![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pserval | Structured version Visualization version GIF version |
Description: Value of the function 𝐺 that gives the sequence of monomials of a power series. (Contributed by Mario Carneiro, 26-Feb-2015.) |
Ref | Expression |
---|---|
pser.g | ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) |
Ref | Expression |
---|---|
pserval | ⊢ (𝑋 ∈ ℂ → (𝐺‘𝑋) = (𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑋↑𝑚)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7421 | . . . 4 ⊢ (𝑦 = 𝑋 → (𝑦↑𝑚) = (𝑋↑𝑚)) | |
2 | 1 | oveq2d 7430 | . . 3 ⊢ (𝑦 = 𝑋 → ((𝐴‘𝑚) · (𝑦↑𝑚)) = ((𝐴‘𝑚) · (𝑋↑𝑚))) |
3 | 2 | mpteq2dv 5244 | . 2 ⊢ (𝑦 = 𝑋 → (𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑦↑𝑚))) = (𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑋↑𝑚)))) |
4 | pser.g | . . 3 ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) | |
5 | fveq2 6891 | . . . . . . 7 ⊢ (𝑛 = 𝑚 → (𝐴‘𝑛) = (𝐴‘𝑚)) | |
6 | oveq2 7422 | . . . . . . 7 ⊢ (𝑛 = 𝑚 → (𝑥↑𝑛) = (𝑥↑𝑚)) | |
7 | 5, 6 | oveq12d 7432 | . . . . . 6 ⊢ (𝑛 = 𝑚 → ((𝐴‘𝑛) · (𝑥↑𝑛)) = ((𝐴‘𝑚) · (𝑥↑𝑚))) |
8 | 7 | cbvmptv 5255 | . . . . 5 ⊢ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛))) = (𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑥↑𝑚))) |
9 | oveq1 7421 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝑥↑𝑚) = (𝑦↑𝑚)) | |
10 | 9 | oveq2d 7430 | . . . . . 6 ⊢ (𝑥 = 𝑦 → ((𝐴‘𝑚) · (𝑥↑𝑚)) = ((𝐴‘𝑚) · (𝑦↑𝑚))) |
11 | 10 | mpteq2dv 5244 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑥↑𝑚))) = (𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑦↑𝑚)))) |
12 | 8, 11 | eqtrid 2779 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛))) = (𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑦↑𝑚)))) |
13 | 12 | cbvmptv 5255 | . . 3 ⊢ (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) = (𝑦 ∈ ℂ ↦ (𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑦↑𝑚)))) |
14 | 4, 13 | eqtri 2755 | . 2 ⊢ 𝐺 = (𝑦 ∈ ℂ ↦ (𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑦↑𝑚)))) |
15 | nn0ex 12500 | . . 3 ⊢ ℕ0 ∈ V | |
16 | 15 | mptex 7229 | . 2 ⊢ (𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑋↑𝑚))) ∈ V |
17 | 3, 14, 16 | fvmpt 6999 | 1 ⊢ (𝑋 ∈ ℂ → (𝐺‘𝑋) = (𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑋↑𝑚)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ↦ cmpt 5225 ‘cfv 6542 (class class class)co 7414 ℂcc 11128 · cmul 11135 ℕ0cn0 12494 ↑cexp 14050 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pr 5423 ax-un 7734 ax-cnex 11186 ax-1cn 11188 ax-addcl 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-om 7865 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-nn 12235 df-n0 12495 |
This theorem is referenced by: pserval2 26334 psergf 26335 |
Copyright terms: Public domain | W3C validator |