HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmoplb Structured version   Visualization version   GIF version

Theorem nmoplb 30269
Description: A lower bound for an operator norm. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
nmoplb ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℋ ∧ (norm𝐴) ≤ 1) → (norm‘(𝑇𝐴)) ≤ (normop𝑇))

Proof of Theorem nmoplb
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmopsetretHIL 30226 . . . . 5 (𝑇: ℋ⟶ ℋ → {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))} ⊆ ℝ)
2 ressxr 11019 . . . . 5 ℝ ⊆ ℝ*
31, 2sstrdi 3933 . . . 4 (𝑇: ℋ⟶ ℋ → {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))} ⊆ ℝ*)
433ad2ant1 1132 . . 3 ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℋ ∧ (norm𝐴) ≤ 1) → {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))} ⊆ ℝ*)
5 fveq2 6774 . . . . . . . . 9 (𝑦 = 𝐴 → (norm𝑦) = (norm𝐴))
65breq1d 5084 . . . . . . . 8 (𝑦 = 𝐴 → ((norm𝑦) ≤ 1 ↔ (norm𝐴) ≤ 1))
7 2fveq3 6779 . . . . . . . . 9 (𝑦 = 𝐴 → (norm‘(𝑇𝑦)) = (norm‘(𝑇𝐴)))
87eqeq2d 2749 . . . . . . . 8 (𝑦 = 𝐴 → ((norm‘(𝑇𝐴)) = (norm‘(𝑇𝑦)) ↔ (norm‘(𝑇𝐴)) = (norm‘(𝑇𝐴))))
96, 8anbi12d 631 . . . . . . 7 (𝑦 = 𝐴 → (((norm𝑦) ≤ 1 ∧ (norm‘(𝑇𝐴)) = (norm‘(𝑇𝑦))) ↔ ((norm𝐴) ≤ 1 ∧ (norm‘(𝑇𝐴)) = (norm‘(𝑇𝐴)))))
10 eqid 2738 . . . . . . . 8 (norm‘(𝑇𝐴)) = (norm‘(𝑇𝐴))
1110biantru 530 . . . . . . 7 ((norm𝐴) ≤ 1 ↔ ((norm𝐴) ≤ 1 ∧ (norm‘(𝑇𝐴)) = (norm‘(𝑇𝐴))))
129, 11bitr4di 289 . . . . . 6 (𝑦 = 𝐴 → (((norm𝑦) ≤ 1 ∧ (norm‘(𝑇𝐴)) = (norm‘(𝑇𝑦))) ↔ (norm𝐴) ≤ 1))
1312rspcev 3561 . . . . 5 ((𝐴 ∈ ℋ ∧ (norm𝐴) ≤ 1) → ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ (norm‘(𝑇𝐴)) = (norm‘(𝑇𝑦))))
14 fvex 6787 . . . . . 6 (norm‘(𝑇𝐴)) ∈ V
15 eqeq1 2742 . . . . . . . 8 (𝑥 = (norm‘(𝑇𝐴)) → (𝑥 = (norm‘(𝑇𝑦)) ↔ (norm‘(𝑇𝐴)) = (norm‘(𝑇𝑦))))
1615anbi2d 629 . . . . . . 7 (𝑥 = (norm‘(𝑇𝐴)) → (((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦))) ↔ ((norm𝑦) ≤ 1 ∧ (norm‘(𝑇𝐴)) = (norm‘(𝑇𝑦)))))
1716rexbidv 3226 . . . . . 6 (𝑥 = (norm‘(𝑇𝐴)) → (∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦))) ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ (norm‘(𝑇𝐴)) = (norm‘(𝑇𝑦)))))
1814, 17elab 3609 . . . . 5 ((norm‘(𝑇𝐴)) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))} ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ (norm‘(𝑇𝐴)) = (norm‘(𝑇𝑦))))
1913, 18sylibr 233 . . . 4 ((𝐴 ∈ ℋ ∧ (norm𝐴) ≤ 1) → (norm‘(𝑇𝐴)) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))})
20193adant1 1129 . . 3 ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℋ ∧ (norm𝐴) ≤ 1) → (norm‘(𝑇𝐴)) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))})
21 supxrub 13058 . . 3 (({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))} ⊆ ℝ* ∧ (norm‘(𝑇𝐴)) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))}) → (norm‘(𝑇𝐴)) ≤ sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))}, ℝ*, < ))
224, 20, 21syl2anc 584 . 2 ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℋ ∧ (norm𝐴) ≤ 1) → (norm‘(𝑇𝐴)) ≤ sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))}, ℝ*, < ))
23 nmopval 30218 . . 3 (𝑇: ℋ⟶ ℋ → (normop𝑇) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))}, ℝ*, < ))
24233ad2ant1 1132 . 2 ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℋ ∧ (norm𝐴) ≤ 1) → (normop𝑇) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))}, ℝ*, < ))
2522, 24breqtrrd 5102 1 ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℋ ∧ (norm𝐴) ≤ 1) → (norm‘(𝑇𝐴)) ≤ (normop𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  {cab 2715  wrex 3065  wss 3887   class class class wbr 5074  wf 6429  cfv 6433  supcsup 9199  cr 10870  1c1 10872  *cxr 11008   < clt 11009  cle 11010  chba 29281  normcno 29285  normopcnop 29307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-hilex 29361  ax-hfvadd 29362  ax-hvcom 29363  ax-hvass 29364  ax-hv0cl 29365  ax-hvaddid 29366  ax-hfvmul 29367  ax-hvmulid 29368  ax-hvmulass 29369  ax-hvdistr1 29370  ax-hvdistr2 29371  ax-hvmul0 29372  ax-hfi 29441  ax-his1 29444  ax-his2 29445  ax-his3 29446  ax-his4 29447
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-grpo 28855  df-gid 28856  df-ablo 28907  df-vc 28921  df-nv 28954  df-va 28957  df-ba 28958  df-sm 28959  df-0v 28960  df-nmcv 28962  df-hnorm 29330  df-hba 29331  df-hvsub 29333  df-nmop 30201
This theorem is referenced by:  nmopge0  30273  nmbdoplbi  30386  nmcoplbi  30390  nmophmi  30393  nmoptrii  30456  nmopcoi  30457
  Copyright terms: Public domain W3C validator