| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pserval | Structured version Visualization version GIF version | ||
| Description: Value of the function 𝐺 that gives the sequence of monomials of a power series. (Contributed by Mario Carneiro, 26-Feb-2015.) |
| Ref | Expression |
|---|---|
| pser.g | ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) |
| Ref | Expression |
|---|---|
| pserval | ⊢ (𝑋 ∈ ℂ → (𝐺‘𝑋) = (𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑋↑𝑚)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7360 | . . . 4 ⊢ (𝑦 = 𝑋 → (𝑦↑𝑚) = (𝑋↑𝑚)) | |
| 2 | 1 | oveq2d 7369 | . . 3 ⊢ (𝑦 = 𝑋 → ((𝐴‘𝑚) · (𝑦↑𝑚)) = ((𝐴‘𝑚) · (𝑋↑𝑚))) |
| 3 | 2 | mpteq2dv 5189 | . 2 ⊢ (𝑦 = 𝑋 → (𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑦↑𝑚))) = (𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑋↑𝑚)))) |
| 4 | pser.g | . . 3 ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) | |
| 5 | fveq2 6826 | . . . . . . 7 ⊢ (𝑛 = 𝑚 → (𝐴‘𝑛) = (𝐴‘𝑚)) | |
| 6 | oveq2 7361 | . . . . . . 7 ⊢ (𝑛 = 𝑚 → (𝑥↑𝑛) = (𝑥↑𝑚)) | |
| 7 | 5, 6 | oveq12d 7371 | . . . . . 6 ⊢ (𝑛 = 𝑚 → ((𝐴‘𝑛) · (𝑥↑𝑛)) = ((𝐴‘𝑚) · (𝑥↑𝑚))) |
| 8 | 7 | cbvmptv 5199 | . . . . 5 ⊢ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛))) = (𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑥↑𝑚))) |
| 9 | oveq1 7360 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝑥↑𝑚) = (𝑦↑𝑚)) | |
| 10 | 9 | oveq2d 7369 | . . . . . 6 ⊢ (𝑥 = 𝑦 → ((𝐴‘𝑚) · (𝑥↑𝑚)) = ((𝐴‘𝑚) · (𝑦↑𝑚))) |
| 11 | 10 | mpteq2dv 5189 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑥↑𝑚))) = (𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑦↑𝑚)))) |
| 12 | 8, 11 | eqtrid 2776 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛))) = (𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑦↑𝑚)))) |
| 13 | 12 | cbvmptv 5199 | . . 3 ⊢ (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) = (𝑦 ∈ ℂ ↦ (𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑦↑𝑚)))) |
| 14 | 4, 13 | eqtri 2752 | . 2 ⊢ 𝐺 = (𝑦 ∈ ℂ ↦ (𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑦↑𝑚)))) |
| 15 | nn0ex 12408 | . . 3 ⊢ ℕ0 ∈ V | |
| 16 | 15 | mptex 7163 | . 2 ⊢ (𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑋↑𝑚))) ∈ V |
| 17 | 3, 14, 16 | fvmpt 6934 | 1 ⊢ (𝑋 ∈ ℂ → (𝐺‘𝑋) = (𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑋↑𝑚)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ↦ cmpt 5176 ‘cfv 6486 (class class class)co 7353 ℂcc 11026 · cmul 11033 ℕ0cn0 12402 ↑cexp 13986 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-1cn 11086 ax-addcl 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-nn 12147 df-n0 12403 |
| This theorem is referenced by: pserval2 26336 psergf 26337 |
| Copyright terms: Public domain | W3C validator |