| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pserval | Structured version Visualization version GIF version | ||
| Description: Value of the function 𝐺 that gives the sequence of monomials of a power series. (Contributed by Mario Carneiro, 26-Feb-2015.) |
| Ref | Expression |
|---|---|
| pser.g | ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) |
| Ref | Expression |
|---|---|
| pserval | ⊢ (𝑋 ∈ ℂ → (𝐺‘𝑋) = (𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑋↑𝑚)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7412 | . . . 4 ⊢ (𝑦 = 𝑋 → (𝑦↑𝑚) = (𝑋↑𝑚)) | |
| 2 | 1 | oveq2d 7421 | . . 3 ⊢ (𝑦 = 𝑋 → ((𝐴‘𝑚) · (𝑦↑𝑚)) = ((𝐴‘𝑚) · (𝑋↑𝑚))) |
| 3 | 2 | mpteq2dv 5215 | . 2 ⊢ (𝑦 = 𝑋 → (𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑦↑𝑚))) = (𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑋↑𝑚)))) |
| 4 | pser.g | . . 3 ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) | |
| 5 | fveq2 6876 | . . . . . . 7 ⊢ (𝑛 = 𝑚 → (𝐴‘𝑛) = (𝐴‘𝑚)) | |
| 6 | oveq2 7413 | . . . . . . 7 ⊢ (𝑛 = 𝑚 → (𝑥↑𝑛) = (𝑥↑𝑚)) | |
| 7 | 5, 6 | oveq12d 7423 | . . . . . 6 ⊢ (𝑛 = 𝑚 → ((𝐴‘𝑛) · (𝑥↑𝑛)) = ((𝐴‘𝑚) · (𝑥↑𝑚))) |
| 8 | 7 | cbvmptv 5225 | . . . . 5 ⊢ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛))) = (𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑥↑𝑚))) |
| 9 | oveq1 7412 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝑥↑𝑚) = (𝑦↑𝑚)) | |
| 10 | 9 | oveq2d 7421 | . . . . . 6 ⊢ (𝑥 = 𝑦 → ((𝐴‘𝑚) · (𝑥↑𝑚)) = ((𝐴‘𝑚) · (𝑦↑𝑚))) |
| 11 | 10 | mpteq2dv 5215 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑥↑𝑚))) = (𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑦↑𝑚)))) |
| 12 | 8, 11 | eqtrid 2782 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛))) = (𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑦↑𝑚)))) |
| 13 | 12 | cbvmptv 5225 | . . 3 ⊢ (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) = (𝑦 ∈ ℂ ↦ (𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑦↑𝑚)))) |
| 14 | 4, 13 | eqtri 2758 | . 2 ⊢ 𝐺 = (𝑦 ∈ ℂ ↦ (𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑦↑𝑚)))) |
| 15 | nn0ex 12507 | . . 3 ⊢ ℕ0 ∈ V | |
| 16 | 15 | mptex 7215 | . 2 ⊢ (𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑋↑𝑚))) ∈ V |
| 17 | 3, 14, 16 | fvmpt 6986 | 1 ⊢ (𝑋 ∈ ℂ → (𝐺‘𝑋) = (𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑋↑𝑚)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ↦ cmpt 5201 ‘cfv 6531 (class class class)co 7405 ℂcc 11127 · cmul 11134 ℕ0cn0 12501 ↑cexp 14079 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-1cn 11187 ax-addcl 11189 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-nn 12241 df-n0 12502 |
| This theorem is referenced by: pserval2 26372 psergf 26373 |
| Copyright terms: Public domain | W3C validator |