| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnmcl | Structured version Visualization version GIF version | ||
| Description: Closure of multiplication of natural numbers. Proposition 8.17 of [TakeutiZaring] p. 63. Theorem 2.20 of [Schloeder] p. 6. (Contributed by NM, 20-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| Ref | Expression |
|---|---|
| nnmcl | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o 𝐵) ∈ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7377 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝐴 ·o 𝑥) = (𝐴 ·o 𝐵)) | |
| 2 | 1 | eleq1d 2813 | . . . 4 ⊢ (𝑥 = 𝐵 → ((𝐴 ·o 𝑥) ∈ ω ↔ (𝐴 ·o 𝐵) ∈ ω)) |
| 3 | 2 | imbi2d 340 | . . 3 ⊢ (𝑥 = 𝐵 → ((𝐴 ∈ ω → (𝐴 ·o 𝑥) ∈ ω) ↔ (𝐴 ∈ ω → (𝐴 ·o 𝐵) ∈ ω))) |
| 4 | oveq2 7377 | . . . . 5 ⊢ (𝑥 = ∅ → (𝐴 ·o 𝑥) = (𝐴 ·o ∅)) | |
| 5 | 4 | eleq1d 2813 | . . . 4 ⊢ (𝑥 = ∅ → ((𝐴 ·o 𝑥) ∈ ω ↔ (𝐴 ·o ∅) ∈ ω)) |
| 6 | oveq2 7377 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝐴 ·o 𝑥) = (𝐴 ·o 𝑦)) | |
| 7 | 6 | eleq1d 2813 | . . . 4 ⊢ (𝑥 = 𝑦 → ((𝐴 ·o 𝑥) ∈ ω ↔ (𝐴 ·o 𝑦) ∈ ω)) |
| 8 | oveq2 7377 | . . . . 5 ⊢ (𝑥 = suc 𝑦 → (𝐴 ·o 𝑥) = (𝐴 ·o suc 𝑦)) | |
| 9 | 8 | eleq1d 2813 | . . . 4 ⊢ (𝑥 = suc 𝑦 → ((𝐴 ·o 𝑥) ∈ ω ↔ (𝐴 ·o suc 𝑦) ∈ ω)) |
| 10 | nnm0 8546 | . . . . 5 ⊢ (𝐴 ∈ ω → (𝐴 ·o ∅) = ∅) | |
| 11 | peano1 7845 | . . . . 5 ⊢ ∅ ∈ ω | |
| 12 | 10, 11 | eqeltrdi 2836 | . . . 4 ⊢ (𝐴 ∈ ω → (𝐴 ·o ∅) ∈ ω) |
| 13 | nnacl 8552 | . . . . . . . 8 ⊢ (((𝐴 ·o 𝑦) ∈ ω ∧ 𝐴 ∈ ω) → ((𝐴 ·o 𝑦) +o 𝐴) ∈ ω) | |
| 14 | 13 | expcom 413 | . . . . . . 7 ⊢ (𝐴 ∈ ω → ((𝐴 ·o 𝑦) ∈ ω → ((𝐴 ·o 𝑦) +o 𝐴) ∈ ω)) |
| 15 | 14 | adantr 480 | . . . . . 6 ⊢ ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ·o 𝑦) ∈ ω → ((𝐴 ·o 𝑦) +o 𝐴) ∈ ω)) |
| 16 | nnmsuc 8548 | . . . . . . 7 ⊢ ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 ·o suc 𝑦) = ((𝐴 ·o 𝑦) +o 𝐴)) | |
| 17 | 16 | eleq1d 2813 | . . . . . 6 ⊢ ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ·o suc 𝑦) ∈ ω ↔ ((𝐴 ·o 𝑦) +o 𝐴) ∈ ω)) |
| 18 | 15, 17 | sylibrd 259 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ·o 𝑦) ∈ ω → (𝐴 ·o suc 𝑦) ∈ ω)) |
| 19 | 18 | expcom 413 | . . . 4 ⊢ (𝑦 ∈ ω → (𝐴 ∈ ω → ((𝐴 ·o 𝑦) ∈ ω → (𝐴 ·o suc 𝑦) ∈ ω))) |
| 20 | 5, 7, 9, 12, 19 | finds2 7854 | . . 3 ⊢ (𝑥 ∈ ω → (𝐴 ∈ ω → (𝐴 ·o 𝑥) ∈ ω)) |
| 21 | 3, 20 | vtoclga 3540 | . 2 ⊢ (𝐵 ∈ ω → (𝐴 ∈ ω → (𝐴 ·o 𝐵) ∈ ω)) |
| 22 | 21 | impcom 407 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o 𝐵) ∈ ω) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∅c0 4292 suc csuc 6322 (class class class)co 7369 ωcom 7822 +o coa 8408 ·o comu 8409 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-oadd 8415 df-omul 8416 |
| This theorem is referenced by: nnecl 8554 nnmcli 8556 nndi 8564 nnmass 8565 nnmsucr 8566 nnmordi 8572 nnmord 8573 nnmword 8574 omabslem 8591 nnneo 8596 nneob 8597 fin1a2lem4 10332 mulclpi 10822 nnamecl 43249 |
| Copyright terms: Public domain | W3C validator |