HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmfnlb Structured version   Visualization version   GIF version

Theorem nmfnlb 31903
Description: A lower bound for a functional norm. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
nmfnlb ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℋ ∧ (norm𝐴) ≤ 1) → (abs‘(𝑇𝐴)) ≤ (normfn𝑇))

Proof of Theorem nmfnlb
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmfnsetre 31856 . . . . 5 (𝑇: ℋ⟶ℂ → {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇𝑦)))} ⊆ ℝ)
2 ressxr 11194 . . . . 5 ℝ ⊆ ℝ*
31, 2sstrdi 3956 . . . 4 (𝑇: ℋ⟶ℂ → {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇𝑦)))} ⊆ ℝ*)
433ad2ant1 1133 . . 3 ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℋ ∧ (norm𝐴) ≤ 1) → {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇𝑦)))} ⊆ ℝ*)
5 fveq2 6840 . . . . . . . . 9 (𝑦 = 𝐴 → (norm𝑦) = (norm𝐴))
65breq1d 5112 . . . . . . . 8 (𝑦 = 𝐴 → ((norm𝑦) ≤ 1 ↔ (norm𝐴) ≤ 1))
7 2fveq3 6845 . . . . . . . . 9 (𝑦 = 𝐴 → (abs‘(𝑇𝑦)) = (abs‘(𝑇𝐴)))
87eqeq2d 2740 . . . . . . . 8 (𝑦 = 𝐴 → ((abs‘(𝑇𝐴)) = (abs‘(𝑇𝑦)) ↔ (abs‘(𝑇𝐴)) = (abs‘(𝑇𝐴))))
96, 8anbi12d 632 . . . . . . 7 (𝑦 = 𝐴 → (((norm𝑦) ≤ 1 ∧ (abs‘(𝑇𝐴)) = (abs‘(𝑇𝑦))) ↔ ((norm𝐴) ≤ 1 ∧ (abs‘(𝑇𝐴)) = (abs‘(𝑇𝐴)))))
10 eqid 2729 . . . . . . . 8 (abs‘(𝑇𝐴)) = (abs‘(𝑇𝐴))
1110biantru 529 . . . . . . 7 ((norm𝐴) ≤ 1 ↔ ((norm𝐴) ≤ 1 ∧ (abs‘(𝑇𝐴)) = (abs‘(𝑇𝐴))))
129, 11bitr4di 289 . . . . . 6 (𝑦 = 𝐴 → (((norm𝑦) ≤ 1 ∧ (abs‘(𝑇𝐴)) = (abs‘(𝑇𝑦))) ↔ (norm𝐴) ≤ 1))
1312rspcev 3585 . . . . 5 ((𝐴 ∈ ℋ ∧ (norm𝐴) ≤ 1) → ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ (abs‘(𝑇𝐴)) = (abs‘(𝑇𝑦))))
14 fvex 6853 . . . . . 6 (abs‘(𝑇𝐴)) ∈ V
15 eqeq1 2733 . . . . . . . 8 (𝑥 = (abs‘(𝑇𝐴)) → (𝑥 = (abs‘(𝑇𝑦)) ↔ (abs‘(𝑇𝐴)) = (abs‘(𝑇𝑦))))
1615anbi2d 630 . . . . . . 7 (𝑥 = (abs‘(𝑇𝐴)) → (((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇𝑦))) ↔ ((norm𝑦) ≤ 1 ∧ (abs‘(𝑇𝐴)) = (abs‘(𝑇𝑦)))))
1716rexbidv 3157 . . . . . 6 (𝑥 = (abs‘(𝑇𝐴)) → (∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇𝑦))) ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ (abs‘(𝑇𝐴)) = (abs‘(𝑇𝑦)))))
1814, 17elab 3643 . . . . 5 ((abs‘(𝑇𝐴)) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇𝑦)))} ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ (abs‘(𝑇𝐴)) = (abs‘(𝑇𝑦))))
1913, 18sylibr 234 . . . 4 ((𝐴 ∈ ℋ ∧ (norm𝐴) ≤ 1) → (abs‘(𝑇𝐴)) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇𝑦)))})
20193adant1 1130 . . 3 ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℋ ∧ (norm𝐴) ≤ 1) → (abs‘(𝑇𝐴)) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇𝑦)))})
21 supxrub 13260 . . 3 (({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇𝑦)))} ⊆ ℝ* ∧ (abs‘(𝑇𝐴)) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇𝑦)))}) → (abs‘(𝑇𝐴)) ≤ sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇𝑦)))}, ℝ*, < ))
224, 20, 21syl2anc 584 . 2 ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℋ ∧ (norm𝐴) ≤ 1) → (abs‘(𝑇𝐴)) ≤ sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇𝑦)))}, ℝ*, < ))
23 nmfnval 31855 . . 3 (𝑇: ℋ⟶ℂ → (normfn𝑇) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇𝑦)))}, ℝ*, < ))
24233ad2ant1 1133 . 2 ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℋ ∧ (norm𝐴) ≤ 1) → (normfn𝑇) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇𝑦)))}, ℝ*, < ))
2522, 24breqtrrd 5130 1 ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℋ ∧ (norm𝐴) ≤ 1) → (abs‘(𝑇𝐴)) ≤ (normfn𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2707  wrex 3053  wss 3911   class class class wbr 5102  wf 6495  cfv 6499  supcsup 9367  cc 11042  cr 11043  1c1 11045  *cxr 11183   < clt 11184  cle 11185  abscabs 15176  chba 30898  normcno 30902  normfncnmf 30930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-hilex 30978
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-seq 13943  df-exp 14003  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-nmfn 31824
This theorem is referenced by:  nmfnge0  31906  nmbdfnlbi  32028  nmcfnlbi  32031
  Copyright terms: Public domain W3C validator