![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pserval2 | Structured version Visualization version GIF version |
Description: Value of the function 𝐺 that gives the sequence of monomials of a power series. (Contributed by Mario Carneiro, 26-Feb-2015.) |
Ref | Expression |
---|---|
pser.g | ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) |
Ref | Expression |
---|---|
pserval2 | ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐺‘𝑋)‘𝑁) = ((𝐴‘𝑁) · (𝑋↑𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pser.g | . . . 4 ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) | |
2 | 1 | pserval 26471 | . . 3 ⊢ (𝑋 ∈ ℂ → (𝐺‘𝑋) = (𝑦 ∈ ℕ0 ↦ ((𝐴‘𝑦) · (𝑋↑𝑦)))) |
3 | 2 | fveq1d 6922 | . 2 ⊢ (𝑋 ∈ ℂ → ((𝐺‘𝑋)‘𝑁) = ((𝑦 ∈ ℕ0 ↦ ((𝐴‘𝑦) · (𝑋↑𝑦)))‘𝑁)) |
4 | fveq2 6920 | . . . 4 ⊢ (𝑦 = 𝑁 → (𝐴‘𝑦) = (𝐴‘𝑁)) | |
5 | oveq2 7456 | . . . 4 ⊢ (𝑦 = 𝑁 → (𝑋↑𝑦) = (𝑋↑𝑁)) | |
6 | 4, 5 | oveq12d 7466 | . . 3 ⊢ (𝑦 = 𝑁 → ((𝐴‘𝑦) · (𝑋↑𝑦)) = ((𝐴‘𝑁) · (𝑋↑𝑁))) |
7 | eqid 2740 | . . 3 ⊢ (𝑦 ∈ ℕ0 ↦ ((𝐴‘𝑦) · (𝑋↑𝑦))) = (𝑦 ∈ ℕ0 ↦ ((𝐴‘𝑦) · (𝑋↑𝑦))) | |
8 | ovex 7481 | . . 3 ⊢ ((𝐴‘𝑁) · (𝑋↑𝑁)) ∈ V | |
9 | 6, 7, 8 | fvmpt 7029 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((𝑦 ∈ ℕ0 ↦ ((𝐴‘𝑦) · (𝑋↑𝑦)))‘𝑁) = ((𝐴‘𝑁) · (𝑋↑𝑁))) |
10 | 3, 9 | sylan9eq 2800 | 1 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐺‘𝑋)‘𝑁) = ((𝐴‘𝑁) · (𝑋↑𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ↦ cmpt 5249 ‘cfv 6573 (class class class)co 7448 ℂcc 11182 · cmul 11189 ℕ0cn0 12553 ↑cexp 14112 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-1cn 11242 ax-addcl 11244 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-nn 12294 df-n0 12554 |
This theorem is referenced by: radcnvlem1 26474 radcnv0 26477 dvradcnv 26482 pserulm 26483 psercn2 26484 psercn2OLD 26485 pserdvlem2 26490 abelth 26503 |
Copyright terms: Public domain | W3C validator |