MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pserval Structured version   Visualization version   GIF version

Theorem pserval 26326
Description: Value of the function 𝐺 that gives the sequence of monomials of a power series. (Contributed by Mario Carneiro, 26-Feb-2015.)
Hypothesis
Ref Expression
pser.g 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
Assertion
Ref Expression
pserval (𝑋 ∈ ℂ → (𝐺𝑋) = (𝑚 ∈ ℕ0 ↦ ((𝐴𝑚) · (𝑋𝑚))))
Distinct variable groups:   𝑚,𝑛,𝑥,𝐴   𝑚,𝑋   𝑚,𝐺
Allowed substitution hints:   𝐺(𝑥,𝑛)   𝑋(𝑥,𝑛)

Proof of Theorem pserval
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 oveq1 7397 . . . 4 (𝑦 = 𝑋 → (𝑦𝑚) = (𝑋𝑚))
21oveq2d 7406 . . 3 (𝑦 = 𝑋 → ((𝐴𝑚) · (𝑦𝑚)) = ((𝐴𝑚) · (𝑋𝑚)))
32mpteq2dv 5204 . 2 (𝑦 = 𝑋 → (𝑚 ∈ ℕ0 ↦ ((𝐴𝑚) · (𝑦𝑚))) = (𝑚 ∈ ℕ0 ↦ ((𝐴𝑚) · (𝑋𝑚))))
4 pser.g . . 3 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
5 fveq2 6861 . . . . . . 7 (𝑛 = 𝑚 → (𝐴𝑛) = (𝐴𝑚))
6 oveq2 7398 . . . . . . 7 (𝑛 = 𝑚 → (𝑥𝑛) = (𝑥𝑚))
75, 6oveq12d 7408 . . . . . 6 (𝑛 = 𝑚 → ((𝐴𝑛) · (𝑥𝑛)) = ((𝐴𝑚) · (𝑥𝑚)))
87cbvmptv 5214 . . . . 5 (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))) = (𝑚 ∈ ℕ0 ↦ ((𝐴𝑚) · (𝑥𝑚)))
9 oveq1 7397 . . . . . . 7 (𝑥 = 𝑦 → (𝑥𝑚) = (𝑦𝑚))
109oveq2d 7406 . . . . . 6 (𝑥 = 𝑦 → ((𝐴𝑚) · (𝑥𝑚)) = ((𝐴𝑚) · (𝑦𝑚)))
1110mpteq2dv 5204 . . . . 5 (𝑥 = 𝑦 → (𝑚 ∈ ℕ0 ↦ ((𝐴𝑚) · (𝑥𝑚))) = (𝑚 ∈ ℕ0 ↦ ((𝐴𝑚) · (𝑦𝑚))))
128, 11eqtrid 2777 . . . 4 (𝑥 = 𝑦 → (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))) = (𝑚 ∈ ℕ0 ↦ ((𝐴𝑚) · (𝑦𝑚))))
1312cbvmptv 5214 . . 3 (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛)))) = (𝑦 ∈ ℂ ↦ (𝑚 ∈ ℕ0 ↦ ((𝐴𝑚) · (𝑦𝑚))))
144, 13eqtri 2753 . 2 𝐺 = (𝑦 ∈ ℂ ↦ (𝑚 ∈ ℕ0 ↦ ((𝐴𝑚) · (𝑦𝑚))))
15 nn0ex 12455 . . 3 0 ∈ V
1615mptex 7200 . 2 (𝑚 ∈ ℕ0 ↦ ((𝐴𝑚) · (𝑋𝑚))) ∈ V
173, 14, 16fvmpt 6971 1 (𝑋 ∈ ℂ → (𝐺𝑋) = (𝑚 ∈ ℕ0 ↦ ((𝐴𝑚) · (𝑋𝑚))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cmpt 5191  cfv 6514  (class class class)co 7390  cc 11073   · cmul 11080  0cn0 12449  cexp 14033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-1cn 11133  ax-addcl 11135
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-nn 12194  df-n0 12450
This theorem is referenced by:  pserval2  26327  psergf  26328
  Copyright terms: Public domain W3C validator