HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmoplb Structured version   Visualization version   GIF version

Theorem nmoplb 29375
Description: A lower bound for an operator norm. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
nmoplb ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℋ ∧ (norm𝐴) ≤ 1) → (norm‘(𝑇𝐴)) ≤ (normop𝑇))

Proof of Theorem nmoplb
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmopsetretHIL 29332 . . . . 5 (𝑇: ℋ⟶ ℋ → {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))} ⊆ ℝ)
2 ressxr 10531 . . . . 5 ℝ ⊆ ℝ*
31, 2syl6ss 3901 . . . 4 (𝑇: ℋ⟶ ℋ → {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))} ⊆ ℝ*)
433ad2ant1 1126 . . 3 ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℋ ∧ (norm𝐴) ≤ 1) → {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))} ⊆ ℝ*)
5 fveq2 6538 . . . . . . . . 9 (𝑦 = 𝐴 → (norm𝑦) = (norm𝐴))
65breq1d 4972 . . . . . . . 8 (𝑦 = 𝐴 → ((norm𝑦) ≤ 1 ↔ (norm𝐴) ≤ 1))
7 2fveq3 6543 . . . . . . . . 9 (𝑦 = 𝐴 → (norm‘(𝑇𝑦)) = (norm‘(𝑇𝐴)))
87eqeq2d 2805 . . . . . . . 8 (𝑦 = 𝐴 → ((norm‘(𝑇𝐴)) = (norm‘(𝑇𝑦)) ↔ (norm‘(𝑇𝐴)) = (norm‘(𝑇𝐴))))
96, 8anbi12d 630 . . . . . . 7 (𝑦 = 𝐴 → (((norm𝑦) ≤ 1 ∧ (norm‘(𝑇𝐴)) = (norm‘(𝑇𝑦))) ↔ ((norm𝐴) ≤ 1 ∧ (norm‘(𝑇𝐴)) = (norm‘(𝑇𝐴)))))
10 eqid 2795 . . . . . . . 8 (norm‘(𝑇𝐴)) = (norm‘(𝑇𝐴))
1110biantru 530 . . . . . . 7 ((norm𝐴) ≤ 1 ↔ ((norm𝐴) ≤ 1 ∧ (norm‘(𝑇𝐴)) = (norm‘(𝑇𝐴))))
129, 11syl6bbr 290 . . . . . 6 (𝑦 = 𝐴 → (((norm𝑦) ≤ 1 ∧ (norm‘(𝑇𝐴)) = (norm‘(𝑇𝑦))) ↔ (norm𝐴) ≤ 1))
1312rspcev 3559 . . . . 5 ((𝐴 ∈ ℋ ∧ (norm𝐴) ≤ 1) → ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ (norm‘(𝑇𝐴)) = (norm‘(𝑇𝑦))))
14 fvex 6551 . . . . . 6 (norm‘(𝑇𝐴)) ∈ V
15 eqeq1 2799 . . . . . . . 8 (𝑥 = (norm‘(𝑇𝐴)) → (𝑥 = (norm‘(𝑇𝑦)) ↔ (norm‘(𝑇𝐴)) = (norm‘(𝑇𝑦))))
1615anbi2d 628 . . . . . . 7 (𝑥 = (norm‘(𝑇𝐴)) → (((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦))) ↔ ((norm𝑦) ≤ 1 ∧ (norm‘(𝑇𝐴)) = (norm‘(𝑇𝑦)))))
1716rexbidv 3260 . . . . . 6 (𝑥 = (norm‘(𝑇𝐴)) → (∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦))) ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ (norm‘(𝑇𝐴)) = (norm‘(𝑇𝑦)))))
1814, 17elab 3605 . . . . 5 ((norm‘(𝑇𝐴)) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))} ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ (norm‘(𝑇𝐴)) = (norm‘(𝑇𝑦))))
1913, 18sylibr 235 . . . 4 ((𝐴 ∈ ℋ ∧ (norm𝐴) ≤ 1) → (norm‘(𝑇𝐴)) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))})
20193adant1 1123 . . 3 ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℋ ∧ (norm𝐴) ≤ 1) → (norm‘(𝑇𝐴)) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))})
21 supxrub 12567 . . 3 (({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))} ⊆ ℝ* ∧ (norm‘(𝑇𝐴)) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))}) → (norm‘(𝑇𝐴)) ≤ sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))}, ℝ*, < ))
224, 20, 21syl2anc 584 . 2 ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℋ ∧ (norm𝐴) ≤ 1) → (norm‘(𝑇𝐴)) ≤ sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))}, ℝ*, < ))
23 nmopval 29324 . . 3 (𝑇: ℋ⟶ ℋ → (normop𝑇) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))}, ℝ*, < ))
24233ad2ant1 1126 . 2 ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℋ ∧ (norm𝐴) ≤ 1) → (normop𝑇) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))}, ℝ*, < ))
2522, 24breqtrrd 4990 1 ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℋ ∧ (norm𝐴) ≤ 1) → (norm‘(𝑇𝐴)) ≤ (normop𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1080   = wceq 1522  wcel 2081  {cab 2775  wrex 3106  wss 3859   class class class wbr 4962  wf 6221  cfv 6225  supcsup 8750  cr 10382  1c1 10384  *cxr 10520   < clt 10521  cle 10522  chba 28387  normcno 28391  normopcnop 28413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460  ax-pre-sup 10461  ax-hilex 28467  ax-hfvadd 28468  ax-hvcom 28469  ax-hvass 28470  ax-hv0cl 28471  ax-hvaddid 28472  ax-hfvmul 28473  ax-hvmulid 28474  ax-hvmulass 28475  ax-hvdistr1 28476  ax-hvdistr2 28477  ax-hvmul0 28478  ax-hfi 28547  ax-his1 28550  ax-his2 28551  ax-his3 28552  ax-his4 28553
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-om 7437  df-1st 7545  df-2nd 7546  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-er 8139  df-map 8258  df-en 8358  df-dom 8359  df-sdom 8360  df-sup 8752  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-div 11146  df-nn 11487  df-2 11548  df-3 11549  df-4 11550  df-n0 11746  df-z 11830  df-uz 12094  df-rp 12240  df-seq 13220  df-exp 13280  df-cj 14292  df-re 14293  df-im 14294  df-sqrt 14428  df-abs 14429  df-grpo 27961  df-gid 27962  df-ablo 28013  df-vc 28027  df-nv 28060  df-va 28063  df-ba 28064  df-sm 28065  df-0v 28066  df-nmcv 28068  df-hnorm 28436  df-hba 28437  df-hvsub 28439  df-nmop 29307
This theorem is referenced by:  nmopge0  29379  nmbdoplbi  29492  nmcoplbi  29496  nmophmi  29499  nmoptrii  29562  nmopcoi  29563
  Copyright terms: Public domain W3C validator