MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pserval2 Structured version   Visualization version   GIF version

Theorem pserval2 26472
Description: Value of the function 𝐺 that gives the sequence of monomials of a power series. (Contributed by Mario Carneiro, 26-Feb-2015.)
Hypothesis
Ref Expression
pser.g 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
Assertion
Ref Expression
pserval2 ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐺𝑋)‘𝑁) = ((𝐴𝑁) · (𝑋𝑁)))
Distinct variable groups:   𝑥,𝑛,𝐴   𝑛,𝑁
Allowed substitution hints:   𝐺(𝑥,𝑛)   𝑁(𝑥)   𝑋(𝑥,𝑛)

Proof of Theorem pserval2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 pser.g . . . 4 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
21pserval 26471 . . 3 (𝑋 ∈ ℂ → (𝐺𝑋) = (𝑦 ∈ ℕ0 ↦ ((𝐴𝑦) · (𝑋𝑦))))
32fveq1d 6922 . 2 (𝑋 ∈ ℂ → ((𝐺𝑋)‘𝑁) = ((𝑦 ∈ ℕ0 ↦ ((𝐴𝑦) · (𝑋𝑦)))‘𝑁))
4 fveq2 6920 . . . 4 (𝑦 = 𝑁 → (𝐴𝑦) = (𝐴𝑁))
5 oveq2 7456 . . . 4 (𝑦 = 𝑁 → (𝑋𝑦) = (𝑋𝑁))
64, 5oveq12d 7466 . . 3 (𝑦 = 𝑁 → ((𝐴𝑦) · (𝑋𝑦)) = ((𝐴𝑁) · (𝑋𝑁)))
7 eqid 2740 . . 3 (𝑦 ∈ ℕ0 ↦ ((𝐴𝑦) · (𝑋𝑦))) = (𝑦 ∈ ℕ0 ↦ ((𝐴𝑦) · (𝑋𝑦)))
8 ovex 7481 . . 3 ((𝐴𝑁) · (𝑋𝑁)) ∈ V
96, 7, 8fvmpt 7029 . 2 (𝑁 ∈ ℕ0 → ((𝑦 ∈ ℕ0 ↦ ((𝐴𝑦) · (𝑋𝑦)))‘𝑁) = ((𝐴𝑁) · (𝑋𝑁)))
103, 9sylan9eq 2800 1 ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐺𝑋)‘𝑁) = ((𝐴𝑁) · (𝑋𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  cmpt 5249  cfv 6573  (class class class)co 7448  cc 11182   · cmul 11189  0cn0 12553  cexp 14112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-1cn 11242  ax-addcl 11244
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-nn 12294  df-n0 12554
This theorem is referenced by:  radcnvlem1  26474  radcnv0  26477  dvradcnv  26482  pserulm  26483  psercn2  26484  psercn2OLD  26485  pserdvlem2  26490  abelth  26503
  Copyright terms: Public domain W3C validator