| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pserval2 | Structured version Visualization version GIF version | ||
| Description: Value of the function 𝐺 that gives the sequence of monomials of a power series. (Contributed by Mario Carneiro, 26-Feb-2015.) |
| Ref | Expression |
|---|---|
| pser.g | ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) |
| Ref | Expression |
|---|---|
| pserval2 | ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐺‘𝑋)‘𝑁) = ((𝐴‘𝑁) · (𝑋↑𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pser.g | . . . 4 ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) | |
| 2 | 1 | pserval 26325 | . . 3 ⊢ (𝑋 ∈ ℂ → (𝐺‘𝑋) = (𝑦 ∈ ℕ0 ↦ ((𝐴‘𝑦) · (𝑋↑𝑦)))) |
| 3 | 2 | fveq1d 6862 | . 2 ⊢ (𝑋 ∈ ℂ → ((𝐺‘𝑋)‘𝑁) = ((𝑦 ∈ ℕ0 ↦ ((𝐴‘𝑦) · (𝑋↑𝑦)))‘𝑁)) |
| 4 | fveq2 6860 | . . . 4 ⊢ (𝑦 = 𝑁 → (𝐴‘𝑦) = (𝐴‘𝑁)) | |
| 5 | oveq2 7397 | . . . 4 ⊢ (𝑦 = 𝑁 → (𝑋↑𝑦) = (𝑋↑𝑁)) | |
| 6 | 4, 5 | oveq12d 7407 | . . 3 ⊢ (𝑦 = 𝑁 → ((𝐴‘𝑦) · (𝑋↑𝑦)) = ((𝐴‘𝑁) · (𝑋↑𝑁))) |
| 7 | eqid 2730 | . . 3 ⊢ (𝑦 ∈ ℕ0 ↦ ((𝐴‘𝑦) · (𝑋↑𝑦))) = (𝑦 ∈ ℕ0 ↦ ((𝐴‘𝑦) · (𝑋↑𝑦))) | |
| 8 | ovex 7422 | . . 3 ⊢ ((𝐴‘𝑁) · (𝑋↑𝑁)) ∈ V | |
| 9 | 6, 7, 8 | fvmpt 6970 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((𝑦 ∈ ℕ0 ↦ ((𝐴‘𝑦) · (𝑋↑𝑦)))‘𝑁) = ((𝐴‘𝑁) · (𝑋↑𝑁))) |
| 10 | 3, 9 | sylan9eq 2785 | 1 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐺‘𝑋)‘𝑁) = ((𝐴‘𝑁) · (𝑋↑𝑁))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ↦ cmpt 5190 ‘cfv 6513 (class class class)co 7389 ℂcc 11072 · cmul 11079 ℕ0cn0 12448 ↑cexp 14032 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-1cn 11132 ax-addcl 11134 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-ov 7392 df-om 7845 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-nn 12188 df-n0 12449 |
| This theorem is referenced by: radcnvlem1 26328 radcnv0 26331 dvradcnv 26336 pserulm 26337 psercn2 26338 psercn2OLD 26339 pserdvlem2 26344 abelth 26357 |
| Copyright terms: Public domain | W3C validator |