MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oaword2 Structured version   Visualization version   GIF version

Theorem oaword2 8447
Description: An ordinal is less than or equal to its sum with another. Theorem 21 of [Suppes] p. 209. (Contributed by NM, 7-Dec-2004.)
Assertion
Ref Expression
oaword2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ⊆ (𝐵 +o 𝐴))

Proof of Theorem oaword2
StepHypRef Expression
1 0ss 4342 . . 3 ∅ ⊆ 𝐵
2 0elon 6349 . . . . 5 ∅ ∈ On
3 oawordri 8444 . . . . 5 ((∅ ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On) → (∅ ⊆ 𝐵 → (∅ +o 𝐴) ⊆ (𝐵 +o 𝐴)))
42, 3mp3an1 1447 . . . 4 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (∅ ⊆ 𝐵 → (∅ +o 𝐴) ⊆ (𝐵 +o 𝐴)))
5 oa0r 8431 . . . . . 6 (𝐴 ∈ On → (∅ +o 𝐴) = 𝐴)
65adantl 482 . . . . 5 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (∅ +o 𝐴) = 𝐴)
76sseq1d 3962 . . . 4 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → ((∅ +o 𝐴) ⊆ (𝐵 +o 𝐴) ↔ 𝐴 ⊆ (𝐵 +o 𝐴)))
84, 7sylibd 238 . . 3 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (∅ ⊆ 𝐵𝐴 ⊆ (𝐵 +o 𝐴)))
91, 8mpi 20 . 2 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → 𝐴 ⊆ (𝐵 +o 𝐴))
109ancoms 459 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ⊆ (𝐵 +o 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wcel 2105  wss 3897  c0 4268  Oncon0 6296  (class class class)co 7329   +o coa 8356
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5226  ax-sep 5240  ax-nul 5247  ax-pr 5369  ax-un 7642
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-iun 4940  df-br 5090  df-opab 5152  df-mpt 5173  df-tr 5207  df-id 5512  df-eprel 5518  df-po 5526  df-so 5527  df-fr 5569  df-we 5571  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6232  df-ord 6299  df-on 6300  df-lim 6301  df-suc 6302  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-f1 6478  df-fo 6479  df-f1o 6480  df-fv 6481  df-ov 7332  df-oprab 7333  df-mpo 7334  df-om 7773  df-2nd 7892  df-frecs 8159  df-wrecs 8190  df-recs 8264  df-rdg 8303  df-oadd 8363
This theorem is referenced by:  oawordeulem  8448  nnarcl  8510  oaabslem  8540  oaabs2  8542  cantnfle  9520
  Copyright terms: Public domain W3C validator