HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmfnlb Structured version   Visualization version   GIF version

Theorem nmfnlb 31444
Description: A lower bound for a functional norm. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
nmfnlb ((𝑇: β„‹βŸΆβ„‚ ∧ 𝐴 ∈ β„‹ ∧ (normβ„Žβ€˜π΄) ≀ 1) β†’ (absβ€˜(π‘‡β€˜π΄)) ≀ (normfnβ€˜π‘‡))

Proof of Theorem nmfnlb
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmfnsetre 31397 . . . . 5 (𝑇: β„‹βŸΆβ„‚ β†’ {π‘₯ ∣ βˆƒπ‘¦ ∈ β„‹ ((normβ„Žβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (absβ€˜(π‘‡β€˜π‘¦)))} βŠ† ℝ)
2 ressxr 11262 . . . . 5 ℝ βŠ† ℝ*
31, 2sstrdi 3993 . . . 4 (𝑇: β„‹βŸΆβ„‚ β†’ {π‘₯ ∣ βˆƒπ‘¦ ∈ β„‹ ((normβ„Žβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (absβ€˜(π‘‡β€˜π‘¦)))} βŠ† ℝ*)
433ad2ant1 1131 . . 3 ((𝑇: β„‹βŸΆβ„‚ ∧ 𝐴 ∈ β„‹ ∧ (normβ„Žβ€˜π΄) ≀ 1) β†’ {π‘₯ ∣ βˆƒπ‘¦ ∈ β„‹ ((normβ„Žβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (absβ€˜(π‘‡β€˜π‘¦)))} βŠ† ℝ*)
5 fveq2 6890 . . . . . . . . 9 (𝑦 = 𝐴 β†’ (normβ„Žβ€˜π‘¦) = (normβ„Žβ€˜π΄))
65breq1d 5157 . . . . . . . 8 (𝑦 = 𝐴 β†’ ((normβ„Žβ€˜π‘¦) ≀ 1 ↔ (normβ„Žβ€˜π΄) ≀ 1))
7 2fveq3 6895 . . . . . . . . 9 (𝑦 = 𝐴 β†’ (absβ€˜(π‘‡β€˜π‘¦)) = (absβ€˜(π‘‡β€˜π΄)))
87eqeq2d 2741 . . . . . . . 8 (𝑦 = 𝐴 β†’ ((absβ€˜(π‘‡β€˜π΄)) = (absβ€˜(π‘‡β€˜π‘¦)) ↔ (absβ€˜(π‘‡β€˜π΄)) = (absβ€˜(π‘‡β€˜π΄))))
96, 8anbi12d 629 . . . . . . 7 (𝑦 = 𝐴 β†’ (((normβ„Žβ€˜π‘¦) ≀ 1 ∧ (absβ€˜(π‘‡β€˜π΄)) = (absβ€˜(π‘‡β€˜π‘¦))) ↔ ((normβ„Žβ€˜π΄) ≀ 1 ∧ (absβ€˜(π‘‡β€˜π΄)) = (absβ€˜(π‘‡β€˜π΄)))))
10 eqid 2730 . . . . . . . 8 (absβ€˜(π‘‡β€˜π΄)) = (absβ€˜(π‘‡β€˜π΄))
1110biantru 528 . . . . . . 7 ((normβ„Žβ€˜π΄) ≀ 1 ↔ ((normβ„Žβ€˜π΄) ≀ 1 ∧ (absβ€˜(π‘‡β€˜π΄)) = (absβ€˜(π‘‡β€˜π΄))))
129, 11bitr4di 288 . . . . . 6 (𝑦 = 𝐴 β†’ (((normβ„Žβ€˜π‘¦) ≀ 1 ∧ (absβ€˜(π‘‡β€˜π΄)) = (absβ€˜(π‘‡β€˜π‘¦))) ↔ (normβ„Žβ€˜π΄) ≀ 1))
1312rspcev 3611 . . . . 5 ((𝐴 ∈ β„‹ ∧ (normβ„Žβ€˜π΄) ≀ 1) β†’ βˆƒπ‘¦ ∈ β„‹ ((normβ„Žβ€˜π‘¦) ≀ 1 ∧ (absβ€˜(π‘‡β€˜π΄)) = (absβ€˜(π‘‡β€˜π‘¦))))
14 fvex 6903 . . . . . 6 (absβ€˜(π‘‡β€˜π΄)) ∈ V
15 eqeq1 2734 . . . . . . . 8 (π‘₯ = (absβ€˜(π‘‡β€˜π΄)) β†’ (π‘₯ = (absβ€˜(π‘‡β€˜π‘¦)) ↔ (absβ€˜(π‘‡β€˜π΄)) = (absβ€˜(π‘‡β€˜π‘¦))))
1615anbi2d 627 . . . . . . 7 (π‘₯ = (absβ€˜(π‘‡β€˜π΄)) β†’ (((normβ„Žβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (absβ€˜(π‘‡β€˜π‘¦))) ↔ ((normβ„Žβ€˜π‘¦) ≀ 1 ∧ (absβ€˜(π‘‡β€˜π΄)) = (absβ€˜(π‘‡β€˜π‘¦)))))
1716rexbidv 3176 . . . . . 6 (π‘₯ = (absβ€˜(π‘‡β€˜π΄)) β†’ (βˆƒπ‘¦ ∈ β„‹ ((normβ„Žβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (absβ€˜(π‘‡β€˜π‘¦))) ↔ βˆƒπ‘¦ ∈ β„‹ ((normβ„Žβ€˜π‘¦) ≀ 1 ∧ (absβ€˜(π‘‡β€˜π΄)) = (absβ€˜(π‘‡β€˜π‘¦)))))
