MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pserval Structured version   Visualization version   GIF version

Theorem pserval 25474
Description: Value of the function 𝐺 that gives the sequence of monomials of a power series. (Contributed by Mario Carneiro, 26-Feb-2015.)
Hypothesis
Ref Expression
pser.g 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
Assertion
Ref Expression
pserval (𝑋 ∈ ℂ → (𝐺𝑋) = (𝑚 ∈ ℕ0 ↦ ((𝐴𝑚) · (𝑋𝑚))))
Distinct variable groups:   𝑚,𝑛,𝑥,𝐴   𝑚,𝑋   𝑚,𝐺
Allowed substitution hints:   𝐺(𝑥,𝑛)   𝑋(𝑥,𝑛)

Proof of Theorem pserval
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 oveq1 7262 . . . 4 (𝑦 = 𝑋 → (𝑦𝑚) = (𝑋𝑚))
21oveq2d 7271 . . 3 (𝑦 = 𝑋 → ((𝐴𝑚) · (𝑦𝑚)) = ((𝐴𝑚) · (𝑋𝑚)))
32mpteq2dv 5172 . 2 (𝑦 = 𝑋 → (𝑚 ∈ ℕ0 ↦ ((𝐴𝑚) · (𝑦𝑚))) = (𝑚 ∈ ℕ0 ↦ ((𝐴𝑚) · (𝑋𝑚))))
4 pser.g . . 3 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
5 fveq2 6756 . . . . . . 7 (𝑛 = 𝑚 → (𝐴𝑛) = (𝐴𝑚))
6 oveq2 7263 . . . . . . 7 (𝑛 = 𝑚 → (𝑥𝑛) = (𝑥𝑚))
75, 6oveq12d 7273 . . . . . 6 (𝑛 = 𝑚 → ((𝐴𝑛) · (𝑥𝑛)) = ((𝐴𝑚) · (𝑥𝑚)))
87cbvmptv 5183 . . . . 5 (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))) = (𝑚 ∈ ℕ0 ↦ ((𝐴𝑚) · (𝑥𝑚)))
9 oveq1 7262 . . . . . . 7 (𝑥 = 𝑦 → (𝑥𝑚) = (𝑦𝑚))
109oveq2d 7271 . . . . . 6 (𝑥 = 𝑦 → ((𝐴𝑚) · (𝑥𝑚)) = ((𝐴𝑚) · (𝑦𝑚)))
1110mpteq2dv 5172 . . . . 5 (𝑥 = 𝑦 → (𝑚 ∈ ℕ0 ↦ ((𝐴𝑚) · (𝑥𝑚))) = (𝑚 ∈ ℕ0 ↦ ((𝐴𝑚) · (𝑦𝑚))))
128, 11syl5eq 2791 . . . 4 (𝑥 = 𝑦 → (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))) = (𝑚 ∈ ℕ0 ↦ ((𝐴𝑚) · (𝑦𝑚))))
1312cbvmptv 5183 . . 3 (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛)))) = (𝑦 ∈ ℂ ↦ (𝑚 ∈ ℕ0 ↦ ((𝐴𝑚) · (𝑦𝑚))))
144, 13eqtri 2766 . 2 𝐺 = (𝑦 ∈ ℂ ↦ (𝑚 ∈ ℕ0 ↦ ((𝐴𝑚) · (𝑦𝑚))))
15 nn0ex 12169 . . 3 0 ∈ V
1615mptex 7081 . 2 (𝑚 ∈ ℕ0 ↦ ((𝐴𝑚) · (𝑋𝑚))) ∈ V
173, 14, 16fvmpt 6857 1 (𝑋 ∈ ℂ → (𝐺𝑋) = (𝑚 ∈ ℕ0 ↦ ((𝐴𝑚) · (𝑋𝑚))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  cmpt 5153  cfv 6418  (class class class)co 7255  cc 10800   · cmul 10807  0cn0 12163  cexp 13710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-1cn 10860  ax-addcl 10862
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-nn 11904  df-n0 12164
This theorem is referenced by:  pserval2  25475  psergf  25476
  Copyright terms: Public domain W3C validator