| Metamath
Proof Explorer Theorem List (p. 154 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | absval2 15301 | Value of absolute value function. Definition 10.36 of [Gleason] p. 133. (Contributed by NM, 17-Mar-2005.) |
| ⊢ (𝐴 ∈ ℂ → (abs‘𝐴) = (√‘(((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)))) | ||
| Theorem | abs0 15302 | The absolute value of 0. (Contributed by NM, 26-Mar-2005.) (Revised by Mario Carneiro, 29-May-2016.) |
| ⊢ (abs‘0) = 0 | ||
| Theorem | absi 15303 | The absolute value of the imaginary unit. (Contributed by NM, 26-Mar-2005.) |
| ⊢ (abs‘i) = 1 | ||
| Theorem | absge0 15304 | Absolute value is nonnegative. (Contributed by NM, 20-Nov-2004.) (Revised by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝐴 ∈ ℂ → 0 ≤ (abs‘𝐴)) | ||
| Theorem | absrpcl 15305 | The absolute value of a nonzero number is a positive real. (Contributed by FL, 27-Dec-2007.) (Proof shortened by Mario Carneiro, 29-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ+) | ||
| Theorem | abs00 15306 | The absolute value of a number is zero iff the number is zero. Proposition 10-3.7(c) of [Gleason] p. 133. (Contributed by NM, 26-Sep-2005.) (Proof shortened by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝐴 ∈ ℂ → ((abs‘𝐴) = 0 ↔ 𝐴 = 0)) | ||
| Theorem | abs00ad 15307 | A complex number is zero iff its absolute value is zero. Deduction form of abs00 15306. (Contributed by David Moews, 28-Feb-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → ((abs‘𝐴) = 0 ↔ 𝐴 = 0)) | ||
| Theorem | abs00bd 15308 | If a complex number is zero, its absolute value is zero. Converse of abs00d 15463. One-way deduction form of abs00 15306. (Contributed by David Moews, 28-Feb-2017.) |
| ⊢ (𝜑 → 𝐴 = 0) ⇒ ⊢ (𝜑 → (abs‘𝐴) = 0) | ||
| Theorem | absreimsq 15309 | Square of the absolute value of a number that has been decomposed into real and imaginary parts. (Contributed by NM, 1-Feb-2007.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs‘(𝐴 + (i · 𝐵)))↑2) = ((𝐴↑2) + (𝐵↑2))) | ||
| Theorem | absreim 15310 | Absolute value of a number that has been decomposed into real and imaginary parts. (Contributed by NM, 14-Jan-2006.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (abs‘(𝐴 + (i · 𝐵))) = (√‘((𝐴↑2) + (𝐵↑2)))) | ||
| Theorem | absmul 15311 | Absolute value distributes over multiplication. Proposition 10-3.7(f) of [Gleason] p. 133. (Contributed by NM, 11-Oct-1999.) (Revised by Mario Carneiro, 29-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 · 𝐵)) = ((abs‘𝐴) · (abs‘𝐵))) | ||
| Theorem | absdiv 15312 | Absolute value distributes over division. (Contributed by NM, 27-Apr-2005.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (abs‘(𝐴 / 𝐵)) = ((abs‘𝐴) / (abs‘𝐵))) | ||
| Theorem | absid 15313 | A nonnegative number is its own absolute value. (Contributed by NM, 11-Oct-1999.) (Revised by Mario Carneiro, 29-May-2016.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (abs‘𝐴) = 𝐴) | ||
| Theorem | abs1 15314 | The absolute value of one is one. (Contributed by David A. Wheeler, 16-Jul-2016.) |
| ⊢ (abs‘1) = 1 | ||
