| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oaword | Structured version Visualization version GIF version | ||
| Description: Weak ordering property of ordinal addition. (Contributed by NM, 6-Dec-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| Ref | Expression |
|---|---|
| oaword | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ⊆ 𝐵 ↔ (𝐶 +o 𝐴) ⊆ (𝐶 +o 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oaord 8559 | . . . 4 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐵 ∈ 𝐴 ↔ (𝐶 +o 𝐵) ∈ (𝐶 +o 𝐴))) | |
| 2 | 1 | 3com12 1123 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 ∈ 𝐴 ↔ (𝐶 +o 𝐵) ∈ (𝐶 +o 𝐴))) |
| 3 | 2 | notbid 318 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (¬ 𝐵 ∈ 𝐴 ↔ ¬ (𝐶 +o 𝐵) ∈ (𝐶 +o 𝐴))) |
| 4 | ontri1 6386 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) | |
| 5 | 4 | 3adant3 1132 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) |
| 6 | oacl 8547 | . . . . 5 ⊢ ((𝐶 ∈ On ∧ 𝐴 ∈ On) → (𝐶 +o 𝐴) ∈ On) | |
| 7 | 6 | ancoms 458 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐶 +o 𝐴) ∈ On) |
| 8 | 7 | 3adant2 1131 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐶 +o 𝐴) ∈ On) |
| 9 | oacl 8547 | . . . . 5 ⊢ ((𝐶 ∈ On ∧ 𝐵 ∈ On) → (𝐶 +o 𝐵) ∈ On) | |
| 10 | 9 | ancoms 458 | . . . 4 ⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐶 +o 𝐵) ∈ On) |
| 11 | 10 | 3adant1 1130 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐶 +o 𝐵) ∈ On) |
| 12 | ontri1 6386 | . . 3 ⊢ (((𝐶 +o 𝐴) ∈ On ∧ (𝐶 +o 𝐵) ∈ On) → ((𝐶 +o 𝐴) ⊆ (𝐶 +o 𝐵) ↔ ¬ (𝐶 +o 𝐵) ∈ (𝐶 +o 𝐴))) | |
| 13 | 8, 11, 12 | syl2anc 584 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐶 +o 𝐴) ⊆ (𝐶 +o 𝐵) ↔ ¬ (𝐶 +o 𝐵) ∈ (𝐶 +o 𝐴))) |
| 14 | 3, 5, 13 | 3bitr4d 311 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ⊆ 𝐵 ↔ (𝐶 +o 𝐴) ⊆ (𝐶 +o 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ w3a 1086 ∈ wcel 2108 ⊆ wss 3926 Oncon0 6352 (class class class)co 7405 +o coa 8477 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-oadd 8484 |
| This theorem is referenced by: oaword1 8564 oaass 8573 omwordri 8584 omlimcl 8590 oaabs2 8661 oasubex 43310 oaabsb 43318 omabs2 43356 |
| Copyright terms: Public domain | W3C validator |