Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rlimrecl | Structured version Visualization version GIF version |
Description: The limit of a real sequence is real. (Contributed by Mario Carneiro, 9-May-2016.) |
Ref | Expression |
---|---|
rlimcld2.1 | ⊢ (𝜑 → sup(𝐴, ℝ*, < ) = +∞) |
rlimcld2.2 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶) |
rlimrecl.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
Ref | Expression |
---|---|
rlimrecl | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rlimcld2.1 | . 2 ⊢ (𝜑 → sup(𝐴, ℝ*, < ) = +∞) | |
2 | rlimcld2.2 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶) | |
3 | ax-resscn 10938 | . . 3 ⊢ ℝ ⊆ ℂ | |
4 | 3 | a1i 11 | . 2 ⊢ (𝜑 → ℝ ⊆ ℂ) |
5 | eldifi 4060 | . . . . . 6 ⊢ (𝑦 ∈ (ℂ ∖ ℝ) → 𝑦 ∈ ℂ) | |
6 | 5 | adantl 482 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) → 𝑦 ∈ ℂ) |
7 | 6 | imcld 14916 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) → (ℑ‘𝑦) ∈ ℝ) |
8 | 7 | recnd 11013 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) → (ℑ‘𝑦) ∈ ℂ) |
9 | eldifn 4061 | . . . . 5 ⊢ (𝑦 ∈ (ℂ ∖ ℝ) → ¬ 𝑦 ∈ ℝ) | |
10 | 9 | adantl 482 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) → ¬ 𝑦 ∈ ℝ) |
11 | reim0b 14840 | . . . . . 6 ⊢ (𝑦 ∈ ℂ → (𝑦 ∈ ℝ ↔ (ℑ‘𝑦) = 0)) | |
12 | 6, 11 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) → (𝑦 ∈ ℝ ↔ (ℑ‘𝑦) = 0)) |
13 | 12 | necon3bbid 2981 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) → (¬ 𝑦 ∈ ℝ ↔ (ℑ‘𝑦) ≠ 0)) |
14 | 10, 13 | mpbid 231 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) → (ℑ‘𝑦) ≠ 0) |
15 | 8, 14 | absrpcld 15170 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) → (abs‘(ℑ‘𝑦)) ∈ ℝ+) |
16 | 6 | adantr 481 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → 𝑦 ∈ ℂ) |
17 | simpr 485 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℝ) | |
18 | 17 | recnd 11013 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℂ) |
19 | 16, 18 | subcld 11342 | . . . 4 ⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → (𝑦 − 𝑧) ∈ ℂ) |
20 | absimle 15031 | . . . 4 ⊢ ((𝑦 − 𝑧) ∈ ℂ → (abs‘(ℑ‘(𝑦 − 𝑧))) ≤ (abs‘(𝑦 − 𝑧))) | |
21 | 19, 20 | syl 17 | . . 3 ⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → (abs‘(ℑ‘(𝑦 − 𝑧))) ≤ (abs‘(𝑦 − 𝑧))) |
22 | 16, 18 | imsubd 14938 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → (ℑ‘(𝑦 − 𝑧)) = ((ℑ‘𝑦) − (ℑ‘𝑧))) |
23 | reim0 14839 | . . . . . . 7 ⊢ (𝑧 ∈ ℝ → (ℑ‘𝑧) = 0) | |
24 | 23 | adantl 482 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → (ℑ‘𝑧) = 0) |
25 | 24 | oveq2d 7283 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → ((ℑ‘𝑦) − (ℑ‘𝑧)) = ((ℑ‘𝑦) − 0)) |
26 | 8 | adantr 481 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → (ℑ‘𝑦) ∈ ℂ) |
27 | 26 | subid1d 11331 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → ((ℑ‘𝑦) − 0) = (ℑ‘𝑦)) |
28 | 22, 25, 27 | 3eqtrrd 2783 | . . . 4 ⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → (ℑ‘𝑦) = (ℑ‘(𝑦 − 𝑧))) |
29 | 28 | fveq2d 6770 | . . 3 ⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → (abs‘(ℑ‘𝑦)) = (abs‘(ℑ‘(𝑦 − 𝑧)))) |
30 | 18, 16 | abssubd 15175 | . . 3 ⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → (abs‘(𝑧 − 𝑦)) = (abs‘(𝑦 − 𝑧))) |
31 | 21, 29, 30 | 3brtr4d 5105 | . 2 ⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ ℝ)) ∧ 𝑧 ∈ ℝ) → (abs‘(ℑ‘𝑦)) ≤ (abs‘(𝑧 − 𝑦))) |
32 | rlimrecl.3 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
33 | 1, 2, 4, 15, 31, 32 | rlimcld2 15297 | 1 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∖ cdif 3883 ⊆ wss 3886 class class class wbr 5073 ↦ cmpt 5156 ‘cfv 6426 (class class class)co 7267 supcsup 9186 ℂcc 10879 ℝcr 10880 0cc0 10881 +∞cpnf 11016 ℝ*cxr 11018 < clt 11019 ≤ cle 11020 − cmin 11215 ℑcim 14819 abscabs 14955 ⇝𝑟 crli 15204 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 ax-un 7578 ax-cnex 10937 ax-resscn 10938 ax-1cn 10939 ax-icn 10940 ax-addcl 10941 ax-addrcl 10942 ax-mulcl 10943 ax-mulrcl 10944 ax-mulcom 10945 ax-addass 10946 ax-mulass 10947 ax-distr 10948 ax-i2m1 10949 ax-1ne0 10950 ax-1rid 10951 ax-rnegex 10952 ax-rrecex 10953 ax-cnre 10954 ax-pre-lttri 10955 ax-pre-lttrn 10956 ax-pre-ltadd 10957 ax-pre-mulgt0 10958 ax-pre-sup 10959 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-pss 3905 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5074 df-opab 5136 df-mpt 5157 df-tr 5191 df-id 5484 df-eprel 5490 df-po 5498 df-so 5499 df-fr 5539 df-we 5541 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-pred 6195 df-ord 6262 df-on 6263 df-lim 6264 df-suc 6265 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 df-fv 6434 df-riota 7224 df-ov 7270 df-oprab 7271 df-mpo 7272 df-om 7703 df-2nd 7821 df-frecs 8084 df-wrecs 8115 df-recs 8189 df-rdg 8228 df-er 8485 df-pm 8605 df-en 8721 df-dom 8722 df-sdom 8723 df-sup 9188 df-pnf 11021 df-mnf 11022 df-xr 11023 df-ltxr 11024 df-le 11025 df-sub 11217 df-neg 11218 df-div 11643 df-nn 11984 df-2 12046 df-3 12047 df-n0 12244 df-z 12330 df-uz 12593 df-rp 12741 df-seq 13732 df-exp 13793 df-cj 14820 df-re 14821 df-im 14822 df-sqrt 14956 df-abs 14957 df-rlim 15208 |
This theorem is referenced by: rlimge0 15300 climrecl 15302 rlimle 15369 divsqrtsumo1 26143 mulog2sumlem1 26692 |
Copyright terms: Public domain | W3C validator |