| Theorem | absnid 15315 | For a negative number, its absolute value is its negation. (Contributed by NM, 27-Feb-2005.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → (abs‘𝐴) = -𝐴) | ||
| Theorem | leabs 15316 | A real number is less than or equal to its absolute value. (Contributed by NM, 27-Feb-2005.) |
| ⊢ (𝐴 ∈ ℝ → 𝐴 ≤ (abs‘𝐴)) | ||
| Theorem | absor 15317 | The absolute value of a real number is either that number or its negative. (Contributed by NM, 27-Feb-2005.) |
| ⊢ (𝐴 ∈ ℝ → ((abs‘𝐴) = 𝐴 ∨ (abs‘𝐴) = -𝐴)) | ||
| Theorem | absre 15318 | Absolute value of a real number. (Contributed by NM, 17-Mar-2005.) |
| ⊢ (𝐴 ∈ ℝ → (abs‘𝐴) = (√‘(𝐴↑2))) | ||
| Theorem | absresq 15319 | Square of the absolute value of a real number. (Contributed by NM, 16-Jan-2006.) |
| ⊢ (𝐴 ∈ ℝ → ((abs‘𝐴)↑2) = (𝐴↑2)) | ||
| Theorem | absmod0 15320 | 𝐴 is divisible by 𝐵 iff its absolute value is. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 mod 𝐵) = 0 ↔ ((abs‘𝐴) mod 𝐵) = 0)) | ||
| Theorem | absexp 15321 | Absolute value of positive integer exponentiation. (Contributed by NM, 5-Jan-2006.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (abs‘(𝐴↑𝑁)) = ((abs‘𝐴)↑𝑁)) | ||
| Theorem | absexpz 15322 | Absolute value of integer exponentiation. (Contributed by Mario Carneiro, 6-Apr-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (abs‘(𝐴↑𝑁)) = ((abs‘𝐴)↑𝑁)) | ||
| Theorem | abssq 15323 | Square can be moved in and out of absolute value. (Contributed by Scott Fenton, 18-Apr-2014.) (Proof shortened by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝐴 ∈ ℂ → ((abs‘𝐴)↑2) = (abs‘(𝐴↑2))) | ||
| Theorem | sqabs 15324 | The squares of two reals are equal iff their absolute values are equal. (Contributed by NM, 6-Mar-2009.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴↑2) = (𝐵↑2) ↔ (abs‘𝐴) = (abs‘𝐵))) | ||
| Theorem | absrele 15325 | The absolute value of a complex number is greater than or equal to the absolute value of its real part. (Contributed by NM, 1-Apr-2005.) |
| ⊢ (𝐴 ∈ ℂ → (abs‘(ℜ‘𝐴)) ≤ (abs‘𝐴)) | ||
| Theorem | absimle 15326 | The absolute value of a complex number is greater than or equal to the absolute value of its imaginary part. (Contributed by NM, 17-Mar-2005.) (Proof shortened by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝐴 ∈ ℂ → (abs‘(ℑ‘𝐴)) ≤ (abs‘𝐴)) | ||
| Theorem | max0add 15327 | The sum of the positive and negative part functions is the absolute value function over the reals. (Contributed by Mario Carneiro, 24-Aug-2014.) |
| ⊢ (𝐴 ∈ ℝ → (if(0 ≤ 𝐴, 𝐴, 0) + if(0 ≤ -𝐴, -𝐴, 0)) = (abs‘𝐴)) | ||
| Theorem | absz 15328 | A real number is an integer iff its absolute value is an integer. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝐴 ∈ ℝ → (𝐴 ∈ ℤ ↔ (abs‘𝐴) ∈ ℤ)) | ||
| Theorem | nn0abscl 15329 | The absolute value of an integer is a nonnegative integer. (Contributed by NM, 27-Feb-2005.) (Proof shortened by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝐴 ∈ ℤ → (abs‘𝐴) ∈ ℕ0) | ||
| Theorem | zabscl 15330 | The absolute value of an integer is an integer. (Contributed by Stefan O'Rear, 24-Sep-2014.) |
| ⊢ (𝐴 ∈ ℤ → (abs‘𝐴) ∈ ℤ) | ||
