MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oaword Structured version   Visualization version   GIF version

Theorem oaword 8175
Description: Weak ordering property of ordinal addition. (Contributed by NM, 6-Dec-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
oaword ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 ↔ (𝐶 +o 𝐴) ⊆ (𝐶 +o 𝐵)))

Proof of Theorem oaword
StepHypRef Expression
1 oaord 8173 . . . 4 ((𝐵 ∈ On ∧ 𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐵𝐴 ↔ (𝐶 +o 𝐵) ∈ (𝐶 +o 𝐴)))
213com12 1119 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵𝐴 ↔ (𝐶 +o 𝐵) ∈ (𝐶 +o 𝐴)))
32notbid 320 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (¬ 𝐵𝐴 ↔ ¬ (𝐶 +o 𝐵) ∈ (𝐶 +o 𝐴)))
4 ontri1 6225 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
543adant3 1128 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
6 oacl 8160 . . . . 5 ((𝐶 ∈ On ∧ 𝐴 ∈ On) → (𝐶 +o 𝐴) ∈ On)
76ancoms 461 . . . 4 ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐶 +o 𝐴) ∈ On)
873adant2 1127 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐶 +o 𝐴) ∈ On)
9 oacl 8160 . . . . 5 ((𝐶 ∈ On ∧ 𝐵 ∈ On) → (𝐶 +o 𝐵) ∈ On)
109ancoms 461 . . . 4 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐶 +o 𝐵) ∈ On)
11103adant1 1126 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐶 +o 𝐵) ∈ On)
12 ontri1 6225 . . 3 (((𝐶 +o 𝐴) ∈ On ∧ (𝐶 +o 𝐵) ∈ On) → ((𝐶 +o 𝐴) ⊆ (𝐶 +o 𝐵) ↔ ¬ (𝐶 +o 𝐵) ∈ (𝐶 +o 𝐴)))
138, 11, 12syl2anc 586 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐶 +o 𝐴) ⊆ (𝐶 +o 𝐵) ↔ ¬ (𝐶 +o 𝐵) ∈ (𝐶 +o 𝐴)))
143, 5, 133bitr4d 313 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 ↔ (𝐶 +o 𝐴) ⊆ (𝐶 +o 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  w3a 1083  wcel 2114  wss 3936  Oncon0 6191  (class class class)co 7156   +o coa 8099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-oadd 8106
This theorem is referenced by:  oaword1  8178  oaass  8187  omwordri  8198  omlimcl  8204  oaabs2  8272
  Copyright terms: Public domain W3C validator