![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > nmoplb | Structured version Visualization version GIF version |
Description: A lower bound for an operator norm. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nmoplb | ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℋ ∧ (normℎ‘𝐴) ≤ 1) → (normℎ‘(𝑇‘𝐴)) ≤ (normop‘𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmopsetretHIL 29332 | . . . . 5 ⊢ (𝑇: ℋ⟶ ℋ → {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))} ⊆ ℝ) | |
2 | ressxr 10531 | . . . . 5 ⊢ ℝ ⊆ ℝ* | |
3 | 1, 2 | syl6ss 3901 | . . . 4 ⊢ (𝑇: ℋ⟶ ℋ → {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))} ⊆ ℝ*) |
4 | 3 | 3ad2ant1 1126 | . . 3 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℋ ∧ (normℎ‘𝐴) ≤ 1) → {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))} ⊆ ℝ*) |
5 | fveq2 6538 | . . . . . . . . 9 ⊢ (𝑦 = 𝐴 → (normℎ‘𝑦) = (normℎ‘𝐴)) | |
6 | 5 | breq1d 4972 | . . . . . . . 8 ⊢ (𝑦 = 𝐴 → ((normℎ‘𝑦) ≤ 1 ↔ (normℎ‘𝐴) ≤ 1)) |
7 | 2fveq3 6543 | . . . . . . . . 9 ⊢ (𝑦 = 𝐴 → (normℎ‘(𝑇‘𝑦)) = (normℎ‘(𝑇‘𝐴))) | |
8 | 7 | eqeq2d 2805 | . . . . . . . 8 ⊢ (𝑦 = 𝐴 → ((normℎ‘(𝑇‘𝐴)) = (normℎ‘(𝑇‘𝑦)) ↔ (normℎ‘(𝑇‘𝐴)) = (normℎ‘(𝑇‘𝐴)))) |
9 | 6, 8 | anbi12d 630 | . . . . . . 7 ⊢ (𝑦 = 𝐴 → (((normℎ‘𝑦) ≤ 1 ∧ (normℎ‘(𝑇‘𝐴)) = (normℎ‘(𝑇‘𝑦))) ↔ ((normℎ‘𝐴) ≤ 1 ∧ (normℎ‘(𝑇‘𝐴)) = (normℎ‘(𝑇‘𝐴))))) |
10 | eqid 2795 | . . . . . . . 8 ⊢ (normℎ‘(𝑇‘𝐴)) = (normℎ‘(𝑇‘𝐴)) | |
11 | 10 | biantru 530 | . . . . . . 7 ⊢ ((normℎ‘𝐴) ≤ 1 ↔ ((normℎ‘𝐴) ≤ 1 ∧ (normℎ‘(𝑇‘𝐴)) = (normℎ‘(𝑇‘𝐴)))) |
12 | 9, 11 | syl6bbr 290 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (((normℎ‘𝑦) ≤ 1 ∧ (normℎ‘(𝑇‘𝐴)) = (normℎ‘(𝑇‘𝑦))) ↔ (normℎ‘𝐴) ≤ 1)) |
13 | 12 | rspcev 3559 | . . . . 5 ⊢ ((𝐴 ∈ ℋ ∧ (normℎ‘𝐴) ≤ 1) → ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ (normℎ‘(𝑇‘𝐴)) = (normℎ‘(𝑇‘𝑦)))) |
14 | fvex 6551 | . . . . . 6 ⊢ (normℎ‘(𝑇‘𝐴)) ∈ V | |
15 | eqeq1 2799 | . . . . . . . 8 ⊢ (𝑥 = (normℎ‘(𝑇‘𝐴)) → (𝑥 = (normℎ‘(𝑇‘𝑦)) ↔ (normℎ‘(𝑇‘𝐴)) = (normℎ‘(𝑇‘𝑦)))) | |
16 | 15 | anbi2d 628 | . . . . . . 7 ⊢ (𝑥 = (normℎ‘(𝑇‘𝐴)) → (((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦))) ↔ ((normℎ‘𝑦) ≤ 1 ∧ (normℎ‘(𝑇‘𝐴)) = (normℎ‘(𝑇‘𝑦))))) |
17 | 16 | rexbidv 3260 | . . . . . 6 ⊢ (𝑥 = (normℎ‘(𝑇‘𝐴)) → (∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦))) ↔ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ (normℎ‘(𝑇‘𝐴)) = (normℎ‘(𝑇‘𝑦))))) |
18 | 14, 17 | elab 3605 | . . . . 5 ⊢ ((normℎ‘(𝑇‘𝐴)) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))} ↔ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ (normℎ‘(𝑇‘𝐴)) = (normℎ‘(𝑇‘𝑦)))) |
19 | 13, 18 | sylibr 235 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ (normℎ‘𝐴) ≤ 1) → (normℎ‘(𝑇‘𝐴)) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))}) |
20 | 19 | 3adant1 1123 | . . 3 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℋ ∧ (normℎ‘𝐴) ≤ 1) → (normℎ‘(𝑇‘𝐴)) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))}) |
21 | supxrub 12567 | . . 3 ⊢ (({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))} ⊆ ℝ* ∧ (normℎ‘(𝑇‘𝐴)) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))}) → (normℎ‘(𝑇‘𝐴)) ≤ sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))}, ℝ*, < )) | |