| Theorem | abslt 15331 | Absolute value and 'less than' relation. (Contributed by NM, 6-Apr-2005.) (Revised by Mario Carneiro, 29-May-2016.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs‘𝐴) < 𝐵 ↔ (-𝐵 < 𝐴 ∧ 𝐴 < 𝐵))) | ||
| Theorem | absle 15332 | Absolute value and 'less than or equal to' relation. (Contributed by NM, 6-Apr-2005.) (Revised by Mario Carneiro, 29-May-2016.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs‘𝐴) ≤ 𝐵 ↔ (-𝐵 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵))) | ||
| Theorem | abssubne0 15333 | If the absolute value of a complex number is less than a real, its difference from the real is nonzero. (Contributed by NM, 2-Nov-2007.) (Proof shortened by Mario Carneiro, 29-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ (abs‘𝐴) < 𝐵) → (𝐵 − 𝐴) ≠ 0) | ||
| Theorem | absdiflt 15334 | The absolute value of a difference and 'less than' relation. (Contributed by Paul Chapman, 18-Sep-2007.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((abs‘(𝐴 − 𝐵)) < 𝐶 ↔ ((𝐵 − 𝐶) < 𝐴 ∧ 𝐴 < (𝐵 + 𝐶)))) | ||
| Theorem | absdifle 15335 | The absolute value of a difference and 'less than or equal to' relation. (Contributed by Paul Chapman, 18-Sep-2007.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((abs‘(𝐴 − 𝐵)) ≤ 𝐶 ↔ ((𝐵 − 𝐶) ≤ 𝐴 ∧ 𝐴 ≤ (𝐵 + 𝐶)))) | ||
| Theorem | elicc4abs 15336 | Membership in a symmetric closed real interval. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 ∈ ((𝐴 − 𝐵)[,](𝐴 + 𝐵)) ↔ (abs‘(𝐶 − 𝐴)) ≤ 𝐵)) | ||
| Theorem | lenegsq 15337 | Comparison to a nonnegative number based on comparison to squares. (Contributed by NM, 16-Jan-2006.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → ((𝐴 ≤ 𝐵 ∧ -𝐴 ≤ 𝐵) ↔ (𝐴↑2) ≤ (𝐵↑2))) | ||
| Theorem | releabs 15338 | The real part of a number is less than or equal to its absolute value. Proposition 10-3.7(d) of [Gleason] p. 133. (Contributed by NM, 1-Apr-2005.) |
| ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ≤ (abs‘𝐴)) | ||
| Theorem | recval 15339 | Reciprocal expressed with a real denominator. (Contributed by Mario Carneiro, 1-Apr-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (1 / 𝐴) = ((∗‘𝐴) / ((abs‘𝐴)↑2))) | ||
| Theorem | absidm 15340 | The absolute value function is idempotent. (Contributed by NM, 20-Nov-2004.) |
| ⊢ (𝐴 ∈ ℂ → (abs‘(abs‘𝐴)) = (abs‘𝐴)) | ||
| Theorem | absgt0 15341 | The absolute value of a nonzero number is positive. (Contributed by NM, 1-Oct-1999.) (Proof shortened by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝐴 ∈ ℂ → (𝐴 ≠ 0 ↔ 0 < (abs‘𝐴))) | ||
| Theorem | nnabscl 15342 | The absolute value of a nonzero integer is a positive integer. (Contributed by Paul Chapman, 21-Mar-2011.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (abs‘𝑁) ∈ ℕ) | ||
| Theorem | abssub 15343 | Swapping order of subtraction doesn't change the absolute value. (Contributed by NM, 1-Oct-1999.) (Proof shortened by Mario Carneiro, 29-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 − 𝐵)) = (abs‘(𝐵 − 𝐴))) | ||
| Theorem | abssubge0 15344 | Absolute value of a nonnegative difference. (Contributed by NM, 14-Feb-2008.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (abs‘(𝐵 − 𝐴)) = (𝐵 − 𝐴)) | ||
