Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > nmfnlb | Structured version Visualization version GIF version |
Description: A lower bound for a functional norm. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nmfnlb | ⊢ ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℋ ∧ (normℎ‘𝐴) ≤ 1) → (abs‘(𝑇‘𝐴)) ≤ (normfn‘𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmfnsetre 30140 | . . . . 5 ⊢ (𝑇: ℋ⟶ℂ → {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦)))} ⊆ ℝ) | |
2 | ressxr 10950 | . . . . 5 ⊢ ℝ ⊆ ℝ* | |
3 | 1, 2 | sstrdi 3929 | . . . 4 ⊢ (𝑇: ℋ⟶ℂ → {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦)))} ⊆ ℝ*) |
4 | 3 | 3ad2ant1 1131 | . . 3 ⊢ ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℋ ∧ (normℎ‘𝐴) ≤ 1) → {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦)))} ⊆ ℝ*) |
5 | fveq2 6756 | . . . . . . . . 9 ⊢ (𝑦 = 𝐴 → (normℎ‘𝑦) = (normℎ‘𝐴)) | |
6 | 5 | breq1d 5080 | . . . . . . . 8 ⊢ (𝑦 = 𝐴 → ((normℎ‘𝑦) ≤ 1 ↔ (normℎ‘𝐴) ≤ 1)) |
7 | 2fveq3 6761 | . . . . . . . . 9 ⊢ (𝑦 = 𝐴 → (abs‘(𝑇‘𝑦)) = (abs‘(𝑇‘𝐴))) | |
8 | 7 | eqeq2d 2749 | . . . . . . . 8 ⊢ (𝑦 = 𝐴 → ((abs‘(𝑇‘𝐴)) = (abs‘(𝑇‘𝑦)) ↔ (abs‘(𝑇‘𝐴)) = (abs‘(𝑇‘𝐴)))) |
9 | 6, 8 | anbi12d 630 | . . . . . . 7 ⊢ (𝑦 = 𝐴 → (((normℎ‘𝑦) ≤ 1 ∧ (abs‘(𝑇‘𝐴)) = (abs‘(𝑇‘𝑦))) ↔ ((normℎ‘𝐴) ≤ 1 ∧ (abs‘(𝑇‘𝐴)) = (abs‘(𝑇‘𝐴))))) |
10 | eqid 2738 | . . . . . . . 8 ⊢ (abs‘(𝑇‘𝐴)) = (abs‘(𝑇‘𝐴)) | |
11 | 10 | biantru 529 | . . . . . . 7 ⊢ ((normℎ‘𝐴) ≤ 1 ↔ ((normℎ‘𝐴) ≤ 1 ∧ (abs‘(𝑇‘𝐴)) = (abs‘(𝑇‘𝐴)))) |
12 | 9, 11 | bitr4di 288 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (((normℎ‘𝑦) ≤ 1 ∧ (abs‘(𝑇‘𝐴)) = (abs‘(𝑇‘𝑦))) ↔ (normℎ‘𝐴) ≤ 1)) |
13 | 12 | rspcev 3552 | . . . . 5 ⊢ ((𝐴 ∈ ℋ ∧ (normℎ‘𝐴) ≤ 1) → ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ (abs‘(𝑇‘𝐴)) = (abs‘(𝑇‘𝑦)))) |
14 | fvex 6769 | . . . . . 6 ⊢ (abs‘(𝑇‘𝐴)) ∈ V | |
15 | eqeq1 2742 | . . . . . . . 8 ⊢ (𝑥 = (abs‘(𝑇‘𝐴)) → (𝑥 = (abs‘(𝑇‘𝑦)) ↔ (abs‘(𝑇‘𝐴)) = (abs‘(𝑇‘𝑦)))) | |
16 | 15 | anbi2d 628 | . . . . . . 7 ⊢ (𝑥 = (abs‘(𝑇‘𝐴)) → (((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦))) ↔ ((normℎ‘𝑦) ≤ 1 ∧ (abs‘(𝑇‘𝐴)) = (abs‘(𝑇‘𝑦))))) |
17 | 16 | rexbidv 3225 | . . . . . 6 ⊢ (𝑥 = (abs‘(𝑇‘𝐴)) → (∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦))) ↔ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ (abs‘(𝑇‘𝐴)) = (abs‘(𝑇‘𝑦))))) |
18 | 14, 17 | elab 3602 | . . . . 5 ⊢ ((abs‘(𝑇‘𝐴)) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦)))} ↔ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ (abs‘(𝑇‘𝐴)) = (abs‘(𝑇‘𝑦)))) |
19 | 13, 18 | sylibr 233 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ (normℎ‘𝐴) ≤ 1) → (abs‘(𝑇‘𝐴)) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦)))}) |
20 | 19 | 3adant1 1128 | . . 3 ⊢ ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℋ ∧ (normℎ‘𝐴) ≤ 1) → (abs‘(𝑇‘𝐴)) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦)))}) |
21 | supxrub 12987 | . . 3 ⊢ (({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦)))} ⊆ ℝ* ∧ (abs‘(𝑇‘𝐴)) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦)))}) → (abs‘(𝑇‘𝐴)) ≤ sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦)))}, ℝ*, < )) | |
22 | 4, 20, 21 | syl2anc 583 | . 2 ⊢ ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℋ ∧ (normℎ‘𝐴) ≤ 1) → (abs‘(𝑇‘𝐴)) ≤ sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦)))}, ℝ*, < )) |
23 | nmfnval 30139 | . . 3 ⊢ (𝑇: ℋ⟶ℂ → (normfn‘𝑇) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦)))}, ℝ*, < )) | |
24 | 23 | 3ad2ant1 1131 | . 2 ⊢ ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℋ ∧ (normℎ‘𝐴) ≤ 1) → (normfn‘𝑇) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦)))}, ℝ*, < )) |
25 | 22, 24 | breqtrrd 5098 | 1 ⊢ ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℋ ∧ (normℎ‘𝐴) ≤ 1) → (abs‘(𝑇‘𝐴)) ≤ (normfn‘𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 {cab 2715 ∃wrex 3064 ⊆ wss 3883 class class class wbr 5070 ⟶wf 6414 ‘cfv 6418 supcsup 9129 ℂcc 10800 ℝcr 10801 1c1 10803 ℝ*cxr 10939 < clt 10940 ≤ cle 10941 abscabs 14873 ℋchba 29182 normℎcno 29186 normfncnmf 29214 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-hilex 29262 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-nmfn 30108 |
This theorem is referenced by: nmfnge0 30190 nmbdfnlbi 30312 nmcfnlbi 30315 |
Copyright terms: Public domain | W3C validator |