![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nnmcl | Structured version Visualization version GIF version |
Description: Closure of multiplication of natural numbers. Proposition 8.17 of [TakeutiZaring] p. 63. Theorem 2.20 of [Schloeder] p. 6. (Contributed by NM, 20-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
Ref | Expression |
---|---|
nnmcl | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o 𝐵) ∈ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7365 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝐴 ·o 𝑥) = (𝐴 ·o 𝐵)) | |
2 | 1 | eleq1d 2822 | . . . 4 ⊢ (𝑥 = 𝐵 → ((𝐴 ·o 𝑥) ∈ ω ↔ (𝐴 ·o 𝐵) ∈ ω)) |
3 | 2 | imbi2d 340 | . . 3 ⊢ (𝑥 = 𝐵 → ((𝐴 ∈ ω → (𝐴 ·o 𝑥) ∈ ω) ↔ (𝐴 ∈ ω → (𝐴 ·o 𝐵) ∈ ω))) |
4 | oveq2 7365 | . . . . 5 ⊢ (𝑥 = ∅ → (𝐴 ·o 𝑥) = (𝐴 ·o ∅)) | |
5 | 4 | eleq1d 2822 | . . . 4 ⊢ (𝑥 = ∅ → ((𝐴 ·o 𝑥) ∈ ω ↔ (𝐴 ·o ∅) ∈ ω)) |
6 | oveq2 7365 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝐴 ·o 𝑥) = (𝐴 ·o 𝑦)) | |
7 | 6 | eleq1d 2822 | . . . 4 ⊢ (𝑥 = 𝑦 → ((𝐴 ·o 𝑥) ∈ ω ↔ (𝐴 ·o 𝑦) ∈ ω)) |
8 | oveq2 7365 | . . . . 5 ⊢ (𝑥 = suc 𝑦 → (𝐴 ·o 𝑥) = (𝐴 ·o suc 𝑦)) | |
9 | 8 | eleq1d 2822 | . . . 4 ⊢ (𝑥 = suc 𝑦 → ((𝐴 ·o 𝑥) ∈ ω ↔ (𝐴 ·o suc 𝑦) ∈ ω)) |
10 | nnm0 8552 | . . . . 5 ⊢ (𝐴 ∈ ω → (𝐴 ·o ∅) = ∅) | |
11 | peano1 7825 | . . . . 5 ⊢ ∅ ∈ ω | |
12 | 10, 11 | eqeltrdi 2846 | . . . 4 ⊢ (𝐴 ∈ ω → (𝐴 ·o ∅) ∈ ω) |
13 | nnacl 8558 | . . . . . . . 8 ⊢ (((𝐴 ·o 𝑦) ∈ ω ∧ 𝐴 ∈ ω) → ((𝐴 ·o 𝑦) +o 𝐴) ∈ ω) | |
14 | 13 | expcom 414 | . . . . . . 7 ⊢ (𝐴 ∈ ω → ((𝐴 ·o 𝑦) ∈ ω → ((𝐴 ·o 𝑦) +o 𝐴) ∈ ω)) |
15 | 14 | adantr 481 | . . . . . 6 ⊢ ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ·o 𝑦) ∈ ω → ((𝐴 ·o 𝑦) +o 𝐴) ∈ ω)) |
16 | nnmsuc 8554 | . . . . . . 7 ⊢ ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 ·o suc 𝑦) = ((𝐴 ·o 𝑦) +o 𝐴)) | |
17 | 16 | eleq1d 2822 | . . . . . 6 ⊢ ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ·o suc 𝑦) ∈ ω ↔ ((𝐴 ·o 𝑦) +o 𝐴) ∈ ω)) |
18 | 15, 17 | sylibrd 258 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ·o 𝑦) ∈ ω → (𝐴 ·o suc 𝑦) ∈ ω)) |
19 | 18 | expcom 414 | . . . 4 ⊢ (𝑦 ∈ ω → (𝐴 ∈ ω → ((𝐴 ·o 𝑦) ∈ ω → (𝐴 ·o suc 𝑦) ∈ ω))) |
20 | 5, 7, 9, 12, 19 | finds2 7837 | . . 3 ⊢ (𝑥 ∈ ω → (𝐴 ∈ ω → (𝐴 ·o 𝑥) ∈ ω)) |
21 | 3, 20 | vtoclga 3534 | . 2 ⊢ (𝐵 ∈ ω → (𝐴 ∈ ω → (𝐴 ·o 𝐵) ∈ ω)) |
22 | 21 | impcom 408 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o 𝐵) ∈ ω) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∅c0 4282 suc csuc 6319 (class class class)co 7357 ωcom 7802 +o coa 8409 ·o comu 8410 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-sep 5256 ax-nul 5263 ax-pr 5384 ax-un 7672 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-ral 3065 df-rex 3074 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-2nd 7922 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-oadd 8416 df-omul 8417 |
This theorem is referenced by: nnecl 8560 nnmcli 8562 nndi 8570 nnmass 8571 nnmsucr 8572 nnmordi 8578 nnmord 8579 nnmword 8580 omabslem 8596 nnneo 8601 nneob 8602 fin1a2lem4 10339 mulclpi 10829 nnamecl 41608 |
Copyright terms: Public domain | W3C validator |