![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rlimrecl | Structured version Visualization version GIF version |
Description: The limit of a real sequence is real. (Contributed by Mario Carneiro, 9-May-2016.) |
Ref | Expression |
---|---|
rlimcld2.1 | ⊢ (𝜑 → sup(𝐴, ℝ*, < ) = +∞) |
rlimcld2.2 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶) |
rlimrecl.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
Ref | Expression |
---|---|
rlimrecl | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rlimcld2.1 | . 2 ⊢ (𝜑 → sup(𝐴, ℝ*, < ) = +∞) | |
2 | rlimcld2.2 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶) | |
3 | ax-resscn 11171 | . . 3 ⊢ ℝ ⊆ ℂ | |
4 | 3 | a1i 11 | . 2 ⊢ (𝜑 → ℝ ⊆ ℂ) |
5 | eldifi 4126 | . . . . . 6 ⊢ (𝑦 ∈ (ℂ ∖ ℝ) → 𝑦 ∈ ℂ) | |
6 | 5 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) → 𝑦 ∈ ℂ) |
7 | 6 | imcld 15147 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) → (ℑ‘𝑦) ∈ ℝ) |
8 | 7 | recnd 11247 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) → (ℑ‘𝑦) ∈ ℂ) |
9 | eldifn 4127 | . . . . 5 ⊢ (𝑦 ∈ (ℂ ∖ ℝ) → ¬ 𝑦 ∈ ℝ) | |
10 | 9 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) → ¬ 𝑦 ∈ ℝ) |
11 | reim0b 15071 | . . . . . 6 ⊢ (𝑦 ∈ ℂ → (𝑦 ∈ ℝ ↔ (ℑ‘𝑦) = 0)) | |
12 | 6, 11 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) → (𝑦 ∈ ℝ ↔ (ℑ‘𝑦) = 0)) |
13 | 12 | necon3bbid 2977 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) → (¬ 𝑦 ∈ ℝ ↔ (ℑ‘𝑦) ≠ 0)) |
14 | 10, 13 | mpbid 231 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) → (ℑ‘𝑦) ≠ 0) |
15 | 8, 14 | absrpcld 15400 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) → (abs‘(ℑ‘𝑦)) ∈ ℝ+) |
16 | 6 | adantr 480 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → 𝑦 ∈ ℂ) |
17 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℝ) | |
18 | 17 | recnd 11247 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℂ) |
19 | 16, 18 | subcld 11576 | . . . 4 ⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → (𝑦 − 𝑧) ∈ ℂ) |
20 | absimle 15261 | . . . 4 ⊢ ((𝑦 − 𝑧) ∈ ℂ → (abs‘(ℑ‘(𝑦 − 𝑧))) ≤ (abs‘(𝑦 − 𝑧))) | |
21 | 19, 20 | syl 17 | . . 3 ⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → (abs‘(ℑ‘(𝑦 − 𝑧))) ≤ (abs‘(𝑦 − 𝑧))) |
22 | 16, 18 | imsubd 15169 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → (ℑ‘(𝑦 − 𝑧)) = ((ℑ‘𝑦) − (ℑ‘𝑧))) |
23 | reim0 15070 | . . . . . . 7 ⊢ (𝑧 ∈ ℝ → (ℑ‘𝑧) = 0) | |
24 | 23 | adantl 481 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → (ℑ‘𝑧) = 0) |
25 | 24 | oveq2d 7428 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → ((ℑ‘𝑦) − (ℑ‘𝑧)) = ((ℑ‘𝑦) − 0)) |
26 | 8 | adantr 480 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → (ℑ‘𝑦) ∈ ℂ) |
27 | 26 | subid1d 11565 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → ((ℑ‘𝑦) − 0) = (ℑ‘𝑦)) |
28 | 22, 25, 27 | 3eqtrrd 2776 | . . . 4 ⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → (ℑ‘𝑦) = (ℑ‘(𝑦 − 𝑧))) |
29 | 28 | fveq2d 6895 | . . 3 ⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → (abs‘(ℑ‘𝑦)) = (abs‘(ℑ‘(𝑦 − 𝑧)))) |
30 | 18, 16 | abssubd 15405 | . . 3 ⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → (abs‘(𝑧 − 𝑦)) = (abs‘(𝑦 − 𝑧))) |
31 | 21, 29, 30 | 3brtr4d 5180 | . 2 ⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → (abs‘(ℑ‘𝑦)) ≤ (abs‘(𝑧 − 𝑦))) |
32 | rlimrecl.3 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
33 | 1, 2, 4, 15, 31, 32 | rlimcld2 15527 | 1 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ≠ wne 2939 ∖ cdif 3945 ⊆ wss 3948 class class class wbr 5148 ↦ cmpt 5231 ‘cfv 6543 (class class class)co 7412 supcsup 9439 ℂcc 11112 ℝcr 11113 0cc0 11114 +∞cpnf 11250 ℝ*cxr 11252 < clt 11253 ≤ cle 11254 − cmin 11449 ℑcim 15050 abscabs 15186 ⇝𝑟 crli 15434 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 ax-pre-sup 11192 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-er 8707 df-pm 8827 df-en 8944 df-dom 8945 df-sdom 8946 df-sup 9441 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-div 11877 df-nn 12218 df-2 12280 df-3 12281 df-n0 12478 df-z 12564 df-uz 12828 df-rp 12980 df-seq 13972 df-exp 14033 df-cj 15051 df-re 15052 df-im 15053 df-sqrt 15187 df-abs 15188 df-rlim 15438 |
This theorem is referenced by: rlimge0 15530 climrecl 15532 rlimle 15599 divsqrtsumo1 26725 mulog2sumlem1 27274 |
Copyright terms: Public domain | W3C validator |