| Theorem | abssuble0 15345 | Absolute value of a nonpositive difference. (Contributed by FL, 3-Jan-2008.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (abs‘(𝐴 − 𝐵)) = (𝐵 − 𝐴)) | ||
| Theorem | absmax 15346 | The maximum of two numbers using absolute value. (Contributed by NM, 7-Aug-2008.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → if(𝐴 ≤ 𝐵, 𝐵, 𝐴) = (((𝐴 + 𝐵) + (abs‘(𝐴 − 𝐵))) / 2)) | ||
| Theorem | abstri 15347 | Triangle inequality for absolute value. Proposition 10-3.7(h) of [Gleason] p. 133. (Contributed by NM, 7-Mar-2005.) (Proof shortened by Mario Carneiro, 29-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 + 𝐵)) ≤ ((abs‘𝐴) + (abs‘𝐵))) | ||
| Theorem | abs3dif 15348 | Absolute value of differences around common element. (Contributed by FL, 9-Oct-2006.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (abs‘(𝐴 − 𝐵)) ≤ ((abs‘(𝐴 − 𝐶)) + (abs‘(𝐶 − 𝐵)))) | ||
| Theorem | abs2dif 15349 | Difference of absolute values. (Contributed by Paul Chapman, 7-Sep-2007.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴 − 𝐵))) | ||
| Theorem | abs2dif2 15350 | Difference of absolute values. (Contributed by Mario Carneiro, 14-Apr-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 − 𝐵)) ≤ ((abs‘𝐴) + (abs‘𝐵))) | ||
| Theorem | abs2difabs 15351 | Absolute value of difference of absolute values. (Contributed by Paul Chapman, 7-Sep-2007.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘((abs‘𝐴) − (abs‘𝐵))) ≤ (abs‘(𝐴 − 𝐵))) | ||
| Theorem | abs1m 15352* | For any complex number, there exists a unit-magnitude multiplier that produces its absolute value. Part of proof of Theorem 13-2.12 of [Gleason] p. 195. (Contributed by NM, 26-Mar-2005.) |
| ⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℂ ((abs‘𝑥) = 1 ∧ (abs‘𝐴) = (𝑥 · 𝐴))) | ||
| Theorem | recan 15353* | Cancellation law involving the real part of a complex number. (Contributed by NM, 12-May-2005.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∀𝑥 ∈ ℂ (ℜ‘(𝑥 · 𝐴)) = (ℜ‘(𝑥 · 𝐵)) ↔ 𝐴 = 𝐵)) | ||
| Theorem | absf 15354 | Mapping domain and codomain of the absolute value function. (Contributed by NM, 30-Aug-2007.) (Revised by Mario Carneiro, 7-Nov-2013.) |
| ⊢ abs:ℂ⟶ℝ | ||
| Theorem | abs3lem 15355 | Lemma involving absolute value of differences. (Contributed by NM, 2-Oct-1999.) |
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℝ)) → (((abs‘(𝐴 − 𝐶)) < (𝐷 / 2) ∧ (abs‘(𝐶 − 𝐵)) < (𝐷 / 2)) → (abs‘(𝐴 − 𝐵)) < 𝐷)) | ||
| Theorem | abslem2 15356 | Lemma involving absolute values. (Contributed by NM, 11-Oct-1999.) (Revised by Mario Carneiro, 29-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (((∗‘(𝐴 / (abs‘𝐴))) · 𝐴) + ((𝐴 / (abs‘𝐴)) · (∗‘𝐴))) = (2 · (abs‘𝐴))) | ||
| Theorem | rddif 15357 | The difference between a real number and its nearest integer is less than or equal to one half. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 14-Sep-2015.) |
| ⊢ (𝐴 ∈ ℝ → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ≤ (1 / 2)) | ||
| Theorem | absrdbnd 15358 | Bound on the absolute value of a real number rounded to the nearest integer. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 14-Sep-2015.) |
