Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rlimrecl | Structured version Visualization version GIF version |
Description: The limit of a real sequence is real. (Contributed by Mario Carneiro, 9-May-2016.) |
Ref | Expression |
---|---|
rlimcld2.1 | ⊢ (𝜑 → sup(𝐴, ℝ*, < ) = +∞) |
rlimcld2.2 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶) |
rlimrecl.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
Ref | Expression |
---|---|
rlimrecl | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rlimcld2.1 | . 2 ⊢ (𝜑 → sup(𝐴, ℝ*, < ) = +∞) | |
2 | rlimcld2.2 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶) | |
3 | ax-resscn 10859 | . . 3 ⊢ ℝ ⊆ ℂ | |
4 | 3 | a1i 11 | . 2 ⊢ (𝜑 → ℝ ⊆ ℂ) |
5 | eldifi 4057 | . . . . . 6 ⊢ (𝑦 ∈ (ℂ ∖ ℝ) → 𝑦 ∈ ℂ) | |
6 | 5 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) → 𝑦 ∈ ℂ) |
7 | 6 | imcld 14834 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) → (ℑ‘𝑦) ∈ ℝ) |
8 | 7 | recnd 10934 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) → (ℑ‘𝑦) ∈ ℂ) |
9 | eldifn 4058 | . . . . 5 ⊢ (𝑦 ∈ (ℂ ∖ ℝ) → ¬ 𝑦 ∈ ℝ) | |
10 | 9 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) → ¬ 𝑦 ∈ ℝ) |
11 | reim0b 14758 | . . . . . 6 ⊢ (𝑦 ∈ ℂ → (𝑦 ∈ ℝ ↔ (ℑ‘𝑦) = 0)) | |
12 | 6, 11 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) → (𝑦 ∈ ℝ ↔ (ℑ‘𝑦) = 0)) |
13 | 12 | necon3bbid 2980 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) → (¬ 𝑦 ∈ ℝ ↔ (ℑ‘𝑦) ≠ 0)) |
14 | 10, 13 | mpbid 231 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) → (ℑ‘𝑦) ≠ 0) |
15 | 8, 14 | absrpcld 15088 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) → (abs‘(ℑ‘𝑦)) ∈ ℝ+) |
16 | 6 | adantr 480 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → 𝑦 ∈ ℂ) |
17 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℝ) | |
18 | 17 | recnd 10934 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℂ) |
19 | 16, 18 | subcld 11262 | . . . 4 ⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → (𝑦 − 𝑧) ∈ ℂ) |
20 | absimle 14949 | . . . 4 ⊢ ((𝑦 − 𝑧) ∈ ℂ → (abs‘(ℑ‘(𝑦 − 𝑧))) ≤ (abs‘(𝑦 − 𝑧))) | |
21 | 19, 20 | syl 17 | . . 3 ⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → (abs‘(ℑ‘(𝑦 − 𝑧))) ≤ (abs‘(𝑦 − 𝑧))) |
22 | 16, 18 | imsubd 14856 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → (ℑ‘(𝑦 − 𝑧)) = ((ℑ‘𝑦) − (ℑ‘𝑧))) |
23 | reim0 14757 | . . . . . . 7 ⊢ (𝑧 ∈ ℝ → (ℑ‘𝑧) = 0) | |
24 | 23 | adantl 481 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → (ℑ‘𝑧) = 0) |
25 | 24 | oveq2d 7271 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → ((ℑ‘𝑦) − (ℑ‘𝑧)) = ((ℑ‘𝑦) − 0)) |
26 | 8 | adantr 480 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → (ℑ‘𝑦) ∈ ℂ) |
27 | 26 | subid1d 11251 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → ((ℑ‘𝑦) − 0) = (ℑ‘𝑦)) |
28 | 22, 25, 27 | 3eqtrrd 2783 | . . . 4 ⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → (ℑ‘𝑦) = (ℑ‘(𝑦 − 𝑧))) |
29 | 28 | fveq2d 6760 | . . 3 ⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → (abs‘(ℑ‘𝑦)) = (abs‘(ℑ‘(𝑦 − 𝑧)))) |
30 | 18, 16 | abssubd 15093 | . . 3 ⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → (abs‘(𝑧 − 𝑦)) = (abs‘(𝑦 − 𝑧))) |
31 | 21, 29, 30 | 3brtr4d 5102 | . 2 ⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → (abs‘(ℑ‘𝑦)) ≤ (abs‘(𝑧 − 𝑦))) |
32 | rlimrecl.3 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
33 | 1, 2, 4, 15, 31, 32 | rlimcld2 15215 | 1 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∖ cdif 3880 ⊆ wss 3883 class class class wbr 5070 ↦ cmpt 5153 ‘cfv 6418 (class class class)co 7255 supcsup 9129 ℂcc 10800 ℝcr 10801 0cc0 10802 +∞cpnf 10937 ℝ*cxr 10939 < clt 10940 ≤ cle 10941 − cmin 11135 ℑcim 14737 abscabs 14873 ⇝𝑟 crli 15122 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-rlim 15126 |
This theorem is referenced by: rlimge0 15218 climrecl 15220 rlimle 15287 divsqrtsumo1 26038 mulog2sumlem1 26587 |
Copyright terms: Public domain | W3C validator |