MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnmcl Structured version   Visualization version   GIF version

Theorem nnmcl 8553
Description: Closure of multiplication of natural numbers. Proposition 8.17 of [TakeutiZaring] p. 63. Theorem 2.20 of [Schloeder] p. 6. (Contributed by NM, 20-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
nnmcl ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o 𝐵) ∈ ω)

Proof of Theorem nnmcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7377 . . . . 5 (𝑥 = 𝐵 → (𝐴 ·o 𝑥) = (𝐴 ·o 𝐵))
21eleq1d 2813 . . . 4 (𝑥 = 𝐵 → ((𝐴 ·o 𝑥) ∈ ω ↔ (𝐴 ·o 𝐵) ∈ ω))
32imbi2d 340 . . 3 (𝑥 = 𝐵 → ((𝐴 ∈ ω → (𝐴 ·o 𝑥) ∈ ω) ↔ (𝐴 ∈ ω → (𝐴 ·o 𝐵) ∈ ω)))
4 oveq2 7377 . . . . 5 (𝑥 = ∅ → (𝐴 ·o 𝑥) = (𝐴 ·o ∅))
54eleq1d 2813 . . . 4 (𝑥 = ∅ → ((𝐴 ·o 𝑥) ∈ ω ↔ (𝐴 ·o ∅) ∈ ω))
6 oveq2 7377 . . . . 5 (𝑥 = 𝑦 → (𝐴 ·o 𝑥) = (𝐴 ·o 𝑦))
76eleq1d 2813 . . . 4 (𝑥 = 𝑦 → ((𝐴 ·o 𝑥) ∈ ω ↔ (𝐴 ·o 𝑦) ∈ ω))
8 oveq2 7377 . . . . 5 (𝑥 = suc 𝑦 → (𝐴 ·o 𝑥) = (𝐴 ·o suc 𝑦))
98eleq1d 2813 . . . 4 (𝑥 = suc 𝑦 → ((𝐴 ·o 𝑥) ∈ ω ↔ (𝐴 ·o suc 𝑦) ∈ ω))
10 nnm0 8546 . . . . 5 (𝐴 ∈ ω → (𝐴 ·o ∅) = ∅)
11 peano1 7845 . . . . 5 ∅ ∈ ω
1210, 11eqeltrdi 2836 . . . 4 (𝐴 ∈ ω → (𝐴 ·o ∅) ∈ ω)
13 nnacl 8552 . . . . . . . 8 (((𝐴 ·o 𝑦) ∈ ω ∧ 𝐴 ∈ ω) → ((𝐴 ·o 𝑦) +o 𝐴) ∈ ω)
1413expcom 413 . . . . . . 7 (𝐴 ∈ ω → ((𝐴 ·o 𝑦) ∈ ω → ((𝐴 ·o 𝑦) +o 𝐴) ∈ ω))
1514adantr 480 . . . . . 6 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ·o 𝑦) ∈ ω → ((𝐴 ·o 𝑦) +o 𝐴) ∈ ω))
16 nnmsuc 8548 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 ·o suc 𝑦) = ((𝐴 ·o 𝑦) +o 𝐴))
1716eleq1d 2813 . . . . . 6 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ·o suc 𝑦) ∈ ω ↔ ((𝐴 ·o 𝑦) +o 𝐴) ∈ ω))
1815, 17sylibrd 259 . . . . 5 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ·o 𝑦) ∈ ω → (𝐴 ·o suc 𝑦) ∈ ω))
1918expcom 413 . . . 4 (𝑦 ∈ ω → (𝐴 ∈ ω → ((𝐴 ·o 𝑦) ∈ ω → (𝐴 ·o suc 𝑦) ∈ ω)))
205, 7, 9, 12, 19finds2 7854 . . 3 (𝑥 ∈ ω → (𝐴 ∈ ω → (𝐴 ·o 𝑥) ∈ ω))
213, 20vtoclga 3540 . 2 (𝐵 ∈ ω → (𝐴 ∈ ω → (𝐴 ·o 𝐵) ∈ ω))
2221impcom 407 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o 𝐵) ∈ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  c0 4292  suc csuc 6322  (class class class)co 7369  ωcom 7822   +o coa 8408   ·o comu 8409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-oadd 8415  df-omul 8416
This theorem is referenced by:  nnecl  8554  nnmcli  8556  nndi  8564  nnmass  8565  nnmsucr  8566  nnmordi  8572  nnmord  8573  nnmword  8574  omabslem  8591  nnneo  8596  nneob  8597  fin1a2lem4  10332  mulclpi  10822  nnamecl  43249
  Copyright terms: Public domain W3C validator