![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psergf | Structured version Visualization version GIF version |
Description: The sequence of terms in the infinite sequence defining a power series for fixed 𝑋. (Contributed by Mario Carneiro, 26-Feb-2015.) |
Ref | Expression |
---|---|
pser.g | ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) |
radcnv.a | ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
psergf.x | ⊢ (𝜑 → 𝑋 ∈ ℂ) |
Ref | Expression |
---|---|
psergf | ⊢ (𝜑 → (𝐺‘𝑋):ℕ0⟶ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | radcnv.a | . 2 ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) | |
2 | psergf.x | . 2 ⊢ (𝜑 → 𝑋 ∈ ℂ) | |
3 | ffvelrn 6623 | . . . . . 6 ⊢ ((𝐴:ℕ0⟶ℂ ∧ 𝑚 ∈ ℕ0) → (𝐴‘𝑚) ∈ ℂ) | |
4 | 3 | adantlr 705 | . . . . 5 ⊢ (((𝐴:ℕ0⟶ℂ ∧ 𝑋 ∈ ℂ) ∧ 𝑚 ∈ ℕ0) → (𝐴‘𝑚) ∈ ℂ) |
5 | expcl 13201 | . . . . . 6 ⊢ ((𝑋 ∈ ℂ ∧ 𝑚 ∈ ℕ0) → (𝑋↑𝑚) ∈ ℂ) | |
6 | 5 | adantll 704 | . . . . 5 ⊢ (((𝐴:ℕ0⟶ℂ ∧ 𝑋 ∈ ℂ) ∧ 𝑚 ∈ ℕ0) → (𝑋↑𝑚) ∈ ℂ) |
7 | 4, 6 | mulcld 10399 | . . . 4 ⊢ (((𝐴:ℕ0⟶ℂ ∧ 𝑋 ∈ ℂ) ∧ 𝑚 ∈ ℕ0) → ((𝐴‘𝑚) · (𝑋↑𝑚)) ∈ ℂ) |
8 | 7 | fmpttd 6651 | . . 3 ⊢ ((𝐴:ℕ0⟶ℂ ∧ 𝑋 ∈ ℂ) → (𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑋↑𝑚))):ℕ0⟶ℂ) |
9 | pser.g | . . . . . 6 ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) | |
10 | 9 | pserval 24612 | . . . . 5 ⊢ (𝑋 ∈ ℂ → (𝐺‘𝑋) = (𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑋↑𝑚)))) |
11 | 10 | adantl 475 | . . . 4 ⊢ ((𝐴:ℕ0⟶ℂ ∧ 𝑋 ∈ ℂ) → (𝐺‘𝑋) = (𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑋↑𝑚)))) |
12 | 11 | feq1d 6278 | . . 3 ⊢ ((𝐴:ℕ0⟶ℂ ∧ 𝑋 ∈ ℂ) → ((𝐺‘𝑋):ℕ0⟶ℂ ↔ (𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑋↑𝑚))):ℕ0⟶ℂ)) |
13 | 8, 12 | mpbird 249 | . 2 ⊢ ((𝐴:ℕ0⟶ℂ ∧ 𝑋 ∈ ℂ) → (𝐺‘𝑋):ℕ0⟶ℂ) |
14 | 1, 2, 13 | syl2anc 579 | 1 ⊢ (𝜑 → (𝐺‘𝑋):ℕ0⟶ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ↦ cmpt 4967 ⟶wf 6133 ‘cfv 6137 (class class class)co 6924 ℂcc 10272 · cmul 10279 ℕ0cn0 11647 ↑cexp 13183 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-cnex 10330 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-mulcom 10338 ax-addass 10339 ax-mulass 10340 ax-distr 10341 ax-i2m1 10342 ax-1ne0 10343 ax-1rid 10344 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 ax-pre-mulgt0 10351 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-om 7346 df-2nd 7448 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-er 8028 df-en 8244 df-dom 8245 df-sdom 8246 df-pnf 10415 df-mnf 10416 df-xr 10417 df-ltxr 10418 df-le 10419 df-sub 10610 df-neg 10611 df-nn 11380 df-n0 11648 df-z 11734 df-uz 11998 df-seq 13125 df-exp 13184 |
This theorem is referenced by: radcnvlem1 24615 radcnvlem2 24616 radcnvlem3 24617 radcnv0 24618 radcnvlt2 24621 dvradcnv 24623 pserulm 24624 pserdvlem2 24630 |
Copyright terms: Public domain | W3C validator |