![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oaword2 | Structured version Visualization version GIF version |
Description: An ordinal is less than or equal to its sum with another. Theorem 21 of [Suppes] p. 209. Lemma 3.3 of [Schloeder] p. 7. (Contributed by NM, 7-Dec-2004.) |
Ref | Expression |
---|---|
oaword2 | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ⊆ (𝐵 +o 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 4393 | . . 3 ⊢ ∅ ⊆ 𝐵 | |
2 | 0elon 6418 | . . . . 5 ⊢ ∅ ∈ On | |
3 | oawordri 8565 | . . . . 5 ⊢ ((∅ ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On) → (∅ ⊆ 𝐵 → (∅ +o 𝐴) ⊆ (𝐵 +o 𝐴))) | |
4 | 2, 3 | mp3an1 1445 | . . . 4 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (∅ ⊆ 𝐵 → (∅ +o 𝐴) ⊆ (𝐵 +o 𝐴))) |
5 | oa0r 8553 | . . . . . 6 ⊢ (𝐴 ∈ On → (∅ +o 𝐴) = 𝐴) | |
6 | 5 | adantl 481 | . . . . 5 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (∅ +o 𝐴) = 𝐴) |
7 | 6 | sseq1d 4010 | . . . 4 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On) → ((∅ +o 𝐴) ⊆ (𝐵 +o 𝐴) ↔ 𝐴 ⊆ (𝐵 +o 𝐴))) |
8 | 4, 7 | sylibd 238 | . . 3 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (∅ ⊆ 𝐵 → 𝐴 ⊆ (𝐵 +o 𝐴))) |
9 | 1, 8 | mpi 20 | . 2 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On) → 𝐴 ⊆ (𝐵 +o 𝐴)) |
10 | 9 | ancoms 458 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ⊆ (𝐵 +o 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ⊆ wss 3945 ∅c0 4319 Oncon0 6364 (class class class)co 7415 +o coa 8478 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pr 5424 ax-un 7735 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-iun 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7866 df-2nd 7989 df-frecs 8281 df-wrecs 8312 df-recs 8386 df-rdg 8425 df-oadd 8485 |
This theorem is referenced by: oawordeulem 8569 nnarcl 8631 oaabslem 8662 oaabs2 8664 cantnfle 9689 oasubex 42706 naddwordnexlem4 42822 |
Copyright terms: Public domain | W3C validator |