𝑃 gcd 𝑄) = 1))
4 prmuz2 16602 . . . 4 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
5 dvdsprm 16609 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ 𝑄 ∈ ℙ) → (𝑃𝑄𝑃 = 𝑄))
64, 5sylan 580 . . 3 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (𝑃𝑄𝑃 = 𝑄))
76necon3bbid 2965 . 2 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (¬ 𝑃𝑄𝑃𝑄))
83, 7bitr3d 281 1 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → ((𝑃 gcd 𝑄) = 1 ↔ 𝑃𝑄))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928   class class class wbr 5086  cfv 6476  (class class class)co 7341  1c1 11002  2c2 12175  cz 12463  cuz 12727  cdvds 16158   gcd cgcd 16400  cprime 16577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-sup 9321  df-inf 9322  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-n0 12377  df-z 12464  df-uz 12728  df-rp 12886  df-seq 13904  df-exp 13964  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138  df-dvds 16159  df-gcd 16401  df-prm 16578
This theorem is referenced by:  3lcm2e6  16638  fvprmselgcd1  16952  ablfac1b  19979  2logb9irr  26727  logbprmirr  26728  lgseisenlem1  27308  lgseisenlem2  27309  lgsquadlem2  27314  lgsquadlem3  27315  lgsquad2lem2  27318  lgsquad2  27319  2lgsoddprm  27349  ostth3  27571  12gcd5e1  42036  60gcd7e1  42038  nzprmdif  44352  odz2prm2pw  47594  fmtnoprmfac1  47596  fmtnoprmfac2  47598
  Copyright terms: Public domain W3C validator