MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pserval Structured version   Visualization version   GIF version

Theorem pserval 24980
Description: Value of the function 𝐺 that gives the sequence of monomials of a power series. (Contributed by Mario Carneiro, 26-Feb-2015.)
Hypothesis
Ref Expression
pser.g 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
Assertion
Ref Expression
pserval (𝑋 ∈ ℂ → (𝐺𝑋) = (𝑚 ∈ ℕ0 ↦ ((𝐴𝑚) · (𝑋𝑚))))
Distinct variable groups:   𝑚,𝑛,𝑥,𝐴   𝑚,𝑋   𝑚,𝐺
Allowed substitution hints:   𝐺(𝑥,𝑛)   𝑋(𝑥,𝑛)

Proof of Theorem pserval
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 oveq1 7136 . . . 4 (𝑦 = 𝑋 → (𝑦𝑚) = (𝑋𝑚))
21oveq2d 7145 . . 3 (𝑦 = 𝑋 → ((𝐴𝑚) · (𝑦𝑚)) = ((𝐴𝑚) · (𝑋𝑚)))
32mpteq2dv 5134 . 2 (𝑦 = 𝑋 → (𝑚 ∈ ℕ0 ↦ ((𝐴𝑚) · (𝑦𝑚))) = (𝑚 ∈ ℕ0 ↦ ((𝐴𝑚) · (𝑋𝑚))))
4 pser.g . . 3 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
5 fveq2 6642 . . . . . . 7 (𝑛 = 𝑚 → (𝐴𝑛) = (𝐴𝑚))
6 oveq2 7137 . . . . . . 7 (𝑛 = 𝑚 → (𝑥𝑛) = (𝑥𝑚))
75, 6oveq12d 7147 . . . . . 6 (𝑛 = 𝑚 → ((𝐴𝑛) · (𝑥𝑛)) = ((𝐴𝑚) · (𝑥𝑚)))
87cbvmptv 5141 . . . . 5 (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))) = (𝑚 ∈ ℕ0 ↦ ((𝐴𝑚) · (𝑥𝑚)))
9 oveq1 7136 . . . . . . 7 (𝑥 = 𝑦 → (𝑥𝑚) = (𝑦𝑚))
109oveq2d 7145 . . . . . 6 (𝑥 = 𝑦 → ((𝐴𝑚) · (𝑥𝑚)) = ((𝐴𝑚) · (𝑦𝑚)))
1110mpteq2dv 5134 . . . . 5 (𝑥 = 𝑦 → (𝑚 ∈ ℕ0 ↦ ((𝐴𝑚) · (𝑥𝑚))) = (𝑚 ∈ ℕ0 ↦ ((𝐴𝑚) · (𝑦𝑚))))
128, 11syl5eq 2867 . . . 4 (𝑥 = 𝑦 → (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))) = (𝑚 ∈ ℕ0 ↦ ((𝐴𝑚) · (𝑦𝑚))))
1312cbvmptv 5141 . . 3 (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛)))) = (𝑦 ∈ ℂ ↦ (𝑚 ∈ ℕ0 ↦ ((𝐴𝑚) · (𝑦𝑚))))
144, 13eqtri 2843 . 2 𝐺 = (𝑦 ∈ ℂ ↦ (𝑚 ∈ ℕ0 ↦ ((𝐴𝑚) · (𝑦𝑚))))
15 nn0ex 11878 . . 3 0 ∈ V
1615mptex 6958 . 2 (𝑚 ∈ ℕ0 ↦ ((𝐴𝑚) · (𝑋𝑚))) ∈ V
173, 14, 16fvmpt 6740 1 (𝑋 ∈ ℂ → (𝐺𝑋) = (𝑚 ∈ ℕ0 ↦ ((𝐴𝑚) · (𝑋𝑚))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  cmpt 5118  cfv 6327  (class class class)co 7129  cc 10509   · cmul 10516  0cn0 11872  cexp 13410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5162  ax-sep 5175  ax-nul 5182  ax-pow 5238  ax-pr 5302  ax-un 7435  ax-cnex 10567  ax-1cn 10569  ax-addcl 10571
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-ral 3130  df-rex 3131  df-reu 3132  df-rab 3134  df-v 3472  df-sbc 3749  df-csb 3857  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-pss 3928  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4811  df-iun 4893  df-br 5039  df-opab 5101  df-mpt 5119  df-tr 5145  df-id 5432  df-eprel 5437  df-po 5446  df-so 5447  df-fr 5486  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6286  df-fun 6329  df-fn 6330  df-f 6331  df-f1 6332  df-fo 6333  df-f1o 6334  df-fv 6335  df-ov 7132  df-om 7555  df-wrecs 7921  df-recs 7982  df-rdg 8020  df-nn 11613  df-n0 11873
This theorem is referenced by:  pserval2  24981  psergf  24982
  Copyright terms: Public domain W3C validator