1814, 17elab 3667 . . . . 5 ((absβ€˜(π‘‡β€˜π΄)) ∈ {π‘₯ ∣ βˆƒπ‘¦ ∈ β„‹ ((normβ„Žβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (absβ€˜(π‘‡β€˜π‘¦)))} ↔ βˆƒπ‘¦ ∈ β„‹ ((normβ„Žβ€˜π‘¦) ≀ 1 ∧ (absβ€˜(π‘‡β€˜π΄)) = (absβ€˜(π‘‡β€˜π‘¦))))
1913, 18sylibr 233 . . . 4 ((𝐴 ∈ β„‹ ∧ (normβ„Žβ€˜π΄) ≀ 1) β†’ (absβ€˜(π‘‡β€˜π΄)) ∈ {π‘₯ ∣ βˆƒπ‘¦ ∈ β„‹ ((normβ„Žβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (absβ€˜(π‘‡β€˜π‘¦)))})
20193adant1 1128 . . 3 ((𝑇: β„‹βŸΆβ„‚ ∧ 𝐴 ∈ β„‹ ∧ (normβ„Žβ€˜π΄) ≀ 1) β†’ (absβ€˜(π‘‡β€˜π΄)) ∈ {π‘₯ ∣ βˆƒπ‘¦ ∈ β„‹ ((normβ„Žβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (absβ€˜(π‘‡β€˜π‘¦)))})
21 supxrub 13307 . . 3 (({π‘₯ ∣ βˆƒπ‘¦ ∈ β„‹ ((normβ„Žβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (absβ€˜(π‘‡β€˜π‘¦)))} βŠ† ℝ* ∧ (absβ€˜(π‘‡β€˜π΄)) ∈ {π‘₯ ∣ βˆƒπ‘¦ ∈ β„‹ ((normβ„Žβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (absβ€˜(π‘‡β€˜π‘¦)))}) β†’ (absβ€˜(π‘‡β€˜π΄)) ≀ sup({π‘₯ ∣ βˆƒπ‘¦ ∈ β„‹ ((normβ„Žβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (absβ€˜(π‘‡β€˜π‘¦)))}, ℝ*, < ))
224, 20, 21syl2anc 582 . 2 ((𝑇: β„‹βŸΆβ„‚ ∧ 𝐴 ∈ β„‹ ∧ (normβ„Žβ€˜π΄) ≀ 1) β†’ (absβ€˜(π‘‡β€˜π΄)) ≀ sup({π‘₯ ∣ βˆƒπ‘¦ ∈ β„‹ ((normβ„Žβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (absβ€˜(π‘‡β€˜π‘¦)))}, ℝ*, < ))
23 nmfnval 31396 . . 3 (𝑇: β„‹βŸΆβ„‚ β†’ (normfnβ€˜π‘‡) = sup({π‘₯ ∣ βˆƒπ‘¦ ∈ β„‹ ((normβ„Žβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (absβ€˜(π‘‡β€˜π‘¦)))}, ℝ*, < ))
24233ad2ant1 1131 . 2 ((𝑇: β„‹βŸΆβ„‚ ∧ 𝐴 ∈ β„‹ ∧ (normβ„Žβ€˜π΄) ≀ 1) β†’ (normfnβ€˜π‘‡) = sup({π‘₯ ∣ βˆƒπ‘¦ ∈ β„‹ ((normβ„Žβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (absβ€˜(π‘‡β€˜π‘¦)))}, ℝ*, < ))
2522, 24breqtrrd 5175 1 ((𝑇: β„‹βŸΆβ„‚ ∧ 𝐴 ∈ β„‹ ∧ (normβ„Žβ€˜π΄) ≀ 1) β†’ (absβ€˜(π‘‡β€˜π΄)) ≀ (normfnβ€˜π‘‡))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   ∧ w3a 1085   = wceq 1539   ∈ wcel 2104  {cab 2707  βˆƒwrex 3068   βŠ† wss 3947   class class class wbr 5147  βŸΆwf 6538  β€˜cfv 6542  supcsup 9437  β„‚cc 11110  β„cr 11111  1c1 11113  β„*cxr 11251   < clt 11252   ≀ cle 11253  abscabs 15185   β„‹chba 30439  normβ„Žcno 30443  normfncnmf 30471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190  ax-hilex 30519
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-er 8705  df-map 8824  df-en 8942  df-dom 8943  df-sdom 8944  df-sup 9439  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-2 12279  df-3 12280  df-n0 12477  df-z 12563  df-uz 12827  df-rp 12979  df-seq 13971  df-exp 14032  df-cj 15050  df-re 15051  df-im 15052  df-sqrt 15186  df-abs 15187  df-nmfn 31365
This theorem is referenced by:  nmfnge0  31447  nmbdfnlbi  31569  nmcfnlbi  31572
  Copyright terms: Public domain W3C validator