HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmoplb Structured version   Visualization version   GIF version

Theorem nmoplb 29690
Description: A lower bound for an operator norm. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
nmoplb ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℋ ∧ (norm𝐴) ≤ 1) → (norm‘(𝑇𝐴)) ≤ (normop𝑇))

Proof of Theorem nmoplb
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmopsetretHIL 29647 . . . . 5 (𝑇: ℋ⟶ ℋ → {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))} ⊆ ℝ)
2 ressxr 10674 . . . . 5 ℝ ⊆ ℝ*
31, 2sstrdi 3927 . . . 4 (𝑇: ℋ⟶ ℋ → {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))} ⊆ ℝ*)
433ad2ant1 1130 . . 3 ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℋ ∧ (norm𝐴) ≤ 1) → {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))} ⊆ ℝ*)
5 fveq2 6645 . . . . . . . . 9 (𝑦 = 𝐴 → (norm𝑦) = (norm𝐴))
65breq1d 5040 . . . . . . . 8 (𝑦 = 𝐴 → ((norm𝑦) ≤ 1 ↔ (norm𝐴) ≤ 1))
7 2fveq3 6650 . . . . . . . . 9 (𝑦 = 𝐴 → (norm‘(𝑇𝑦)) = (norm‘(𝑇𝐴)))
87eqeq2d 2809 . . . . . . . 8 (𝑦 = 𝐴 → ((norm‘(𝑇𝐴)) = (norm‘(𝑇𝑦)) ↔ (norm‘(𝑇𝐴)) = (norm‘(𝑇𝐴))))
96, 8anbi12d 633 . . . . . . 7 (𝑦 = 𝐴 → (((norm𝑦) ≤ 1 ∧ (norm‘(𝑇𝐴)) = (norm‘(𝑇𝑦))) ↔ ((norm𝐴) ≤ 1 ∧ (norm‘(𝑇𝐴)) = (norm‘(𝑇𝐴)))))
10 eqid 2798 . . . . . . . 8 (norm‘(𝑇𝐴)) = (norm‘(𝑇𝐴))
1110biantru 533 . . . . . . 7 ((norm𝐴) ≤ 1 ↔ ((norm𝐴) ≤ 1 ∧ (norm‘(𝑇𝐴)) = (norm‘(𝑇𝐴))))
129, 11syl6bbr 292 . . . . . 6 (𝑦 = 𝐴 → (((norm𝑦) ≤ 1 ∧ (norm‘(𝑇𝐴)) = (norm‘(𝑇𝑦))) ↔ (norm𝐴) ≤ 1))
1312rspcev 3571 . . . . 5 ((𝐴 ∈ ℋ ∧ (norm𝐴) ≤ 1) → ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ (norm‘(𝑇𝐴)) = (norm‘(𝑇𝑦))))
14 fvex 6658 . . . . . 6 (norm‘(𝑇𝐴)) ∈ V
15 eqeq1 2802 . . . . . . . 8 (𝑥 = (norm‘(𝑇𝐴)) → (𝑥 = (norm‘(𝑇𝑦)) ↔ (norm‘(𝑇𝐴)) = (norm‘(𝑇𝑦))))
1615anbi2d 631 . . . . . . 7 (𝑥 = (norm‘(𝑇𝐴)) → (((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦))) ↔ ((norm𝑦) ≤ 1 ∧ (norm‘(𝑇𝐴)) = (norm‘(𝑇𝑦)))))
1716rexbidv 3256 . . . . . 6 (𝑥 = (norm‘(𝑇𝐴)) → (∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦))) ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ (norm‘(𝑇𝐴)) = (norm‘(𝑇𝑦)))))
1814, 17elab 3615 . . . . 5 ((norm‘(𝑇𝐴)) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))} ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ (norm‘(𝑇𝐴)) = (norm‘(𝑇𝑦))))
1913, 18sylibr 237 . . . 4 ((𝐴 ∈ ℋ ∧ (norm𝐴) ≤ 1) → (norm‘(𝑇𝐴)) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))})
20193adant1 1127 . . 3 ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℋ ∧ (norm𝐴) ≤ 1) → (norm‘(𝑇𝐴)) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))})
21 supxrub 12705 . . 3 (({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))} ⊆ ℝ* ∧ (norm‘(𝑇𝐴)) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))}) → (norm‘(𝑇𝐴)) ≤ sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))}, ℝ*, < ))
224, 20, 21syl2anc 587 . 2 ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℋ ∧ (norm𝐴) ≤ 1) → (norm‘(𝑇𝐴)) ≤ sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))}, ℝ*, < ))
23 nmopval 29639 . . 3 (𝑇: ℋ⟶ ℋ → (normop𝑇) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))}, ℝ*, < ))
24233ad2ant1 1130 . 2 ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℋ ∧ (norm𝐴) ≤ 1) → (normop𝑇) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘(𝑇𝑦)))}, ℝ*, < ))
2522, 24breqtrrd 5058 1 ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℋ ∧ (norm𝐴) ≤ 1) → (norm‘(𝑇𝐴)) ≤ (normop𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  {cab 2776  wrex 3107  wss 3881   class class class wbr 5030  wf 6320  cfv 6324  supcsup 8888  cr 10525  1c1 10527  *cxr 10663   < clt 10664  cle 10665  chba 28702  normcno 28706  normopcnop 28728
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-hilex 28782  ax-hfvadd 28783  ax-hvcom 28784  ax-hvass 28785  ax-hv0cl 28786  ax-hvaddid 28787  ax-hfvmul 28788  ax-hvmulid 28789  ax-hvmulass 28790  ax-hvdistr1 28791  ax-hvdistr2 28792  ax-hvmul0 28793  ax-hfi 28862  ax-his1 28865  ax-his2 28866  ax-his3 28867  ax-his4 28868
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-grpo 28276  df-gid 28277  df-ablo 28328  df-vc 28342  df-nv 28375  df-va 28378  df-ba 28379  df-sm 28380  df-0v 28381  df-nmcv 28383  df-hnorm 28751  df-hba 28752  df-hvsub 28754  df-nmop 29622
This theorem is referenced by:  nmopge0  29694  nmbdoplbi  29807  nmcoplbi  29811  nmophmi  29814  nmoptrii  29877  nmopcoi  29878
  Copyright terms: Public domain W3C validator