![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oaword2 | Structured version Visualization version GIF version |
Description: An ordinal is less than or equal to its sum with another. Theorem 21 of [Suppes] p. 209. Lemma 3.3 of [Schloeder] p. 7. (Contributed by NM, 7-Dec-2004.) |
Ref | Expression |
---|---|
oaword2 | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ⊆ (𝐵 +o 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 4360 | . . 3 ⊢ ∅ ⊆ 𝐵 | |
2 | 0elon 6375 | . . . . 5 ⊢ ∅ ∈ On | |
3 | oawordri 8501 | . . . . 5 ⊢ ((∅ ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On) → (∅ ⊆ 𝐵 → (∅ +o 𝐴) ⊆ (𝐵 +o 𝐴))) | |
4 | 2, 3 | mp3an1 1449 | . . . 4 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (∅ ⊆ 𝐵 → (∅ +o 𝐴) ⊆ (𝐵 +o 𝐴))) |
5 | oa0r 8488 | . . . . . 6 ⊢ (𝐴 ∈ On → (∅ +o 𝐴) = 𝐴) | |
6 | 5 | adantl 483 | . . . . 5 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (∅ +o 𝐴) = 𝐴) |
7 | 6 | sseq1d 3979 | . . . 4 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On) → ((∅ +o 𝐴) ⊆ (𝐵 +o 𝐴) ↔ 𝐴 ⊆ (𝐵 +o 𝐴))) |
8 | 4, 7 | sylibd 238 | . . 3 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (∅ ⊆ 𝐵 → 𝐴 ⊆ (𝐵 +o 𝐴))) |
9 | 1, 8 | mpi 20 | . 2 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On) → 𝐴 ⊆ (𝐵 +o 𝐴)) |
10 | 9 | ancoms 460 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ⊆ (𝐵 +o 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ⊆ wss 3914 ∅c0 4286 Oncon0 6321 (class class class)co 7361 +o coa 8413 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5246 ax-sep 5260 ax-nul 5267 ax-pr 5388 ax-un 7676 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3353 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3933 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-iun 4960 df-br 5110 df-opab 5172 df-mpt 5193 df-tr 5227 df-id 5535 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5592 df-we 5594 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-pred 6257 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-ov 7364 df-oprab 7365 df-mpo 7366 df-om 7807 df-2nd 7926 df-frecs 8216 df-wrecs 8247 df-recs 8321 df-rdg 8360 df-oadd 8420 |
This theorem is referenced by: oawordeulem 8505 nnarcl 8567 oaabslem 8597 oaabs2 8599 cantnfle 9615 oasubex 41668 naddwordnexlem4 41765 |
Copyright terms: Public domain | W3C validator |