| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pserval | Structured version Visualization version GIF version | ||
| Description: Value of the function 𝐺 that gives the sequence of monomials of a power series. (Contributed by Mario Carneiro, 26-Feb-2015.) |
| Ref | Expression |
|---|---|
| pser.g | ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) |
| Ref | Expression |
|---|---|
| pserval | ⊢ (𝑋 ∈ ℂ → (𝐺‘𝑋) = (𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑋↑𝑚)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7359 | . . . 4 ⊢ (𝑦 = 𝑋 → (𝑦↑𝑚) = (𝑋↑𝑚)) | |
| 2 | 1 | oveq2d 7368 | . . 3 ⊢ (𝑦 = 𝑋 → ((𝐴‘𝑚) · (𝑦↑𝑚)) = ((𝐴‘𝑚) · (𝑋↑𝑚))) |
| 3 | 2 | mpteq2dv 5187 | . 2 ⊢ (𝑦 = 𝑋 → (𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑦↑𝑚))) = (𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑋↑𝑚)))) |
| 4 | pser.g | . . 3 ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) | |
| 5 | fveq2 6828 | . . . . . . 7 ⊢ (𝑛 = 𝑚 → (𝐴‘𝑛) = (𝐴‘𝑚)) | |
| 6 | oveq2 7360 | . . . . . . 7 ⊢ (𝑛 = 𝑚 → (𝑥↑𝑛) = (𝑥↑𝑚)) | |
| 7 | 5, 6 | oveq12d 7370 | . . . . . 6 ⊢ (𝑛 = 𝑚 → ((𝐴‘𝑛) · (𝑥↑𝑛)) = ((𝐴‘𝑚) · (𝑥↑𝑚))) |
| 8 | 7 | cbvmptv 5197 | . . . . 5 ⊢ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛))) = (𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑥↑𝑚))) |
| 9 | oveq1 7359 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝑥↑𝑚) = (𝑦↑𝑚)) | |
| 10 | 9 | oveq2d 7368 | . . . . . 6 ⊢ (𝑥 = 𝑦 → ((𝐴‘𝑚) · (𝑥↑𝑚)) = ((𝐴‘𝑚) · (𝑦↑𝑚))) |
| 11 | 10 | mpteq2dv 5187 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑥↑𝑚))) = (𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑦↑𝑚)))) |
| 12 | 8, 11 | eqtrid 2780 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛))) = (𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑦↑𝑚)))) |
| 13 | 12 | cbvmptv 5197 | . . 3 ⊢ (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) = (𝑦 ∈ ℂ ↦ (𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑦↑𝑚)))) |
| 14 | 4, 13 | eqtri 2756 | . 2 ⊢ 𝐺 = (𝑦 ∈ ℂ ↦ (𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑦↑𝑚)))) |
| 15 | nn0ex 12394 | . . 3 ⊢ ℕ0 ∈ V | |
| 16 | 15 | mptex 7163 | . 2 ⊢ (𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑋↑𝑚))) ∈ V |
| 17 | 3, 14, 16 | fvmpt 6935 | 1 ⊢ (𝑋 ∈ ℂ → (𝐺‘𝑋) = (𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑋↑𝑚)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ↦ cmpt 5174 ‘cfv 6486 (class class class)co 7352 ℂcc 11011 · cmul 11018 ℕ0cn0 12388 ↑cexp 13970 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-1cn 11071 ax-addcl 11073 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-nn 12133 df-n0 12389 |
| This theorem is referenced by: pserval2 26348 psergf 26349 |
| Copyright terms: Public domain | W3C validator |