![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rlimrecl | Structured version Visualization version GIF version |
Description: The limit of a real sequence is real. (Contributed by Mario Carneiro, 9-May-2016.) |
Ref | Expression |
---|---|
rlimcld2.1 | ⊢ (𝜑 → sup(𝐴, ℝ*, < ) = +∞) |
rlimcld2.2 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶) |
rlimrecl.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
Ref | Expression |
---|---|
rlimrecl | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rlimcld2.1 | . 2 ⊢ (𝜑 → sup(𝐴, ℝ*, < ) = +∞) | |
2 | rlimcld2.2 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶) | |
3 | ax-resscn 10391 | . . 3 ⊢ ℝ ⊆ ℂ | |
4 | 3 | a1i 11 | . 2 ⊢ (𝜑 → ℝ ⊆ ℂ) |
5 | eldifi 3988 | . . . . . 6 ⊢ (𝑦 ∈ (ℂ ∖ ℝ) → 𝑦 ∈ ℂ) | |
6 | 5 | adantl 474 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) → 𝑦 ∈ ℂ) |
7 | 6 | imcld 14414 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) → (ℑ‘𝑦) ∈ ℝ) |
8 | 7 | recnd 10467 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) → (ℑ‘𝑦) ∈ ℂ) |
9 | eldifn 3989 | . . . . 5 ⊢ (𝑦 ∈ (ℂ ∖ ℝ) → ¬ 𝑦 ∈ ℝ) | |
10 | 9 | adantl 474 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) → ¬ 𝑦 ∈ ℝ) |
11 | reim0b 14338 | . . . . . 6 ⊢ (𝑦 ∈ ℂ → (𝑦 ∈ ℝ ↔ (ℑ‘𝑦) = 0)) | |
12 | 6, 11 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) → (𝑦 ∈ ℝ ↔ (ℑ‘𝑦) = 0)) |
13 | 12 | necon3bbid 2999 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) → (¬ 𝑦 ∈ ℝ ↔ (ℑ‘𝑦) ≠ 0)) |
14 | 10, 13 | mpbid 224 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) → (ℑ‘𝑦) ≠ 0) |
15 | 8, 14 | absrpcld 14668 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) → (abs‘(ℑ‘𝑦)) ∈ ℝ+) |
16 | 6 | adantr 473 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → 𝑦 ∈ ℂ) |
17 | simpr 477 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℝ) | |
18 | 17 | recnd 10467 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℂ) |
19 | 16, 18 | subcld 10797 | . . . 4 ⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → (𝑦 − 𝑧) ∈ ℂ) |
20 | absimle 14529 | . . . 4 ⊢ ((𝑦 − 𝑧) ∈ ℂ → (abs‘(ℑ‘(𝑦 − 𝑧))) ≤ (abs‘(𝑦 − 𝑧))) | |
21 | 19, 20 | syl 17 | . . 3 ⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → (abs‘(ℑ‘(𝑦 − 𝑧))) ≤ (abs‘(𝑦 − 𝑧))) |
22 | 16, 18 | imsubd 14436 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → (ℑ‘(𝑦 − 𝑧)) = ((ℑ‘𝑦) − (ℑ‘𝑧))) |
23 | reim0 14337 | . . . . . . 7 ⊢ (𝑧 ∈ ℝ → (ℑ‘𝑧) = 0) | |
24 | 23 | adantl 474 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → (ℑ‘𝑧) = 0) |
25 | 24 | oveq2d 6991 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → ((ℑ‘𝑦) − (ℑ‘𝑧)) = ((ℑ‘𝑦) − 0)) |
26 | 8 | adantr 473 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → (ℑ‘𝑦) ∈ ℂ) |
27 | 26 | subid1d 10786 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → ((ℑ‘𝑦) − 0) = (ℑ‘𝑦)) |
