![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oaword | Structured version Visualization version GIF version |
Description: Weak ordering property of ordinal addition. (Contributed by NM, 6-Dec-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
Ref | Expression |
---|---|
oaword | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ⊆ 𝐵 ↔ (𝐶 +o 𝐴) ⊆ (𝐶 +o 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oaord 7895 | . . . 4 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐵 ∈ 𝐴 ↔ (𝐶 +o 𝐵) ∈ (𝐶 +o 𝐴))) | |
2 | 1 | 3com12 1159 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 ∈ 𝐴 ↔ (𝐶 +o 𝐵) ∈ (𝐶 +o 𝐴))) |
3 | 2 | notbid 310 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (¬ 𝐵 ∈ 𝐴 ↔ ¬ (𝐶 +o 𝐵) ∈ (𝐶 +o 𝐴))) |
4 | ontri1 5998 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) | |
5 | 4 | 3adant3 1168 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) |
6 | oacl 7883 | . . . . 5 ⊢ ((𝐶 ∈ On ∧ 𝐴 ∈ On) → (𝐶 +o 𝐴) ∈ On) | |
7 | 6 | ancoms 452 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐶 +o 𝐴) ∈ On) |
8 | 7 | 3adant2 1167 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐶 +o 𝐴) ∈ On) |
9 | oacl 7883 | . . . . 5 ⊢ ((𝐶 ∈ On ∧ 𝐵 ∈ On) → (𝐶 +o 𝐵) ∈ On) | |
10 | 9 | ancoms 452 | . . . 4 ⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐶 +o 𝐵) ∈ On) |
11 | 10 | 3adant1 1166 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐶 +o 𝐵) ∈ On) |
12 | ontri1 5998 | . . 3 ⊢ (((𝐶 +o 𝐴) ∈ On ∧ (𝐶 +o 𝐵) ∈ On) → ((𝐶 +o 𝐴) ⊆ (𝐶 +o 𝐵) ↔ ¬ (𝐶 +o 𝐵) ∈ (𝐶 +o 𝐴))) | |
13 | 8, 11, 12 | syl2anc 581 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐶 +o 𝐴) ⊆ (𝐶 +o 𝐵) ↔ ¬ (𝐶 +o 𝐵) ∈ (𝐶 +o 𝐴))) |
14 | 3, 5, 13 | 3bitr4d 303 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ⊆ 𝐵 ↔ (𝐶 +o 𝐴) ⊆ (𝐶 +o 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ w3a 1113 ∈ wcel 2166 ⊆ wss 3799 Oncon0 5964 (class class class)co 6906 +o coa 7824 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 ax-rep 4995 ax-sep 5006 ax-nul 5014 ax-pow 5066 ax-pr 5128 ax-un 7210 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2606 df-eu 2641 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ne 3001 df-ral 3123 df-rex 3124 df-reu 3125 df-rab 3127 df-v 3417 df-sbc 3664 df-csb 3759 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-pss 3815 df-nul 4146 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4660 df-iun 4743 df-br 4875 df-opab 4937 df-mpt 4954 df-tr 4977 df-id 5251 df-eprel 5256 df-po 5264 df-so 5265 df-fr 5302 df-we 5304 df-xp 5349 df-rel 5350 df-cnv 5351 df-co 5352 df-dm 5353 df-rn 5354 df-res 5355 df-ima 5356 df-pred 5921 df-ord 5967 df-on 5968 df-lim 5969 df-suc 5970 df-iota 6087 df-fun 6126 df-fn 6127 df-f 6128 df-f1 6129 df-fo 6130 df-f1o 6131 df-fv 6132 df-ov 6909 df-oprab 6910 df-mpt2 6911 df-om 7328 df-wrecs 7673 df-recs 7735 df-rdg 7773 df-oadd 7831 |
This theorem is referenced by: oaword1 7900 oaass 7909 omwordri 7920 omlimcl 7926 oaabs2 7993 |
Copyright terms: Public domain | W3C validator |