HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmfnlb Structured version   Visualization version   GIF version

Theorem nmfnlb 29701
Description: A lower bound for a functional norm. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
nmfnlb ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℋ ∧ (norm𝐴) ≤ 1) → (abs‘(𝑇𝐴)) ≤ (normfn𝑇))

Proof of Theorem nmfnlb
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmfnsetre 29654 . . . . 5 (𝑇: ℋ⟶ℂ → {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇𝑦)))} ⊆ ℝ)
2 ressxr 10685 . . . . 5 ℝ ⊆ ℝ*
31, 2sstrdi 3979 . . . 4 (𝑇: ℋ⟶ℂ → {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇𝑦)))} ⊆ ℝ*)
433ad2ant1 1129 . . 3 ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℋ ∧ (norm𝐴) ≤ 1) → {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇𝑦)))} ⊆ ℝ*)
5 fveq2 6670 . . . . . . . . 9 (𝑦 = 𝐴 → (norm𝑦) = (norm𝐴))
65breq1d 5076 . . . . . . . 8 (𝑦 = 𝐴 → ((norm𝑦) ≤ 1 ↔ (norm𝐴) ≤ 1))
7 2fveq3 6675 . . . . . . . . 9 (𝑦 = 𝐴 → (abs‘(𝑇𝑦)) = (abs‘(𝑇𝐴)))
87eqeq2d 2832 . . . . . . . 8 (𝑦 = 𝐴 → ((abs‘(𝑇𝐴)) = (abs‘(𝑇𝑦)) ↔ (abs‘(𝑇𝐴)) = (abs‘(𝑇𝐴))))
96, 8anbi12d 632 . . . . . . 7 (𝑦 = 𝐴 → (((norm𝑦) ≤ 1 ∧ (abs‘(𝑇𝐴)) = (abs‘(𝑇𝑦))) ↔ ((norm𝐴) ≤ 1 ∧ (abs‘(𝑇𝐴)) = (abs‘(𝑇𝐴)))))
10 eqid 2821 . . . . . . . 8 (abs‘(𝑇𝐴)) = (abs‘(𝑇𝐴))
1110biantru 532 . . . . . . 7 ((norm𝐴) ≤ 1 ↔ ((norm𝐴) ≤ 1 ∧ (abs‘(𝑇𝐴)) = (abs‘(𝑇𝐴))))
129, 11syl6bbr 291 . . . . . 6 (𝑦 = 𝐴 → (((norm𝑦) ≤ 1 ∧ (abs‘(𝑇𝐴)) = (abs‘(𝑇𝑦))) ↔ (norm𝐴) ≤ 1))
1312rspcev 3623 . . . . 5 ((𝐴 ∈ ℋ ∧ (norm𝐴) ≤ 1) → ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ (abs‘(𝑇𝐴)) = (abs‘(𝑇𝑦))))
14 fvex 6683 . . . . . 6 (abs‘(𝑇𝐴)) ∈ V
15 eqeq1 2825 . . . . . . . 8 (𝑥 = (abs‘(𝑇𝐴)) → (𝑥 = (abs‘(𝑇𝑦)) ↔ (abs‘(𝑇𝐴)) = (abs‘(𝑇𝑦))))
1615anbi2d 630 . . . . . . 7 (𝑥 = (abs‘(𝑇𝐴)) → (((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇𝑦))) ↔ ((norm𝑦) ≤ 1 ∧ (abs‘(𝑇𝐴)) = (abs‘(𝑇𝑦)))))
1716rexbidv 3297 . . . . . 6 (𝑥 = (abs‘(𝑇𝐴)) → (∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇𝑦))) ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ (abs‘(𝑇𝐴)) = (abs‘(𝑇𝑦)))))
1814, 17elab 3667 . . . . 5 ((abs‘(𝑇𝐴)) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇𝑦)))} ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ (abs‘(𝑇𝐴)) = (abs‘(𝑇𝑦))))
1913, 18sylibr 236 . . . 4 ((𝐴 ∈ ℋ ∧ (norm𝐴) ≤ 1) → (abs‘(𝑇𝐴)) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇𝑦)))})
20193adant1 1126 . . 3 ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℋ ∧ (norm𝐴) ≤ 1) → (abs‘(𝑇𝐴)) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇𝑦)))})
21 supxrub 12718 . . 3 (({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇𝑦)))} ⊆ ℝ* ∧ (abs‘(𝑇𝐴)) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇𝑦)))}) → (abs‘(𝑇𝐴)) ≤ sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇𝑦)))}, ℝ*, < ))
224, 20, 21syl2anc 586 . 2 ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℋ ∧ (norm𝐴) ≤ 1) → (abs‘(𝑇𝐴)) ≤ sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇𝑦)))}, ℝ*, < ))
23 nmfnval 29653 . . 3 (𝑇: ℋ⟶ℂ → (normfn𝑇) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇𝑦)))}, ℝ*, < ))
24233ad2ant1 1129 . 2 ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℋ ∧ (norm𝐴) ≤ 1) → (normfn𝑇) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇𝑦)))}, ℝ*, < ))
2522, 24breqtrrd 5094 1 ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℋ ∧ (norm𝐴) ≤ 1) → (abs‘(𝑇𝐴)) ≤ (normfn𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  {cab 2799  wrex 3139  wss 3936   class class class wbr 5066  wf 6351  cfv 6355  supcsup 8904  cc 10535  cr 10536  1c1 10538  *cxr 10674   < clt 10675  cle 10676  abscabs 14593  chba 28696  normcno 28700  normfncnmf 28728
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-hilex 28776
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-sup 8906  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-seq 13371  df-exp 13431  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-nmfn 29622
This theorem is referenced by:  nmfnge0  29704  nmbdfnlbi  29826  nmcfnlbi  29829
  Copyright terms: Public domain W3C validator