![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pserval2 | Structured version Visualization version GIF version |
Description: Value of the function 𝐺 that gives the sequence of monomials of a power series. (Contributed by Mario Carneiro, 26-Feb-2015.) |
Ref | Expression |
---|---|
pser.g | ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) |
Ref | Expression |
---|---|
pserval2 | ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐺‘𝑋)‘𝑁) = ((𝐴‘𝑁) · (𝑋↑𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pser.g | . . . 4 ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) | |
2 | 1 | pserval 26431 | . . 3 ⊢ (𝑋 ∈ ℂ → (𝐺‘𝑋) = (𝑦 ∈ ℕ0 ↦ ((𝐴‘𝑦) · (𝑋↑𝑦)))) |
3 | 2 | fveq1d 6902 | . 2 ⊢ (𝑋 ∈ ℂ → ((𝐺‘𝑋)‘𝑁) = ((𝑦 ∈ ℕ0 ↦ ((𝐴‘𝑦) · (𝑋↑𝑦)))‘𝑁)) |
4 | fveq2 6900 | . . . 4 ⊢ (𝑦 = 𝑁 → (𝐴‘𝑦) = (𝐴‘𝑁)) | |
5 | oveq2 7431 | . . . 4 ⊢ (𝑦 = 𝑁 → (𝑋↑𝑦) = (𝑋↑𝑁)) | |
6 | 4, 5 | oveq12d 7441 | . . 3 ⊢ (𝑦 = 𝑁 → ((𝐴‘𝑦) · (𝑋↑𝑦)) = ((𝐴‘𝑁) · (𝑋↑𝑁))) |
7 | eqid 2725 | . . 3 ⊢ (𝑦 ∈ ℕ0 ↦ ((𝐴‘𝑦) · (𝑋↑𝑦))) = (𝑦 ∈ ℕ0 ↦ ((𝐴‘𝑦) · (𝑋↑𝑦))) | |
8 | ovex 7456 | . . 3 ⊢ ((𝐴‘𝑁) · (𝑋↑𝑁)) ∈ V | |
9 | 6, 7, 8 | fvmpt 7008 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((𝑦 ∈ ℕ0 ↦ ((𝐴‘𝑦) · (𝑋↑𝑦)))‘𝑁) = ((𝐴‘𝑁) · (𝑋↑𝑁))) |
10 | 3, 9 | sylan9eq 2785 | 1 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐺‘𝑋)‘𝑁) = ((𝐴‘𝑁) · (𝑋↑𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ↦ cmpt 5235 ‘cfv 6553 (class class class)co 7423 ℂcc 11152 · cmul 11159 ℕ0cn0 12519 ↑cexp 14076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pr 5432 ax-un 7745 ax-cnex 11210 ax-1cn 11212 ax-addcl 11214 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4325 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5579 df-eprel 5585 df-po 5593 df-so 5594 df-fr 5636 df-we 5638 df-xp 5687 df-rel 5688 df-cnv 5689 df-co 5690 df-dm 5691 df-rn 5692 df-res 5693 df-ima 5694 df-pred 6311 df-ord 6378 df-on 6379 df-lim 6380 df-suc 6381 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-ov 7426 df-om 7876 df-2nd 8003 df-frecs 8295 df-wrecs 8326 df-recs 8400 df-rdg 8439 df-nn 12260 df-n0 12520 |
This theorem is referenced by: radcnvlem1 26434 radcnv0 26437 dvradcnv 26442 pserulm 26443 psercn2 26444 psercn2OLD 26445 pserdvlem2 26450 abelth 26463 |
Copyright terms: Public domain | W3C validator |