Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > o2p2e4OLD | Structured version Visualization version GIF version |
Description: Obsolete version of o2p2e4 8333 as of 23-Mar-2024. (Contributed by NM, 18-Aug-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
o2p2e4OLD | ⊢ (2o +o 2o) = 4o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2on 8275 | . . . 4 ⊢ 2o ∈ On | |
2 | 1on 8274 | . . . 4 ⊢ 1o ∈ On | |
3 | oasuc 8316 | . . . 4 ⊢ ((2o ∈ On ∧ 1o ∈ On) → (2o +o suc 1o) = suc (2o +o 1o)) | |
4 | 1, 2, 3 | mp2an 688 | . . 3 ⊢ (2o +o suc 1o) = suc (2o +o 1o) |
5 | df-2o 8268 | . . . 4 ⊢ 2o = suc 1o | |
6 | 5 | oveq2i 7266 | . . 3 ⊢ (2o +o 2o) = (2o +o suc 1o) |
7 | df-3o 8269 | . . . . 5 ⊢ 3o = suc 2o | |
8 | oa1suc 8323 | . . . . . 6 ⊢ (2o ∈ On → (2o +o 1o) = suc 2o) | |
9 | 1, 8 | ax-mp 5 | . . . . 5 ⊢ (2o +o 1o) = suc 2o |
10 | 7, 9 | eqtr4i 2769 | . . . 4 ⊢ 3o = (2o +o 1o) |
11 | suceq 6316 | . . . 4 ⊢ (3o = (2o +o 1o) → suc 3o = suc (2o +o 1o)) | |
12 | 10, 11 | ax-mp 5 | . . 3 ⊢ suc 3o = suc (2o +o 1o) |
13 | 4, 6, 12 | 3eqtr4i 2776 | . 2 ⊢ (2o +o 2o) = suc 3o |
14 | df-4o 8270 | . 2 ⊢ 4o = suc 3o | |
15 | 13, 14 | eqtr4i 2769 | 1 ⊢ (2o +o 2o) = 4o |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 Oncon0 6251 suc csuc 6253 (class class class)co 7255 1oc1o 8260 2oc2o 8261 3oc3o 8262 4oc4o 8263 +o coa 8264 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-3o 8269 df-4o 8270 df-oadd 8271 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |