MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pserval2 Structured version   Visualization version   GIF version

Theorem pserval2 26326
Description: Value of the function 𝐺 that gives the sequence of monomials of a power series. (Contributed by Mario Carneiro, 26-Feb-2015.)
Hypothesis
Ref Expression
pser.g 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
Assertion
Ref Expression
pserval2 ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐺𝑋)‘𝑁) = ((𝐴𝑁) · (𝑋𝑁)))
Distinct variable groups:   𝑥,𝑛,𝐴   𝑛,𝑁
Allowed substitution hints:   𝐺(𝑥,𝑛)   𝑁(𝑥)   𝑋(𝑥,𝑛)

Proof of Theorem pserval2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 pser.g . . . 4 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
21pserval 26325 . . 3 (𝑋 ∈ ℂ → (𝐺𝑋) = (𝑦 ∈ ℕ0 ↦ ((𝐴𝑦) · (𝑋𝑦))))
32fveq1d 6862 . 2 (𝑋 ∈ ℂ → ((𝐺𝑋)‘𝑁) = ((𝑦 ∈ ℕ0 ↦ ((𝐴𝑦) · (𝑋𝑦)))‘𝑁))
4 fveq2 6860 . . . 4 (𝑦 = 𝑁 → (𝐴𝑦) = (𝐴𝑁))
5 oveq2 7397 . . . 4 (𝑦 = 𝑁 → (𝑋𝑦) = (𝑋𝑁))
64, 5oveq12d 7407 . . 3 (𝑦 = 𝑁 → ((𝐴𝑦) · (𝑋𝑦)) = ((𝐴𝑁) · (𝑋𝑁)))
7 eqid 2730 . . 3 (𝑦 ∈ ℕ0 ↦ ((𝐴𝑦) · (𝑋𝑦))) = (𝑦 ∈ ℕ0 ↦ ((𝐴𝑦) · (𝑋𝑦)))
8 ovex 7422 . . 3 ((𝐴𝑁) · (𝑋𝑁)) ∈ V
96, 7, 8fvmpt 6970 . 2 (𝑁 ∈ ℕ0 → ((𝑦 ∈ ℕ0 ↦ ((𝐴𝑦) · (𝑋𝑦)))‘𝑁) = ((𝐴𝑁) · (𝑋𝑁)))
103, 9sylan9eq 2785 1 ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐺𝑋)‘𝑁) = ((𝐴𝑁) · (𝑋𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cmpt 5190  cfv 6513  (class class class)co 7389  cc 11072   · cmul 11079  0cn0 12448  cexp 14032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-1cn 11132  ax-addcl 11134
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-ov 7392  df-om 7845  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-nn 12188  df-n0 12449
This theorem is referenced by:  radcnvlem1  26328  radcnv0  26331  dvradcnv  26336  pserulm  26337  psercn2  26338  psercn2OLD  26339  pserdvlem2  26344  abelth  26357
  Copyright terms: Public domain W3C validator