| ⊢ (𝐴 ∈ ℝ → (abs‘(⌊‘(𝐴 + (1 / 2)))) ≤ ((⌊‘(abs‘𝐴)) + 1)) | ||
| Theorem | fzomaxdiflem 15359 | Lemma for fzomaxdif 15360. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
| ⊢ (((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) ∧ 𝐴 ≤ 𝐵) → (abs‘(𝐵 − 𝐴)) ∈ (0..^(𝐷 − 𝐶))) | ||
| Theorem | fzomaxdif 15360 | A bound on the separation of two points in a half-open range. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
| ⊢ ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → (abs‘(𝐴 − 𝐵)) ∈ (0..^(𝐷 − 𝐶))) | ||
| Theorem | uzin2 15361 | The upper integers are closed under intersection. (Contributed by Mario Carneiro, 24-Dec-2013.) |
| ⊢ ((𝐴 ∈ ran ℤ≥ ∧ 𝐵 ∈ ran ℤ≥) → (𝐴 ∩ 𝐵) ∈ ran ℤ≥) | ||
| Theorem | rexanuz 15362* | Combine two different upper integer properties into one. (Contributed by Mario Carneiro, 25-Dec-2013.) |
| ⊢ (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓) ↔ (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ∧ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓)) | ||
| Theorem | rexanre 15363* | Combine two different upper real properties into one. (Contributed by Mario Carneiro, 8-May-2016.) |
| ⊢ (𝐴 ⊆ ℝ → (∃𝑗 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (𝜑 ∧ 𝜓)) ↔ (∃𝑗 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜑) ∧ ∃𝑗 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜓)))) | ||
| Theorem | rexfiuz 15364* | Combine finitely many different upper integer properties into one. (Contributed by Mario Carneiro, 6-Jun-2014.) |
| ⊢ (𝐴 ∈ Fin → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑛 ∈ 𝐴 𝜑 ↔ ∀𝑛 ∈ 𝐴 ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑)) | ||
| Theorem | rexuz3 15365* | Restrict the base of the upper integers set to another upper integers set. (Contributed by Mario Carneiro, 26-Dec-2013.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ (𝑀 ∈ ℤ → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑)) | ||
| Theorem | rexanuz2 15366* | Combine two different upper integer properties into one. (Contributed by Mario Carneiro, 26-Dec-2013.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓) ↔ (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ∧ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓)) | ||
| Theorem | r19.29uz 15367* | A version of 19.29 1873 for upper integer quantifiers. (Contributed by Mario Carneiro, 10-Feb-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ ((∀𝑘 ∈ 𝑍 𝜑 ∧ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓)) | ||
| Theorem | r19.2uz 15368* | A version of r19.2z 4470 for upper integer quantifiers. (Contributed by Mario Carneiro, 15-Feb-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 → ∃𝑘 ∈ 𝑍 𝜑) | ||
| Theorem | rexuzre 15369* | Convert an upper real quantifier to an upper integer quantifier. (Contributed by Mario Carneiro, 7-May-2016.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ (𝑀 ∈ ℤ → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ↔ ∃𝑗 ∈ ℝ ∀𝑘 ∈ 𝑍 (𝑗 ≤ 𝑘 → 𝜑))) | ||
| Theorem | rexico 15370* | Restrict the base of an upper real quantifier to an upper real set. (Contributed by Mario Carneiro, 12-May-2016.) |
| ⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) → (∃𝑗 ∈ (𝐵[,)+∞)∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜑) ↔ ∃𝑗 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜑))) | ||
| Theorem | cau3lem 15371* | Lemma for cau3 15372. (Contributed by Mario Carneiro, 15-Feb-2014.) (Revised by Mario Carneiro, 1-May-2014.) |
| ⊢ 𝑍 ⊆ ℤ & ⊢ (𝜏 → 𝜓) & ⊢ ((𝐹‘𝑘) = (𝐹‘𝑗) → (𝜓 ↔ 𝜒)) & ⊢ ((𝐹‘𝑘) = (𝐹‘𝑚) → (𝜓 ↔ 𝜃)) & ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → (𝐺‘((𝐹‘𝑗)𝐷(𝐹‘𝑘))) = (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗)))) & ⊢ ((𝜑 ∧ 𝜃 ∧ 𝜒) → (𝐺‘((𝐹‘𝑚)𝐷(𝐹‘𝑗))) = (𝐺‘((𝐹‘𝑗)𝐷(𝐹‘𝑚)))) & ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜃) ∧ (𝜒 ∧ 𝑥 ∈ ℝ)) → (((𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2) ∧ (𝐺‘((𝐹‘𝑗)𝐷(𝐹‘𝑚))) < (𝑥 / 2)) → (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜏 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜏 ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥))) | ||
| Theorem | cau3 15372* | Convert between three-quantifier and four-quantifier versions of the Cauchy criterion. (In particular, the four-quantifier version has no occurrence of 𝑗 in the assertion, so it can be used with rexanuz 15362 and friends.) (Contributed by Mario Carneiro, 15-Feb-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ (∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)(abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥)) | ||
| Theorem | cau4 15373* | Change the base of a Cauchy criterion. (Contributed by Mario Carneiro, 18-Mar-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝑊 = (ℤ≥‘𝑁) ⇒ ⊢ (𝑁 ∈ 𝑍 → (∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑊 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥))) | ||
| Theorem | caubnd2 15374* | A Cauchy sequence of complex numbers is eventually bounded. (Contributed by Mario Carneiro, 14-Feb-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ (∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) → ∃𝑦 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐹‘𝑘)) < 𝑦) | ||
| Theorem | caubnd 15375* | A Cauchy sequence of complex numbers is bounded. (Contributed by NM, 4-Apr-2005.) (Revised by Mario Carneiro, 14-Feb-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ ((∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) → ∃𝑦 ∈ ℝ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) < 𝑦) | ||
| Theorem | sqreulem 15376 | Lemma for sqreu 15377: write a general complex square root in terms of the square root function over nonnegative reals. (Contributed by Mario Carneiro, 9-Jul-2013.) |
| ⊢ 𝐵 = ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((𝐵↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝐵) ∧ (i · 𝐵) ∉ ℝ+)) | ||
| Theorem | sqreu 15377* | Existence and uniqueness for the square root function in general. (Contributed by Mario Carneiro, 9-Jul-2013.) |
| ⊢ (𝐴 ∈ ℂ → ∃!𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) | ||
| Theorem | sqrtcl 15378 | Closure of the square root function over the complex numbers. (Contributed by Mario Carneiro, 10-Jul-2013.) |
