| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > nmfnlb | Structured version Visualization version GIF version | ||
| Description: A lower bound for a functional norm. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nmfnlb | ⊢ ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℋ ∧ (normℎ‘𝐴) ≤ 1) → (abs‘(𝑇‘𝐴)) ≤ (normfn‘𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmfnsetre 31806 | . . . . 5 ⊢ (𝑇: ℋ⟶ℂ → {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦)))} ⊆ ℝ) | |
| 2 | ressxr 11218 | . . . . 5 ⊢ ℝ ⊆ ℝ* | |
| 3 | 1, 2 | sstrdi 3959 | . . . 4 ⊢ (𝑇: ℋ⟶ℂ → {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦)))} ⊆ ℝ*) |
| 4 | 3 | 3ad2ant1 1133 | . . 3 ⊢ ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℋ ∧ (normℎ‘𝐴) ≤ 1) → {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦)))} ⊆ ℝ*) |
| 5 | fveq2 6858 | . . . . . . . . 9 ⊢ (𝑦 = 𝐴 → (normℎ‘𝑦) = (normℎ‘𝐴)) | |
| 6 | 5 | breq1d 5117 | . . . . . . . 8 ⊢ (𝑦 = 𝐴 → ((normℎ‘𝑦) ≤ 1 ↔ (normℎ‘𝐴) ≤ 1)) |
| 7 | 2fveq3 6863 | . . . . . . . . 9 ⊢ (𝑦 = 𝐴 → (abs‘(𝑇‘𝑦)) = (abs‘(𝑇‘𝐴))) | |
| 8 | 7 | eqeq2d 2740 | . . . . . . . 8 ⊢ (𝑦 = 𝐴 → ((abs‘(𝑇‘𝐴)) = (abs‘(𝑇‘𝑦)) ↔ (abs‘(𝑇‘𝐴)) = (abs‘(𝑇‘𝐴)))) |
| 9 | 6, 8 | anbi12d 632 | . . . . . . 7 ⊢ (𝑦 = 𝐴 → (((normℎ‘𝑦) ≤ 1 ∧ (abs‘(𝑇‘𝐴)) = (abs‘(𝑇‘𝑦))) ↔ ((normℎ‘𝐴) ≤ 1 ∧ (abs‘(𝑇‘𝐴)) = (abs‘(𝑇‘𝐴))))) |
| 10 | eqid 2729 | . . . . . . . 8 ⊢ (abs‘(𝑇‘𝐴)) = (abs‘(𝑇‘𝐴)) | |
| 11 | 10 | biantru 529 | . . . . . . 7 ⊢ ((normℎ‘𝐴) ≤ 1 ↔ ((normℎ‘𝐴) ≤ 1 ∧ (abs‘(𝑇‘𝐴)) = (abs‘(𝑇‘𝐴)))) |
| 12 | 9, 11 | bitr4di 289 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (((normℎ‘𝑦) ≤ 1 ∧ (abs‘(𝑇‘𝐴)) = (abs‘(𝑇‘𝑦))) ↔ (normℎ‘𝐴) ≤ 1)) |
| 13 | 12 | rspcev 3588 | . . . . 5 ⊢ ((𝐴 ∈ ℋ ∧ (normℎ‘𝐴) ≤ 1) → ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ (abs‘(𝑇‘𝐴)) = (abs‘(𝑇‘𝑦)))) |
| 14 | fvex 6871 | . . . . . 6 ⊢ (abs‘(𝑇‘𝐴)) ∈ V | |
| 15 | eqeq1 2733 | . . . . . . . 8 ⊢ (𝑥 = (abs‘(𝑇‘𝐴)) → (𝑥 = (abs‘(𝑇‘𝑦)) ↔ (abs‘(𝑇‘𝐴)) = (abs‘(𝑇‘𝑦)))) | |
| 16 | 15 | anbi2d 630 | . . . . . . 7 ⊢ (𝑥 = (abs‘(𝑇‘𝐴)) → (((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦))) ↔ ((normℎ‘𝑦) ≤ 1 ∧ (abs‘(𝑇‘𝐴)) = (abs‘(𝑇‘𝑦))))) |
| 17 | 16 | rexbidv 3157 | . . . . . 6 ⊢ (𝑥 = (abs‘(𝑇‘𝐴)) → (∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦))) ↔ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ (abs‘(𝑇‘𝐴)) = (abs‘(𝑇‘𝑦))))) |
| 18 | 14, 17 | elab 3646 | . . . . 5 ⊢ ((abs‘(𝑇‘𝐴)) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦)))} ↔ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ (abs‘(𝑇‘𝐴)) = (abs‘(𝑇‘𝑦)))) |
| 19 | 13, 18 | sylibr 234 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ (normℎ‘𝐴) ≤ 1) → (abs‘(𝑇‘𝐴)) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦)))}) |
| 20 | 19 | 3adant1 1130 | . . 3 ⊢ ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℋ ∧ (normℎ‘𝐴) ≤ 1) → (abs‘(𝑇‘𝐴)) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦)))}) |
| 21 | supxrub 13284 | . . 3 ⊢ (({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦)))} ⊆ ℝ* ∧ (abs‘(𝑇‘𝐴)) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦)))}) → (abs‘(𝑇‘𝐴)) ≤ sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦)))}, ℝ*, < )) | |
| 22 | 4, 20, 21 | syl2anc 584 | . 2 ⊢ ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℋ ∧ (normℎ‘𝐴) ≤ 1) → (abs‘(𝑇‘𝐴)) ≤ sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦)))}, ℝ*, < )) |
| 23 | nmfnval 31805 | . . 3 ⊢ (𝑇: ℋ⟶ℂ → (normfn‘𝑇) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦)))}, ℝ*, < )) | |
| 24 | 23 | 3ad2ant1 1133 | . 2 ⊢ ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℋ ∧ (normℎ‘𝐴) ≤ 1) → (normfn‘𝑇) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦)))}, ℝ*, < )) |
| 25 | 22, 24 | breqtrrd 5135 | 1 ⊢ ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℋ ∧ (normℎ‘𝐴) ≤ 1) → (abs‘(𝑇‘𝐴)) ≤ (normfn‘𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {cab 2707 ∃wrex 3053 ⊆ wss 3914 class class class wbr 5107 ⟶wf 6507 ‘cfv 6511 supcsup 9391 ℂcc 11066 ℝcr 11067 1c1 11069 ℝ*cxr 11207 < clt 11208 ≤ cle 11209 abscabs 15200 ℋchba 30848 normℎcno 30852 normfncnmf 30880 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 ax-hilex 30928 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-seq 13967 df-exp 14027 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-nmfn 31774 |
| This theorem is referenced by: nmfnge0 31856 nmbdfnlbi 31978 nmcfnlbi 31981 |
| Copyright terms: Public domain | W3C validator |