Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pserval | Structured version Visualization version GIF version |
Description: Value of the function 𝐺 that gives the sequence of monomials of a power series. (Contributed by Mario Carneiro, 26-Feb-2015.) |
Ref | Expression |
---|---|
pser.g | ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) |
Ref | Expression |
---|---|
pserval | ⊢ (𝑋 ∈ ℂ → (𝐺‘𝑋) = (𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑋↑𝑚)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7262 | . . . 4 ⊢ (𝑦 = 𝑋 → (𝑦↑𝑚) = (𝑋↑𝑚)) | |
2 | 1 | oveq2d 7271 | . . 3 ⊢ (𝑦 = 𝑋 → ((𝐴‘𝑚) · (𝑦↑𝑚)) = ((𝐴‘𝑚) · (𝑋↑𝑚))) |
3 | 2 | mpteq2dv 5172 | . 2 ⊢ (𝑦 = 𝑋 → (𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑦↑𝑚))) = (𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑋↑𝑚)))) |
4 | pser.g | . . 3 ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) | |
5 | fveq2 6756 | . . . . . . 7 ⊢ (𝑛 = 𝑚 → (𝐴‘𝑛) = (𝐴‘𝑚)) | |
6 | oveq2 7263 | . . . . . . 7 ⊢ (𝑛 = 𝑚 → (𝑥↑𝑛) = (𝑥↑𝑚)) | |
7 | 5, 6 | oveq12d 7273 | . . . . . 6 ⊢ (𝑛 = 𝑚 → ((𝐴‘𝑛) · (𝑥↑𝑛)) = ((𝐴‘𝑚) · (𝑥↑𝑚))) |
8 | 7 | cbvmptv 5183 | . . . . 5 ⊢ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛))) = (𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑥↑𝑚))) |
9 | oveq1 7262 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝑥↑𝑚) = (𝑦↑𝑚)) | |
10 | 9 | oveq2d 7271 | . . . . . 6 ⊢ (𝑥 = 𝑦 → ((𝐴‘𝑚) · (𝑥↑𝑚)) = ((𝐴‘𝑚) · (𝑦↑𝑚))) |
11 | 10 | mpteq2dv 5172 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑥↑𝑚))) = (𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑦↑𝑚)))) |
12 | 8, 11 | syl5eq 2791 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛))) = (𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑦↑𝑚)))) |
13 | 12 | cbvmptv 5183 | . . 3 ⊢ (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) = (𝑦 ∈ ℂ ↦ (𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑦↑𝑚)))) |
14 | 4, 13 | eqtri 2766 | . 2 ⊢ 𝐺 = (𝑦 ∈ ℂ ↦ (𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑦↑𝑚)))) |
15 | nn0ex 12169 | . . 3 ⊢ ℕ0 ∈ V | |
16 | 15 | mptex 7081 | . 2 ⊢ (𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑋↑𝑚))) ∈ V |
17 | 3, 14, 16 | fvmpt 6857 | 1 ⊢ (𝑋 ∈ ℂ → (𝐺‘𝑋) = (𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑋↑𝑚)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ↦ cmpt 5153 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 · cmul 10807 ℕ0cn0 12163 ↑cexp 13710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-1cn 10860 ax-addcl 10862 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-nn 11904 df-n0 12164 |
This theorem is referenced by: pserval2 25475 psergf 25476 |
Copyright terms: Public domain | W3C validator |