| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > nmfnlb | Structured version Visualization version GIF version | ||
| Description: A lower bound for a functional norm. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nmfnlb | ⊢ ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℋ ∧ (normℎ‘𝐴) ≤ 1) → (abs‘(𝑇‘𝐴)) ≤ (normfn‘𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmfnsetre 31856 | . . . . 5 ⊢ (𝑇: ℋ⟶ℂ → {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦)))} ⊆ ℝ) | |
| 2 | ressxr 11194 | . . . . 5 ⊢ ℝ ⊆ ℝ* | |
| 3 | 1, 2 | sstrdi 3956 | . . . 4 ⊢ (𝑇: ℋ⟶ℂ → {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦)))} ⊆ ℝ*) |
| 4 | 3 | 3ad2ant1 1133 | . . 3 ⊢ ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℋ ∧ (normℎ‘𝐴) ≤ 1) → {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦)))} ⊆ ℝ*) |
| 5 | fveq2 6840 | . . . . . . . . 9 ⊢ (𝑦 = 𝐴 → (normℎ‘𝑦) = (normℎ‘𝐴)) | |
| 6 | 5 | breq1d 5112 | . . . . . . . 8 ⊢ (𝑦 = 𝐴 → ((normℎ‘𝑦) ≤ 1 ↔ (normℎ‘𝐴) ≤ 1)) |
| 7 | 2fveq3 6845 | . . . . . . . . 9 ⊢ (𝑦 = 𝐴 → (abs‘(𝑇‘𝑦)) = (abs‘(𝑇‘𝐴))) | |
| 8 | 7 | eqeq2d 2740 | . . . . . . . 8 ⊢ (𝑦 = 𝐴 → ((abs‘(𝑇‘𝐴)) = (abs‘(𝑇‘𝑦)) ↔ (abs‘(𝑇‘𝐴)) = (abs‘(𝑇‘𝐴)))) |
| 9 | 6, 8 | anbi12d 632 | . . . . . . 7 ⊢ (𝑦 = 𝐴 → (((normℎ‘𝑦) ≤ 1 ∧ (abs‘(𝑇‘𝐴)) = (abs‘(𝑇‘𝑦))) ↔ ((normℎ‘𝐴) ≤ 1 ∧ (abs‘(𝑇‘𝐴)) = (abs‘(𝑇‘𝐴))))) |
| 10 | eqid 2729 | . . . . . . . 8 ⊢ (abs‘(𝑇‘𝐴)) = (abs‘(𝑇‘𝐴)) | |
| 11 | 10 | biantru 529 | . . . . . . 7 ⊢ ((normℎ‘𝐴) ≤ 1 ↔ ((normℎ‘𝐴) ≤ 1 ∧ (abs‘(𝑇‘𝐴)) = (abs‘(𝑇‘𝐴)))) |
| 12 | 9, 11 | bitr4di 289 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (((normℎ‘𝑦) ≤ 1 ∧ (abs‘(𝑇‘𝐴)) = (abs‘(𝑇‘𝑦))) ↔ (normℎ‘𝐴) ≤ 1)) |
| 13 | 12 | rspcev 3585 | . . . . 5 ⊢ ((𝐴 ∈ ℋ ∧ (normℎ‘𝐴) ≤ 1) → ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ (abs‘(𝑇‘𝐴)) = (abs‘(𝑇‘𝑦)))) |
| 14 | fvex 6853 | . . . . . 6 ⊢ (abs‘(𝑇‘𝐴)) ∈ V | |
| 15 | eqeq1 2733 | . . . . . . . 8 ⊢ (𝑥 = (abs‘(𝑇‘𝐴)) → (𝑥 = (abs‘(𝑇‘𝑦)) ↔ (abs‘(𝑇‘𝐴)) = (abs‘(𝑇‘𝑦)))) | |
| 16 | 15 | anbi2d 630 | . . . . . . 7 ⊢ (𝑥 = (abs‘(𝑇‘𝐴)) → (((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦))) ↔ ((normℎ‘𝑦) ≤ 1 ∧ (abs‘(𝑇‘𝐴)) = (abs‘(𝑇‘𝑦))))) |
| 17 | 16 | rexbidv 3157 | . . . . . 6 ⊢ (𝑥 = (abs‘(𝑇‘𝐴)) → (∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦))) ↔ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ (abs‘(𝑇‘𝐴)) = (abs‘(𝑇‘𝑦))))) |
| 18 | 14, 17 | elab 3643 | . . . . 5 ⊢ ((abs‘(𝑇‘𝐴)) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦)))} ↔ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ (abs‘(𝑇‘𝐴)) = (abs‘(𝑇‘𝑦)))) |
| 19 | 13, 18 | sylibr 234 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ (normℎ‘𝐴) ≤ 1) → (abs‘(𝑇‘𝐴)) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦)))}) |
| 20 | 19 | 3adant1 1130 | . . 3 ⊢ ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℋ ∧ (normℎ‘𝐴) ≤ 1) → (abs‘(𝑇‘𝐴)) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦)))}) |
| 21 | supxrub 13260 | . . 3 ⊢ (({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦)))} ⊆ ℝ* ∧ (abs‘(𝑇‘𝐴)) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦)))}) → (abs‘(𝑇‘𝐴)) ≤ sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦)))}, ℝ*, < )) | |
| 22 | 4, 20, 21 | syl2anc 584 | . 2 ⊢ ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℋ ∧ (normℎ‘𝐴) ≤ 1) → (abs‘(𝑇‘𝐴)) ≤ sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦)))}, ℝ*, < )) |
| 23 | nmfnval 31855 | . . 3 ⊢ (𝑇: ℋ⟶ℂ → (normfn‘𝑇) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦)))}, ℝ*, < )) | |
| 24 | 23 | 3ad2ant1 1133 | . 2 ⊢ ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℋ ∧ (normℎ‘𝐴) ≤ 1) → (normfn‘𝑇) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦)))}, ℝ*, < )) |
| 25 | 22, 24 | breqtrrd 5130 | 1 ⊢ ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℋ ∧ (normℎ‘𝐴) ≤ 1) → (abs‘(𝑇‘𝐴)) ≤ (normfn‘𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {cab 2707 ∃wrex 3053 ⊆ wss 3911 class class class wbr 5102 ⟶wf 6495 ‘cfv 6499 supcsup 9367 ℂcc 11042 ℝcr 11043 1c1 11045 ℝ*cxr 11183 < clt 11184 ≤ cle 11185 abscabs 15176 ℋchba 30898 normℎcno 30902 normfncnmf 30930 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 ax-hilex 30978 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-sup 9369 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-n0 12419 df-z 12506 df-uz 12770 df-rp 12928 df-seq 13943 df-exp 14003 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-nmfn 31824 |
| This theorem is referenced by: nmfnge0 31906 nmbdfnlbi 32028 nmcfnlbi 32031 |
| Copyright terms: Public domain | W3C validator |