| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pserval2 | Structured version Visualization version GIF version | ||
| Description: Value of the function 𝐺 that gives the sequence of monomials of a power series. (Contributed by Mario Carneiro, 26-Feb-2015.) |
| Ref | Expression |
|---|---|
| pser.g | ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) |
| Ref | Expression |
|---|---|
| pserval2 | ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐺‘𝑋)‘𝑁) = ((𝐴‘𝑁) · (𝑋↑𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pser.g | . . . 4 ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) | |
| 2 | 1 | pserval 26326 | . . 3 ⊢ (𝑋 ∈ ℂ → (𝐺‘𝑋) = (𝑦 ∈ ℕ0 ↦ ((𝐴‘𝑦) · (𝑋↑𝑦)))) |
| 3 | 2 | fveq1d 6863 | . 2 ⊢ (𝑋 ∈ ℂ → ((𝐺‘𝑋)‘𝑁) = ((𝑦 ∈ ℕ0 ↦ ((𝐴‘𝑦) · (𝑋↑𝑦)))‘𝑁)) |
| 4 | fveq2 6861 | . . . 4 ⊢ (𝑦 = 𝑁 → (𝐴‘𝑦) = (𝐴‘𝑁)) | |
| 5 | oveq2 7398 | . . . 4 ⊢ (𝑦 = 𝑁 → (𝑋↑𝑦) = (𝑋↑𝑁)) | |
| 6 | 4, 5 | oveq12d 7408 | . . 3 ⊢ (𝑦 = 𝑁 → ((𝐴‘𝑦) · (𝑋↑𝑦)) = ((𝐴‘𝑁) · (𝑋↑𝑁))) |
| 7 | eqid 2730 | . . 3 ⊢ (𝑦 ∈ ℕ0 ↦ ((𝐴‘𝑦) · (𝑋↑𝑦))) = (𝑦 ∈ ℕ0 ↦ ((𝐴‘𝑦) · (𝑋↑𝑦))) | |
| 8 | ovex 7423 | . . 3 ⊢ ((𝐴‘𝑁) · (𝑋↑𝑁)) ∈ V | |
| 9 | 6, 7, 8 | fvmpt 6971 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((𝑦 ∈ ℕ0 ↦ ((𝐴‘𝑦) · (𝑋↑𝑦)))‘𝑁) = ((𝐴‘𝑁) · (𝑋↑𝑁))) |
| 10 | 3, 9 | sylan9eq 2785 | 1 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐺‘𝑋)‘𝑁) = ((𝐴‘𝑁) · (𝑋↑𝑁))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ↦ cmpt 5191 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 · cmul 11080 ℕ0cn0 12449 ↑cexp 14033 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-1cn 11133 ax-addcl 11135 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-nn 12194 df-n0 12450 |
| This theorem is referenced by: radcnvlem1 26329 radcnv0 26332 dvradcnv 26337 pserulm 26338 psercn2 26339 psercn2OLD 26340 pserdvlem2 26345 abelth 26358 |
| Copyright terms: Public domain | W3C validator |