HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmoplb Structured version   Visualization version   GIF version

Theorem nmoplb 31415
Description: A lower bound for an operator norm. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
nmoplb ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℋ ∧ (norm𝐴) ≤ 1) → (norm‘(𝑇𝐴)) ≤ (normop𝑇))

Proof of Theorem nmoplb
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmopsetretHIL 31372 . . . . 5 (𝑇: ℋ⟶ ℋ → {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))} ⊆ ℝ)
2 ressxr 11262 . . . . 5 ℝ ⊆ ℝ*
31, 2sstrdi 3994 . . . 4 (𝑇: ℋ⟶ ℋ → {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))} ⊆ ℝ*)
433ad2ant1 1133 . . 3 ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℋ ∧ (norm𝐴) ≤ 1) → {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))} ⊆ ℝ*)
5 fveq2 6891 . . . . . . . . 9 (𝑦 = 𝐴 → (norm𝑦) = (norm𝐴))
65breq1d 5158 . . . . . . . 8 (𝑦 = 𝐴 → ((norm𝑦) ≤ 1 ↔ (norm𝐴) ≤ 1))
7 2fveq3 6896 . . . . . . . . 9 (𝑦 = 𝐴 → (norm‘(𝑇𝑦)) = (norm‘(𝑇𝐴)))
87eqeq2d 2743 . . . . . . . 8 (𝑦 = 𝐴 → ((norm‘(𝑇𝐴)) = (norm‘(𝑇𝑦)) ↔ (norm‘(𝑇𝐴)) = (norm‘(𝑇𝐴))))
96, 8anbi12d 631 . . . . . . 7 (𝑦 = 𝐴 → (((norm𝑦) ≤ 1 ∧ (norm‘(𝑇𝐴)) = (norm‘(𝑇𝑦))) ↔ ((norm𝐴) ≤ 1 ∧ (norm‘(𝑇𝐴)) = (norm‘(𝑇𝐴)))))
10 eqid 2732 . . . . . . . 8 (norm‘(𝑇𝐴)) = (norm‘(𝑇𝐴))
1110biantru 530 . . . . . . 7 ((norm𝐴) ≤ 1 ↔ ((norm𝐴) ≤ 1 ∧ (norm‘(𝑇𝐴)) = (norm‘(𝑇𝐴))))
129, 11bitr4di 288 . . . . . 6 (𝑦 = 𝐴 → (((norm𝑦) ≤ 1 ∧ (norm‘(𝑇𝐴)) = (norm‘(𝑇𝑦))) ↔ (norm𝐴) ≤ 1))
1312rspcev 3612 . . . . 5 ((𝐴 ∈ ℋ ∧ (norm𝐴) ≤ 1) → ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ (norm‘(𝑇𝐴)) = (norm‘(𝑇𝑦))))
14 fvex 6904 . . . . . 6 (norm‘(𝑇𝐴)) ∈ V
15 eqeq1 2736 . . . . . . . 8 (𝑥 = (norm‘(𝑇𝐴)) → (𝑥 = (norm‘(𝑇𝑦)) ↔ (norm‘(𝑇𝐴)) = (norm‘(𝑇𝑦))))
1615anbi2d 629 . . . . . . 7 (𝑥 = (norm‘(𝑇𝐴)) → (((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦))) ↔ ((norm𝑦) ≤ 1 ∧ (norm‘(𝑇𝐴)) = (norm‘(𝑇𝑦)))))
1716rexbidv 3178 . . . . . 6 (𝑥 = (norm‘(𝑇𝐴)) → (∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦))) ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ (norm‘(𝑇𝐴)) = (norm‘(𝑇𝑦)))))
1814, 17elab 3668 . . . . 5 ((norm‘(𝑇𝐴)) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))} ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ (norm‘(𝑇𝐴)) = (norm‘(𝑇𝑦))))
1913, 18sylibr 233 . . . 4 ((𝐴 ∈ ℋ ∧ (norm𝐴) ≤ 1) → (norm‘(𝑇𝐴)) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))})
20193adant1 1130 . . 3 ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℋ ∧ (norm𝐴) ≤ 1) → (norm‘(𝑇𝐴)) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))})
21 supxrub 13307 . . 3 (({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))} ⊆ ℝ* ∧ (norm‘(𝑇𝐴)) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))}) → (norm‘(𝑇𝐴)) ≤ sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))}, ℝ*, < ))
224, 20, 21syl2anc 584 . 2 ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℋ ∧ (norm𝐴) ≤ 1) → (norm‘(𝑇𝐴)) ≤ sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))}, ℝ*, < ))
23 nmopval 31364 . . 3 (𝑇: ℋ⟶ ℋ → (normop𝑇) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))}, ℝ*, < ))
24233ad2ant1 1133 . 2 ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℋ ∧ (norm𝐴) ≤ 1) → (normop𝑇) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))}, ℝ*, < ))
2522, 24breqtrrd 5176 1 ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℋ ∧ (norm𝐴) ≤ 1) → (norm‘(𝑇𝐴)) ≤ (normop𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  {cab 2709  wrex 3070  wss 3948   class class class wbr 5148  wf 6539  cfv 6543  supcsup 9437  cr 11111  1c1 11113  *cxr 11251   < clt 11252  cle 11253  chba 30427  normcno 30431  normopcnop 30453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190  ax-hilex 30507  ax-hfvadd 30508  ax-hvcom 30509  ax-hvass 30510  ax-hv0cl 30511  ax-hvaddid 30512  ax-hfvmul 30513  ax-hvmulid 30514  ax-hvmulass 30515  ax-hvdistr1 30516  ax-hvdistr2 30517  ax-hvmul0 30518  ax-hfi 30587  ax-his1 30590  ax-his2 30591  ax-his3 30592  ax-his4 30593
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-er 8705  df-map 8824  df-en 8942  df-dom 8943  df-sdom 8944  df-sup 9439  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-2 12279  df-3 12280  df-4 12281  df-n0 12477  df-z 12563  df-uz 12827  df-rp 12979  df-seq 13971  df-exp 14032  df-cj 15050  df-re 15051  df-im 15052  df-sqrt 15186  df-abs 15187  df-grpo 30001  df-gid 30002  df-ablo 30053  df-vc 30067  df-nv 30100  df-va 30103  df-ba 30104  df-sm 30105  df-0v 30106  df-nmcv 30108  df-hnorm 30476  df-hba 30477  df-hvsub 30479  df-nmop 31347
This theorem is referenced by:  nmopge0  31419  nmbdoplbi  31532  nmcoplbi  31536  nmophmi  31539  nmoptrii  31602  nmopcoi  31603
  Copyright terms: Public domain W3C validator