22 | 4, 20, 21 | syl2anc 584 | . 2 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℋ ∧ (normℎ‘𝐴) ≤ 1) → (normℎ‘(𝑇‘𝐴)) ≤ sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))}, ℝ*, < )) |
23 | nmopval 29324 | . . 3 ⊢ (𝑇: ℋ⟶ ℋ → (normop‘𝑇) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))}, ℝ*, < )) | |
24 | 23 | 3ad2ant1 1126 | . 2 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℋ ∧ (normℎ‘𝐴) ≤ 1) → (normop‘𝑇) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))}, ℝ*, < )) |
25 | 22, 24 | breqtrrd 4990 | 1 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℋ ∧ (normℎ‘𝐴) ≤ 1) → (normℎ‘(𝑇‘𝐴)) ≤ (normop‘𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1080 = wceq 1522 ∈ wcel 2081 {cab 2775 ∃wrex 3106 ⊆ wss 3859 class class class wbr 4962 ⟶wf 6221 ‘cfv 6225 supcsup 8750 ℝcr 10382 1c1 10384 ℝ*cxr 10520 < clt 10521 ≤ cle 10522 ℋchba 28387 normℎcno 28391 normopcnop 28413 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-rep 5081 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 ax-cnex 10439 ax-resscn 10440 ax-1cn 10441 ax-icn 10442 ax-addcl 10443 ax-addrcl 10444 ax-mulcl 10445 ax-mulrcl 10446 ax-mulcom 10447 ax-addass 10448 ax-mulass 10449 ax-distr 10450 ax-i2m1 10451 ax-1ne0 10452 ax-1rid 10453 ax-rnegex 10454 ax-rrecex 10455 ax-cnre 10456 ax-pre-lttri 10457 ax-pre-lttrn 10458 ax-pre-ltadd 10459 ax-pre-mulgt0 10460 ax-pre-sup 10461 ax-hilex 28467 ax-hfvadd 28468 ax-hvcom 28469 ax-hvass 28470 ax-hv0cl 28471 ax-hvaddid 28472 ax-hfvmul 28473 ax-hvmulid 28474 ax-hvmulass 28475 ax-hvdistr1 28476 ax-hvdistr2 28477 ax-hvmul0 28478 ax-hfi 28547 ax-his1 28550 ax-his2 28551 ax-his3 28552 ax-his4 28553 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-nel 3091 df-ral 3110 df-rex 3111 df-reu 3112 df-rmo 3113 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-pss 3876 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-tp 4477 df-op 4479 df-uni 4746 df-iun 4827 df-br 4963 df-opab 5025 df-mpt 5042 df-tr 5064 df-id 5348 df-eprel 5353 df-po 5362 df-so 5363 df-fr 5402 df-we 5404 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-pred 6023 df-ord 6069 df-on 6070 df-lim 6071 df-suc 6072 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-riota 6977 df-ov 7019 df-oprab 7020 df-mpo 7021 df-om 7437 df-1st 7545 df-2nd 7546 df-wrecs 7798 df-recs 7860 df-rdg 7898 df-er 8139 df-map 8258 df-en 8358 df-dom 8359 df-sdom 8360 df-sup 8752 df-pnf 10523 df-mnf 10524 df-xr 10525 df-ltxr 10526 df-le 10527 df-sub 10719 df-neg 10720 df-div 11146 df-nn 11487 df-2 11548 df-3 11549 df-4 11550 df-n0 11746 df-z 11830 df-uz 12094 df-rp 12240 df-seq 13220 df-exp 13280 df-cj 14292 df-re 14293 df-im 14294 df-sqrt 14428 df-abs 14429 df-grpo 27961 df-gid 27962 df-ablo 28013 df-vc 28027 df-nv 28060 df-va 28063 df-ba 28064 df-sm 28065 df-0v 28066 df-nmcv 28068 df-hnorm 28436 df-hba 28437 df-hvsub 28439 df-nmop 29307 |
This theorem is referenced by: nmopge0 29379 nmbdoplbi 29492 nmcoplbi 29496 nmophmi 29499 nmoptrii 29562 nmopcoi 29563 |
Copyright terms: Public domain | W3C validator |