MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsnne1 Structured version   Visualization version   GIF version

Theorem lspsnne1 20377
Description: Two ways to express that vectors have different spans. (Contributed by NM, 28-May-2015.)
Hypotheses
Ref Expression
lspsnne1.v 𝑉 = (Base‘𝑊)
lspsnne1.o 0 = (0g𝑊)
lspsnne1.n 𝑁 = (LSpan‘𝑊)
lspsnne1.w (𝜑𝑊 ∈ LVec)
lspsnne1.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
lspsnne1.y (𝜑𝑌𝑉)
lspsnne1.e (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
Assertion
Ref Expression
lspsnne1 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌}))

Proof of Theorem lspsnne1
StepHypRef Expression
1 lspsnne1.e . 2 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
2 lspsnne1.v . . . . 5 𝑉 = (Base‘𝑊)
3 eqid 2740 . . . . 5 (LSubSp‘𝑊) = (LSubSp‘𝑊)
4 lspsnne1.n . . . . 5 𝑁 = (LSpan‘𝑊)
5 lspsnne1.w . . . . . 6 (𝜑𝑊 ∈ LVec)
6 lveclmod 20366 . . . . . 6 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
75, 6syl 17 . . . . 5 (𝜑𝑊 ∈ LMod)
8 lspsnne1.y . . . . . 6 (𝜑𝑌𝑉)
92, 3, 4lspsncl 20237 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊))
107, 8, 9syl2anc 584 . . . . 5 (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊))
11 lspsnne1.x . . . . . 6 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
1211eldifad 3904 . . . . 5 (𝜑𝑋𝑉)
132, 3, 4, 7, 10, 12lspsnel5 20255 . . . 4 (𝜑 → (𝑋 ∈ (𝑁‘{𝑌}) ↔ (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌})))
1413notbid 318 . . 3 (𝜑 → (¬ 𝑋 ∈ (𝑁‘{𝑌}) ↔ ¬ (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌})))
15 lspsnne1.o . . . . 5 0 = (0g𝑊)
162, 15, 4, 5, 11, 8lspsncmp 20376 . . . 4 (𝜑 → ((𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌}) ↔ (𝑁‘{𝑋}) = (𝑁‘{𝑌})))
1716necon3bbid 2983 . . 3 (𝜑 → (¬ (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌}) ↔ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})))
1814, 17bitrd 278 . 2 (𝜑 → (¬ 𝑋 ∈ (𝑁‘{𝑌}) ↔ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})))
191, 18mpbird 256 1 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1542  wcel 2110  wne 2945  cdif 3889  wss 3892  {csn 4567  cfv 6432  Basecbs 16910  0gc0g 17148  LModclmod 20121  LSubSpclss 20191  LSpanclspn 20231  LVecclvec 20362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-1st 7824  df-2nd 7825  df-tpos 8033  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-er 8481  df-en 8717  df-dom 8718  df-sdom 8719  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-sets 16863  df-slot 16881  df-ndx 16893  df-base 16911  df-ress 16940  df-plusg 16973  df-mulr 16974  df-0g 17150  df-mgm 18324  df-sgrp 18373  df-mnd 18384  df-grp 18578  df-minusg 18579  df-sbg 18580  df-mgp 19719  df-ur 19736  df-ring 19783  df-oppr 19860  df-dvdsr 19881  df-unit 19882  df-invr 19912  df-drng 19991  df-lmod 20123  df-lss 20192  df-lsp 20232  df-lvec 20363
This theorem is referenced by:  lspsnnecom  20379  lsatfixedN  37019  baerlem5amN  39726  baerlem5bmN  39727  baerlem5abmN  39728  mapdh6dN  39749  hdmaplem4  39784  hdmap1l6d  39823  hdmaprnlem3N  39860
  Copyright terms: Public domain W3C validator