Step | Hyp | Ref
| Expression |
1 | | nmfnsetre 31397 |
. . . . 5
β’ (π: ββΆβ β
{π₯ β£ βπ¦ β β
((normββπ¦) β€ 1 β§ π₯ = (absβ(πβπ¦)))} β β) |
2 | | ressxr 11262 |
. . . . 5
β’ β
β β* |
3 | 1, 2 | sstrdi 3993 |
. . . 4
β’ (π: ββΆβ β
{π₯ β£ βπ¦ β β
((normββπ¦) β€ 1 β§ π₯ = (absβ(πβπ¦)))} β
β*) |
4 | 3 | 3ad2ant1 1131 |
. . 3
β’ ((π: ββΆβ β§
π΄ β β β§
(normββπ΄) β€ 1) β {π₯ β£ βπ¦ β β
((normββπ¦) β€ 1 β§ π₯ = (absβ(πβπ¦)))} β
β*) |
5 | | fveq2 6890 |
. . . . . . . . 9
β’ (π¦ = π΄ β (normββπ¦) =
(normββπ΄)) |
6 | 5 | breq1d 5157 |
. . . . . . . 8
β’ (π¦ = π΄ β
((normββπ¦) β€ 1 β
(normββπ΄) β€ 1)) |
7 | | 2fveq3 6895 |
. . . . . . . . 9
β’ (π¦ = π΄ β (absβ(πβπ¦)) = (absβ(πβπ΄))) |
8 | 7 | eqeq2d 2741 |
. . . . . . . 8
β’ (π¦ = π΄ β ((absβ(πβπ΄)) = (absβ(πβπ¦)) β (absβ(πβπ΄)) = (absβ(πβπ΄)))) |
9 | 6, 8 | anbi12d 629 |
. . . . . . 7
β’ (π¦ = π΄ β
(((normββπ¦) β€ 1 β§ (absβ(πβπ΄)) = (absβ(πβπ¦))) β
((normββπ΄) β€ 1 β§ (absβ(πβπ΄)) = (absβ(πβπ΄))))) |
10 | | eqid 2730 |
. . . . . . . 8
β’
(absβ(πβπ΄)) = (absβ(πβπ΄)) |
11 | 10 | biantru 528 |
. . . . . . 7
β’
((normββπ΄) β€ 1 β
((normββπ΄) β€ 1 β§ (absβ(πβπ΄)) = (absβ(πβπ΄)))) |
12 | 9, 11 | bitr4di 288 |
. . . . . 6
β’ (π¦ = π΄ β
(((normββπ¦) β€ 1 β§ (absβ(πβπ΄)) = (absβ(πβπ¦))) β
(normββπ΄) β€ 1)) |
13 | 12 | rspcev 3611 |
. . . . 5
β’ ((π΄ β β β§
(normββπ΄) β€ 1) β βπ¦ β β
((normββπ¦) β€ 1 β§ (absβ(πβπ΄)) = (absβ(πβπ¦)))) |
14 | | fvex 6903 |
. . . . . 6
β’
(absβ(πβπ΄)) β V |
15 | | eqeq1 2734 |
. . . . . . . 8
β’ (π₯ = (absβ(πβπ΄)) β (π₯ = (absβ(πβπ¦)) β (absβ(πβπ΄)) = (absβ(πβπ¦)))) |
16 | 15 | anbi2d 627 |
. . . . . . 7
β’ (π₯ = (absβ(πβπ΄)) β
(((normββπ¦) β€ 1 β§ π₯ = (absβ(πβπ¦))) β
((normββπ¦) β€ 1 β§ (absβ(πβπ΄)) = (absβ(πβπ¦))))) |
17 | 16 | rexbidv 3176 |
. . . . . 6
β’ (π₯ = (absβ(πβπ΄)) β (βπ¦ β β
((normββπ¦) β€ 1 β§ π₯ = (absβ(πβπ¦))) β βπ¦ β β
((normββπ¦) β€ 1 β§ (absβ(πβπ΄)) = (absβ(πβπ¦))))) |
18 | 14, 17 | elab 3667 |
. . . . 5
β’
((absβ(πβπ΄)) β {π₯ β£ βπ¦ β β
((normββπ¦) β€ 1 β§ π₯ = (absβ(πβπ¦)))} β βπ¦ β β
((normββπ¦) β€ 1 β§ (absβ(πβπ΄)) = (absβ(πβπ¦)))) |
19 | 13, 18 | sylibr 233 |
. . . 4
β’ ((π΄ β β β§
(normββπ΄) β€ 1) β (absβ(πβπ΄)) β {π₯ β£ βπ¦ β β
((normββπ¦) β€ 1 β§ π₯ = (absβ(πβπ¦)))}) |
20 | 19 | 3adant1 1128 |
. . 3
β’ ((π: ββΆβ β§
π΄ β β β§
(normββπ΄) β€ 1) β (absβ(πβπ΄)) β {π₯ β£ βπ¦ β β
((normββπ¦) β€ 1 β§ π₯ = (absβ(πβπ¦)))}) |
21 | | supxrub 13307 |
. . 3
β’ (({π₯ β£ βπ¦ β β
((normββπ¦) β€ 1 β§ π₯ = (absβ(πβπ¦)))} β β* β§
(absβ(πβπ΄)) β {π₯ β£ βπ¦ β β
((normββπ¦) β€ 1 β§ π₯ = (absβ(πβπ¦)))}) β (absβ(πβπ΄)) β€ sup({π₯ β£ βπ¦ β β
((normββπ¦) β€ 1 β§ π₯ = (absβ(πβπ¦)))}, β*, <
)) |
22 | 4, 20, 21 | syl2anc 582 |
. 2
β’ ((π: ββΆβ β§
π΄ β β β§
(normββπ΄) β€ 1) β (absβ(πβπ΄)) β€ sup({π₯ β£ βπ¦ β β
((normββπ¦) β€ 1 β§ π₯ = (absβ(πβπ¦)))}, β*, <
)) |
23 | | nmfnval 31396 |
. . 3
β’ (π: ββΆβ β
(normfnβπ)
= sup({π₯ β£
βπ¦ β β
((normββπ¦) β€ 1 β§ π₯ = (absβ(πβπ¦)))}, β*, <
)) |
24 | 23 | 3ad2ant1 1131 |
. 2
β’ ((π: ββΆβ β§
π΄ β β β§
(normββπ΄) β€ 1) β
(normfnβπ)
= sup({π₯ β£
βπ¦ β β
((normββπ¦) β€ 1 β§ π₯ = (absβ(πβπ¦)))}, β*, <
)) |
25 | 22, 24 | breqtrrd 5175 |
1
β’ ((π: ββΆβ β§
π΄ β β β§
(normββπ΄) β€ 1) β (absβ(πβπ΄)) β€ (normfnβπ)) |