28 | 22, 25, 27 | 3eqtrrd 2814 | . . . 4 ⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → (ℑ‘𝑦) = (ℑ‘(𝑦 − 𝑧))) |
29 | 28 | fveq2d 6501 | . . 3 ⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → (abs‘(ℑ‘𝑦)) = (abs‘(ℑ‘(𝑦 − 𝑧)))) |
30 | 18, 16 | abssubd 14673 | . . 3 ⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → (abs‘(𝑧 − 𝑦)) = (abs‘(𝑦 − 𝑧))) |
31 | 21, 29, 30 | 3brtr4d 4958 | . 2 ⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → (abs‘(ℑ‘𝑦)) ≤ (abs‘(𝑧 − 𝑦))) |
32 | rlimrecl.3 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
33 | 1, 2, 4, 15, 31, 32 | rlimcld2 14795 | 1 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 387 = wceq 1508 ∈ wcel 2051 ≠ wne 2962 ∖ cdif 3821 ⊆ wss 3824 class class class wbr 4926 ↦ cmpt 5005 ‘cfv 6186 (class class class)co 6975 supcsup 8698 ℂcc 10332 ℝcr 10333 0cc0 10334 +∞cpnf 10470 ℝ*cxr 10472 < clt 10473 ≤ cle 10474 − cmin 10669 ℑcim 14317 abscabs 14453 ⇝𝑟 crli 14702 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2745 ax-sep 5057 ax-nul 5064 ax-pow 5116 ax-pr 5183 ax-un 7278 ax-cnex 10390 ax-resscn 10391 ax-1cn 10392 ax-icn 10393 ax-addcl 10394 ax-addrcl 10395 ax-mulcl 10396 ax-mulrcl 10397 ax-mulcom 10398 ax-addass 10399 ax-mulass 10400 ax-distr 10401 ax-i2m1 10402 ax-1ne0 10403 ax-1rid 10404 ax-rnegex 10405 ax-rrecex 10406 ax-cnre 10407 ax-pre-lttri 10408 ax-pre-lttrn 10409 ax-pre-ltadd 10410 ax-pre-mulgt0 10411 ax-pre-sup 10412 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2754 df-cleq 2766 df-clel 2841 df-nfc 2913 df-ne 2963 df-nel 3069 df-ral 3088 df-rex 3089 df-reu 3090 df-rmo 3091 df-rab 3092 df-v 3412 df-sbc 3677 df-csb 3782 df-dif 3827 df-un 3829 df-in 3831 df-ss 3838 df-pss 3840 df-nul 4174 df-if 4346 df-pw 4419 df-sn 4437 df-pr 4439 df-tp 4441 df-op 4443 df-uni 4710 df-iun 4791 df-br 4927 df-opab 4989 df-mpt 5006 df-tr 5028 df-id 5309 df-eprel 5314 df-po 5323 df-so 5324 df-fr 5363 df-we 5365 df-xp 5410 df-rel 5411 df-cnv 5412 df-co 5413 df-dm 5414 df-rn 5415 df-res 5416 df-ima 5417 df-pred 5984 df-ord 6030 df-on 6031 df-lim 6032 df-suc 6033 df-iota 6150 df-fun 6188 df-fn 6189 df-f 6190 df-f1 6191 df-fo 6192 df-f1o 6193 df-fv 6194 df-riota 6936 df-ov 6978 df-oprab 6979 df-mpo 6980 df-om 7396 df-2nd 7501 df-wrecs 7749 df-recs 7811 df-rdg 7849 df-er 8088 df-pm 8208 df-en 8306 df-dom 8307 df-sdom 8308 df-sup 8700 df-pnf 10475 df-mnf 10476 df-xr 10477 df-ltxr 10478 df-le 10479 df-sub 10671 df-neg 10672 df-div 11098 df-nn 11439 df-2 11502 df-3 11503 df-n0 11707 df-z 11793 df-uz 12058 df-rp 12204 df-seq 13184 df-exp 13244 df-cj 14318 df-re 14319 df-im 14320 df-sqrt 14454 df-abs 14455 df-rlim 14706 |
This theorem is referenced by: rlimge0 14798 climrecl 14800 rlimle 14864 divsqrtsumo1 25279 mulog2sumlem1 25828 |
Copyright terms: Public domain | W3C validator |