![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oaword | Structured version Visualization version GIF version |
Description: Weak ordering property of ordinal addition. (Contributed by NM, 6-Dec-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
Ref | Expression |
---|---|
oaword | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ⊆ 𝐵 ↔ (𝐶 +o 𝐴) ⊆ (𝐶 +o 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oaord 8561 | . . . 4 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐵 ∈ 𝐴 ↔ (𝐶 +o 𝐵) ∈ (𝐶 +o 𝐴))) | |
2 | 1 | 3com12 1121 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 ∈ 𝐴 ↔ (𝐶 +o 𝐵) ∈ (𝐶 +o 𝐴))) |
3 | 2 | notbid 318 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (¬ 𝐵 ∈ 𝐴 ↔ ¬ (𝐶 +o 𝐵) ∈ (𝐶 +o 𝐴))) |
4 | ontri1 6397 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) | |
5 | 4 | 3adant3 1130 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) |
6 | oacl 8549 | . . . . 5 ⊢ ((𝐶 ∈ On ∧ 𝐴 ∈ On) → (𝐶 +o 𝐴) ∈ On) | |
7 | 6 | ancoms 458 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐶 +o 𝐴) ∈ On) |
8 | 7 | 3adant2 1129 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐶 +o 𝐴) ∈ On) |
9 | oacl 8549 | . . . . 5 ⊢ ((𝐶 ∈ On ∧ 𝐵 ∈ On) → (𝐶 +o 𝐵) ∈ On) | |
10 | 9 | ancoms 458 | . . . 4 ⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐶 +o 𝐵) ∈ On) |
11 | 10 | 3adant1 1128 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐶 +o 𝐵) ∈ On) |
12 | ontri1 6397 | . . 3 ⊢ (((𝐶 +o 𝐴) ∈ On ∧ (𝐶 +o 𝐵) ∈ On) → ((𝐶 +o 𝐴) ⊆ (𝐶 +o 𝐵) ↔ ¬ (𝐶 +o 𝐵) ∈ (𝐶 +o 𝐴))) | |
13 | 8, 11, 12 | syl2anc 583 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐶 +o 𝐴) ⊆ (𝐶 +o 𝐵) ↔ ¬ (𝐶 +o 𝐵) ∈ (𝐶 +o 𝐴))) |
14 | 3, 5, 13 | 3bitr4d 311 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ⊆ 𝐵 ↔ (𝐶 +o 𝐴) ⊆ (𝐶 +o 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ w3a 1085 ∈ wcel 2099 ⊆ wss 3944 Oncon0 6363 (class class class)co 7414 +o coa 8477 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-oadd 8484 |
This theorem is referenced by: oaword1 8566 oaass 8575 omwordri 8586 omlimcl 8592 oaabs2 8663 oasubex 42687 oaabsb 42695 omabs2 42733 |
Copyright terms: Public domain | W3C validator |