MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimrecl Structured version   Visualization version   GIF version

Theorem rlimrecl 15289
Description: The limit of a real sequence is real. (Contributed by Mario Carneiro, 9-May-2016.)
Hypotheses
Ref Expression
rlimcld2.1 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
rlimcld2.2 (𝜑 → (𝑥𝐴𝐵) ⇝𝑟 𝐶)
rlimrecl.3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
Assertion
Ref Expression
rlimrecl (𝜑𝐶 ∈ ℝ)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝜑,𝑥
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem rlimrecl
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rlimcld2.1 . 2 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
2 rlimcld2.2 . 2 (𝜑 → (𝑥𝐴𝐵) ⇝𝑟 𝐶)
3 ax-resscn 10928 . . 3 ℝ ⊆ ℂ
43a1i 11 . 2 (𝜑 → ℝ ⊆ ℂ)
5 eldifi 4061 . . . . . 6 (𝑦 ∈ (ℂ ∖ ℝ) → 𝑦 ∈ ℂ)
65adantl 482 . . . . 5 ((𝜑𝑦 ∈ (ℂ ∖ ℝ)) → 𝑦 ∈ ℂ)
76imcld 14906 . . . 4 ((𝜑𝑦 ∈ (ℂ ∖ ℝ)) → (ℑ‘𝑦) ∈ ℝ)
87recnd 11003 . . 3 ((𝜑𝑦 ∈ (ℂ ∖ ℝ)) → (ℑ‘𝑦) ∈ ℂ)
9 eldifn 4062 . . . . 5 (𝑦 ∈ (ℂ ∖ ℝ) → ¬ 𝑦 ∈ ℝ)
109adantl 482 . . . 4 ((𝜑𝑦 ∈ (ℂ ∖ ℝ)) → ¬ 𝑦 ∈ ℝ)
11 reim0b 14830 . . . . . 6 (𝑦 ∈ ℂ → (𝑦 ∈ ℝ ↔ (ℑ‘𝑦) = 0))
126, 11syl 17 . . . . 5 ((𝜑𝑦 ∈ (ℂ ∖ ℝ)) → (𝑦 ∈ ℝ ↔ (ℑ‘𝑦) = 0))
1312necon3bbid 2981 . . . 4 ((𝜑𝑦 ∈ (ℂ ∖ ℝ)) → (¬ 𝑦 ∈ ℝ ↔ (ℑ‘𝑦) ≠ 0))
1410, 13mpbid 231 . . 3 ((𝜑𝑦 ∈ (ℂ ∖ ℝ)) → (ℑ‘𝑦) ≠ 0)
158, 14absrpcld 15160 . 2 ((𝜑𝑦 ∈ (ℂ ∖ ℝ)) → (abs‘(ℑ‘𝑦)) ∈ ℝ+)
166adantr 481 . . . . 5 (((𝜑𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → 𝑦 ∈ ℂ)
17 simpr 485 . . . . . 6 (((𝜑𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℝ)
1817recnd 11003 . . . . 5 (((𝜑𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℂ)
1916, 18subcld 11332 . . . 4 (((𝜑𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → (𝑦𝑧) ∈ ℂ)
20 absimle 15021 . . . 4 ((𝑦𝑧) ∈ ℂ → (abs‘(ℑ‘(𝑦𝑧))) ≤ (abs‘(𝑦𝑧)))
2119, 20syl 17 . . 3 (((𝜑𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → (abs‘(ℑ‘(𝑦𝑧))) ≤ (abs‘(𝑦𝑧)))
2216, 18imsubd 14928 . . . . 5 (((𝜑𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → (ℑ‘(𝑦𝑧)) = ((ℑ‘𝑦) − (ℑ‘𝑧)))
23 reim0 14829 . . . . . . 7 (𝑧 ∈ ℝ → (ℑ‘𝑧) = 0)
2423adantl 482 . . . . . 6 (((𝜑𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → (ℑ‘𝑧) = 0)
2524oveq2d 7291 . . . . 5 (((𝜑𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → ((ℑ‘𝑦) − (ℑ‘𝑧)) = ((ℑ‘𝑦) − 0))
268adantr 481 . . . . . 6 (((𝜑𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → (ℑ‘𝑦) ∈ ℂ)
2726subid1d 11321 . . . . 5 (((𝜑𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → ((ℑ‘𝑦) − 0) = (ℑ‘𝑦))
2822, 25, 273eqtrrd 2783 . . . 4 (((𝜑𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → (ℑ‘𝑦) = (ℑ‘(𝑦𝑧)))
2928fveq2d 6778 . . 3 (((𝜑𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → (abs‘(ℑ‘𝑦)) = (abs‘(ℑ‘(𝑦𝑧))))
3018, 16abssubd 15165 . . 3 (((𝜑𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → (abs‘(𝑧𝑦)) = (abs‘(𝑦𝑧)))
3121, 29, 303brtr4d 5106 . 2 (((𝜑𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → (abs‘(ℑ‘𝑦)) ≤ (abs‘(𝑧𝑦)))
32 rlimrecl.3 . 2 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
331, 2, 4, 15, 31, 32rlimcld2 15287 1 (𝜑𝐶 ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  cdif 3884  wss 3887   class class class wbr 5074  cmpt 5157  cfv 6433  (class class class)co 7275  supcsup 9199  cc 10869  cr 10870  0cc0 10871  +∞cpnf 11006  *cxr 11008   < clt 11009  cle 11010  cmin 11205  cim 14809  abscabs 14945  𝑟 crli 15194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-rlim 15198
This theorem is referenced by:  rlimge0  15290  climrecl  15292  rlimle  15359  divsqrtsumo1  26133  mulog2sumlem1  26682
  Copyright terms: Public domain W3C validator