MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnmcl Structured version   Visualization version   GIF version

Theorem nnmcl 8527
Description: Closure of multiplication of natural numbers. Proposition 8.17 of [TakeutiZaring] p. 63. Theorem 2.20 of [Schloeder] p. 6. (Contributed by NM, 20-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
nnmcl ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o 𝐵) ∈ ω)

Proof of Theorem nnmcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7354 . . . . 5 (𝑥 = 𝐵 → (𝐴 ·o 𝑥) = (𝐴 ·o 𝐵))
21eleq1d 2816 . . . 4 (𝑥 = 𝐵 → ((𝐴 ·o 𝑥) ∈ ω ↔ (𝐴 ·o 𝐵) ∈ ω))
32imbi2d 340 . . 3 (𝑥 = 𝐵 → ((𝐴 ∈ ω → (𝐴 ·o 𝑥) ∈ ω) ↔ (𝐴 ∈ ω → (𝐴 ·o 𝐵) ∈ ω)))
4 oveq2 7354 . . . . 5 (𝑥 = ∅ → (𝐴 ·o 𝑥) = (𝐴 ·o ∅))
54eleq1d 2816 . . . 4 (𝑥 = ∅ → ((𝐴 ·o 𝑥) ∈ ω ↔ (𝐴 ·o ∅) ∈ ω))
6 oveq2 7354 . . . . 5 (𝑥 = 𝑦 → (𝐴 ·o 𝑥) = (𝐴 ·o 𝑦))
76eleq1d 2816 . . . 4 (𝑥 = 𝑦 → ((𝐴 ·o 𝑥) ∈ ω ↔ (𝐴 ·o 𝑦) ∈ ω))
8 oveq2 7354 . . . . 5 (𝑥 = suc 𝑦 → (𝐴 ·o 𝑥) = (𝐴 ·o suc 𝑦))
98eleq1d 2816 . . . 4 (𝑥 = suc 𝑦 → ((𝐴 ·o 𝑥) ∈ ω ↔ (𝐴 ·o suc 𝑦) ∈ ω))
10 nnm0 8520 . . . . 5 (𝐴 ∈ ω → (𝐴 ·o ∅) = ∅)
11 peano1 7819 . . . . 5 ∅ ∈ ω
1210, 11eqeltrdi 2839 . . . 4 (𝐴 ∈ ω → (𝐴 ·o ∅) ∈ ω)
13 nnacl 8526 . . . . . . . 8 (((𝐴 ·o 𝑦) ∈ ω ∧ 𝐴 ∈ ω) → ((𝐴 ·o 𝑦) +o 𝐴) ∈ ω)
1413expcom 413 . . . . . . 7 (𝐴 ∈ ω → ((𝐴 ·o 𝑦) ∈ ω → ((𝐴 ·o 𝑦) +o 𝐴) ∈ ω))
1514adantr 480 . . . . . 6 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ·o 𝑦) ∈ ω → ((𝐴 ·o 𝑦) +o 𝐴) ∈ ω))
16 nnmsuc 8522 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 ·o suc 𝑦) = ((𝐴 ·o 𝑦) +o 𝐴))
1716eleq1d 2816 . . . . . 6 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ·o suc 𝑦) ∈ ω ↔ ((𝐴 ·o 𝑦) +o 𝐴) ∈ ω))
1815, 17sylibrd 259 . . . . 5 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ·o 𝑦) ∈ ω → (𝐴 ·o suc 𝑦) ∈ ω))
1918expcom 413 . . . 4 (𝑦 ∈ ω → (𝐴 ∈ ω → ((𝐴 ·o 𝑦) ∈ ω → (𝐴 ·o suc 𝑦) ∈ ω)))
205, 7, 9, 12, 19finds2 7828 . . 3 (𝑥 ∈ ω → (𝐴 ∈ ω → (𝐴 ·o 𝑥) ∈ ω))
213, 20vtoclga 3528 . 2 (𝐵 ∈ ω → (𝐴 ∈ ω → (𝐴 ·o 𝐵) ∈ ω))
2221impcom 407 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o 𝐵) ∈ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  c0 4280  suc csuc 6308  (class class class)co 7346  ωcom 7796   +o coa 8382   ·o comu 8383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-oadd 8389  df-omul 8390
This theorem is referenced by:  nnecl  8528  nnmcli  8530  nndi  8538  nnmass  8539  nnmsucr  8540  nnmordi  8546  nnmord  8547  nnmword  8548  omabslem  8565  nnneo  8570  nneob  8571  fin1a2lem4  10294  mulclpi  10784  nnamecl  43328
  Copyright terms: Public domain W3C validator