Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pserval2 | Structured version Visualization version GIF version |
Description: Value of the function 𝐺 that gives the sequence of monomials of a power series. (Contributed by Mario Carneiro, 26-Feb-2015.) |
Ref | Expression |
---|---|
pser.g | ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) |
Ref | Expression |
---|---|
pserval2 | ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐺‘𝑋)‘𝑁) = ((𝐴‘𝑁) · (𝑋↑𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pser.g | . . . 4 ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) | |
2 | 1 | pserval 25567 | . . 3 ⊢ (𝑋 ∈ ℂ → (𝐺‘𝑋) = (𝑦 ∈ ℕ0 ↦ ((𝐴‘𝑦) · (𝑋↑𝑦)))) |
3 | 2 | fveq1d 6773 | . 2 ⊢ (𝑋 ∈ ℂ → ((𝐺‘𝑋)‘𝑁) = ((𝑦 ∈ ℕ0 ↦ ((𝐴‘𝑦) · (𝑋↑𝑦)))‘𝑁)) |
4 | fveq2 6771 | . . . 4 ⊢ (𝑦 = 𝑁 → (𝐴‘𝑦) = (𝐴‘𝑁)) | |
5 | oveq2 7279 | . . . 4 ⊢ (𝑦 = 𝑁 → (𝑋↑𝑦) = (𝑋↑𝑁)) | |
6 | 4, 5 | oveq12d 7289 | . . 3 ⊢ (𝑦 = 𝑁 → ((𝐴‘𝑦) · (𝑋↑𝑦)) = ((𝐴‘𝑁) · (𝑋↑𝑁))) |
7 | eqid 2740 | . . 3 ⊢ (𝑦 ∈ ℕ0 ↦ ((𝐴‘𝑦) · (𝑋↑𝑦))) = (𝑦 ∈ ℕ0 ↦ ((𝐴‘𝑦) · (𝑋↑𝑦))) | |
8 | ovex 7304 | . . 3 ⊢ ((𝐴‘𝑁) · (𝑋↑𝑁)) ∈ V | |
9 | 6, 7, 8 | fvmpt 6872 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((𝑦 ∈ ℕ0 ↦ ((𝐴‘𝑦) · (𝑋↑𝑦)))‘𝑁) = ((𝐴‘𝑁) · (𝑋↑𝑁))) |
10 | 3, 9 | sylan9eq 2800 | 1 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐺‘𝑋)‘𝑁) = ((𝐴‘𝑁) · (𝑋↑𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 ↦ cmpt 5162 ‘cfv 6432 (class class class)co 7271 ℂcc 10870 · cmul 10877 ℕ0cn0 12233 ↑cexp 13780 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pr 5356 ax-un 7582 ax-cnex 10928 ax-1cn 10930 ax-addcl 10932 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-ov 7274 df-om 7707 df-2nd 7825 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-nn 11974 df-n0 12234 |
This theorem is referenced by: radcnvlem1 25570 radcnv0 25573 dvradcnv 25578 pserulm 25579 psercn2 25580 pserdvlem2 25585 abelth 25598 |
Copyright terms: Public domain | W3C validator |