MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oaword2 Structured version   Visualization version   GIF version

Theorem oaword2 8568
Description: An ordinal is less than or equal to its sum with another. Theorem 21 of [Suppes] p. 209. Lemma 3.3 of [Schloeder] p. 7. (Contributed by NM, 7-Dec-2004.)
Assertion
Ref Expression
oaword2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ⊆ (𝐵 +o 𝐴))

Proof of Theorem oaword2
StepHypRef Expression
1 0ss 4393 . . 3 ∅ ⊆ 𝐵
2 0elon 6418 . . . . 5 ∅ ∈ On
3 oawordri 8565 . . . . 5 ((∅ ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On) → (∅ ⊆ 𝐵 → (∅ +o 𝐴) ⊆ (𝐵 +o 𝐴)))
42, 3mp3an1 1445 . . . 4 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (∅ ⊆ 𝐵 → (∅ +o 𝐴) ⊆ (𝐵 +o 𝐴)))
5 oa0r 8553 . . . . . 6 (𝐴 ∈ On → (∅ +o 𝐴) = 𝐴)
65adantl 481 . . . . 5 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (∅ +o 𝐴) = 𝐴)
76sseq1d 4010 . . . 4 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → ((∅ +o 𝐴) ⊆ (𝐵 +o 𝐴) ↔ 𝐴 ⊆ (𝐵 +o 𝐴)))
84, 7sylibd 238 . . 3 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (∅ ⊆ 𝐵𝐴 ⊆ (𝐵 +o 𝐴)))
91, 8mpi 20 . 2 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → 𝐴 ⊆ (𝐵 +o 𝐴))
109ancoms 458 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ⊆ (𝐵 +o 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  wss 3945  c0 4319  Oncon0 6364  (class class class)co 7415   +o coa 8478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pr 5424  ax-un 7735
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-iun 4994  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7418  df-oprab 7419  df-mpo 7420  df-om 7866  df-2nd 7989  df-frecs 8281  df-wrecs 8312  df-recs 8386  df-rdg 8425  df-oadd 8485
This theorem is referenced by:  oawordeulem  8569  nnarcl  8631  oaabslem  8662  oaabs2  8664  cantnfle  9689  oasubex  42706  naddwordnexlem4  42822
  Copyright terms: Public domain W3C validator