MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elmade2 Structured version   Visualization version   GIF version

Theorem elmade2 27756
Description: Membership in the made function in terms of the old function. (Contributed by Scott Fenton, 7-Aug-2024.)
Assertion
Ref Expression
elmade2 (𝐴 ∈ On → (𝑋 ∈ ( M ‘𝐴) ↔ ∃𝑙 ∈ 𝒫 ( O ‘𝐴)∃𝑟 ∈ 𝒫 ( O ‘𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋)))
Distinct variable groups:   𝐴,𝑙,𝑟   𝑋,𝑙,𝑟

Proof of Theorem elmade2
StepHypRef Expression
1 elmade 27755 . 2 (𝐴 ∈ On → (𝑋 ∈ ( M ‘𝐴) ↔ ∃𝑙 ∈ 𝒫 ( M “ 𝐴)∃𝑟 ∈ 𝒫 ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋)))
2 oldval 27738 . . . 4 (𝐴 ∈ On → ( O ‘𝐴) = ( M “ 𝐴))
32pweqd 4576 . . 3 (𝐴 ∈ On → 𝒫 ( O ‘𝐴) = 𝒫 ( M “ 𝐴))
43rexeqdv 3297 . . 3 (𝐴 ∈ On → (∃𝑟 ∈ 𝒫 ( O ‘𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋) ↔ ∃𝑟 ∈ 𝒫 ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋)))
53, 4rexeqbidv 3317 . 2 (𝐴 ∈ On → (∃𝑙 ∈ 𝒫 ( O ‘𝐴)∃𝑟 ∈ 𝒫 ( O ‘𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋) ↔ ∃𝑙 ∈ 𝒫 ( M “ 𝐴)∃𝑟 ∈ 𝒫 ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋)))
61, 5bitr4d 282 1 (𝐴 ∈ On → (𝑋 ∈ ( M ‘𝐴) ↔ ∃𝑙 ∈ 𝒫 ( O ‘𝐴)∃𝑟 ∈ 𝒫 ( O ‘𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3053  𝒫 cpw 4559   cuni 4867   class class class wbr 5102  cima 5634  Oncon0 6320  cfv 6499  (class class class)co 7369   <<s csslt 27668   |s cscut 27670   M cmade 27726   O cold 27727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-1o 8411  df-2o 8412  df-no 27530  df-slt 27531  df-bday 27532  df-sslt 27669  df-scut 27671  df-made 27731  df-old 27732
This theorem is referenced by:  madecut  27770  madebdayim  27775
  Copyright terms: Public domain W3C validator