MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pserval2 Structured version   Visualization version   GIF version

Theorem pserval2 26469
Description: Value of the function 𝐺 that gives the sequence of monomials of a power series. (Contributed by Mario Carneiro, 26-Feb-2015.)
Hypothesis
Ref Expression
pser.g 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
Assertion
Ref Expression
pserval2 ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐺𝑋)‘𝑁) = ((𝐴𝑁) · (𝑋𝑁)))
Distinct variable groups:   𝑥,𝑛,𝐴   𝑛,𝑁
Allowed substitution hints:   𝐺(𝑥,𝑛)   𝑁(𝑥)   𝑋(𝑥,𝑛)

Proof of Theorem pserval2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 pser.g . . . 4 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
21pserval 26468 . . 3 (𝑋 ∈ ℂ → (𝐺𝑋) = (𝑦 ∈ ℕ0 ↦ ((𝐴𝑦) · (𝑋𝑦))))
32fveq1d 6909 . 2 (𝑋 ∈ ℂ → ((𝐺𝑋)‘𝑁) = ((𝑦 ∈ ℕ0 ↦ ((𝐴𝑦) · (𝑋𝑦)))‘𝑁))
4 fveq2 6907 . . . 4 (𝑦 = 𝑁 → (𝐴𝑦) = (𝐴𝑁))
5 oveq2 7439 . . . 4 (𝑦 = 𝑁 → (𝑋𝑦) = (𝑋𝑁))
64, 5oveq12d 7449 . . 3 (𝑦 = 𝑁 → ((𝐴𝑦) · (𝑋𝑦)) = ((𝐴𝑁) · (𝑋𝑁)))
7 eqid 2735 . . 3 (𝑦 ∈ ℕ0 ↦ ((𝐴𝑦) · (𝑋𝑦))) = (𝑦 ∈ ℕ0 ↦ ((𝐴𝑦) · (𝑋𝑦)))
8 ovex 7464 . . 3 ((𝐴𝑁) · (𝑋𝑁)) ∈ V
96, 7, 8fvmpt 7016 . 2 (𝑁 ∈ ℕ0 → ((𝑦 ∈ ℕ0 ↦ ((𝐴𝑦) · (𝑋𝑦)))‘𝑁) = ((𝐴𝑁) · (𝑋𝑁)))
103, 9sylan9eq 2795 1 ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐺𝑋)‘𝑁) = ((𝐴𝑁) · (𝑋𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  cmpt 5231  cfv 6563  (class class class)co 7431  cc 11151   · cmul 11158  0cn0 12524  cexp 14099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-1cn 11211  ax-addcl 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-nn 12265  df-n0 12525
This theorem is referenced by:  radcnvlem1  26471  radcnv0  26474  dvradcnv  26479  pserulm  26480  psercn2  26481  psercn2OLD  26482  pserdvlem2  26487  abelth  26500
  Copyright terms: Public domain W3C validator