![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oaword2 | Structured version Visualization version GIF version |
Description: An ordinal is less than or equal to its sum with another. Theorem 21 of [Suppes] p. 209. Lemma 3.3 of [Schloeder] p. 7. (Contributed by NM, 7-Dec-2004.) |
Ref | Expression |
---|---|
oaword2 | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ⊆ (𝐵 +o 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 4398 | . . 3 ⊢ ∅ ⊆ 𝐵 | |
2 | 0elon 6425 | . . . . 5 ⊢ ∅ ∈ On | |
3 | oawordri 8571 | . . . . 5 ⊢ ((∅ ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On) → (∅ ⊆ 𝐵 → (∅ +o 𝐴) ⊆ (𝐵 +o 𝐴))) | |
4 | 2, 3 | mp3an1 1444 | . . . 4 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (∅ ⊆ 𝐵 → (∅ +o 𝐴) ⊆ (𝐵 +o 𝐴))) |
5 | oa0r 8559 | . . . . . 6 ⊢ (𝐴 ∈ On → (∅ +o 𝐴) = 𝐴) | |
6 | 5 | adantl 480 | . . . . 5 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (∅ +o 𝐴) = 𝐴) |
7 | 6 | sseq1d 4008 | . . . 4 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On) → ((∅ +o 𝐴) ⊆ (𝐵 +o 𝐴) ↔ 𝐴 ⊆ (𝐵 +o 𝐴))) |
8 | 4, 7 | sylibd 238 | . . 3 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (∅ ⊆ 𝐵 → 𝐴 ⊆ (𝐵 +o 𝐴))) |
9 | 1, 8 | mpi 20 | . 2 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On) → 𝐴 ⊆ (𝐵 +o 𝐴)) |
10 | 9 | ancoms 457 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ⊆ (𝐵 +o 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ⊆ wss 3944 ∅c0 4322 Oncon0 6371 (class class class)co 7419 +o coa 8484 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pr 5429 ax-un 7741 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-oadd 8491 |
This theorem is referenced by: oawordeulem 8575 nnarcl 8637 oaabslem 8668 oaabs2 8670 cantnfle 9696 oasubex 42857 naddwordnexlem4 42973 |
Copyright terms: Public domain | W3C validator |