| ⊢ (𝐴 ∈ ℂ → (√‘𝐴) ∈ ℂ) | ||
| Theorem | sqrtthlem 15379 | Lemma for sqrtth 15381. (Contributed by Mario Carneiro, 10-Jul-2013.) |
| ⊢ (𝐴 ∈ ℂ → (((√‘𝐴)↑2) = 𝐴 ∧ 0 ≤ (ℜ‘(√‘𝐴)) ∧ (i · (√‘𝐴)) ∉ ℝ+)) | ||
| Theorem | sqrtf 15380 | Mapping domain and codomain of the square root function. (Contributed by Mario Carneiro, 13-Sep-2015.) |
| ⊢ √:ℂ⟶ℂ | ||
| Theorem | sqrtth 15381 | Square root theorem over the complex numbers. Theorem I.35 of [Apostol] p. 29. (Contributed by Mario Carneiro, 10-Jul-2013.) |
| ⊢ (𝐴 ∈ ℂ → ((√‘𝐴)↑2) = 𝐴) | ||
| Theorem | sqrtrege0 15382 | The square root function must make a choice between the two roots, which differ by a sign change. In the general complex case, the choice of "positive" and "negative" is not so clear. The convention we use is to take the root with positive real part, unless 𝐴 is a nonpositive real (in which case both roots have 0 real part); in this case we take the one in the positive imaginary direction. Another way to look at this is that we choose the root that is largest with respect to lexicographic order on the complex numbers (sorting by real part first, then by imaginary part as tie-breaker). (Contributed by Mario Carneiro, 10-Jul-2013.) |
| ⊢ (𝐴 ∈ ℂ → 0 ≤ (ℜ‘(√‘𝐴))) | ||
| Theorem | eqsqrtor 15383 | Solve an equation containing a square. (Contributed by Mario Carneiro, 23-Apr-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) = 𝐵 ↔ (𝐴 = (√‘𝐵) ∨ 𝐴 = -(√‘𝐵)))) | ||
| Theorem | eqsqrtd 15384 | A deduction for showing that a number equals the square root of another. (Contributed by Mario Carneiro, 3-Apr-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → (𝐴↑2) = 𝐵) & ⊢ (𝜑 → 0 ≤ (ℜ‘𝐴)) & ⊢ (𝜑 → ¬ (i · 𝐴) ∈ ℝ+) ⇒ ⊢ (𝜑 → 𝐴 = (√‘𝐵)) | ||
| Theorem | eqsqrt2d 15385 | A deduction for showing that a number equals the square root of another. (Contributed by Mario Carneiro, 3-Apr-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → (𝐴↑2) = 𝐵) & ⊢ (𝜑 → 0 < (ℜ‘𝐴)) ⇒ ⊢ (𝜑 → 𝐴 = (√‘𝐵)) | ||
| Theorem | amgm2 15386 | Arithmetic-geometric mean inequality for 𝑛 = 2. (Contributed by Mario Carneiro, 2-Jul-2014.) (Proof shortened by AV, 9-Jul-2022.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (√‘(𝐴 · 𝐵)) ≤ ((𝐴 + 𝐵) / 2)) | ||
| Theorem | sqrtthi 15387 | Square root theorem. Theorem I.35 of [Apostol] p. 29. (Contributed by NM, 26-May-1999.) (Revised by Mario Carneiro, 6-Sep-2013.) |
| ⊢ 𝐴 ∈ ℝ ⇒ ⊢ (0 ≤ 𝐴 → ((√‘𝐴) · (√‘𝐴)) = 𝐴) | ||
| Theorem | sqrtcli 15388 | The square root of a nonnegative real is a real. (Contributed by NM, 26-May-1999.) (Revised by Mario Carneiro, 6-Sep-2013.) |
| ⊢ 𝐴 ∈ ℝ ⇒ ⊢ (0 ≤ 𝐴 → (√‘𝐴) ∈ ℝ) | ||
| Theorem | sqrtgt0i 15389 | The square root of a positive real is positive. (Contributed by NM, 26-May-1999.) (Revised by Mario Carneiro, 6-Sep-2013.) |
| ⊢ 𝐴 ∈ ℝ ⇒ ⊢ (0 < 𝐴 → 0 < (√‘𝐴)) | ||
| Theorem | sqrtmsqi 15390 | Square root of square. (Contributed by NM, 2-Aug-1999.) |
| ⊢ 𝐴 ∈ ℝ ⇒ ⊢ (0 ≤ 𝐴 → (√‘(𝐴 · 𝐴)) = 𝐴) | ||
| Theorem | sqrtsqi 15391 | Square root of square. (Contributed by NM, 11-Aug-1999.) |
| ⊢ 𝐴 ∈ ℝ ⇒ ⊢ (0 ≤ 𝐴 → (√‘(𝐴↑2)) = 𝐴) | ||
| Theorem | sqsqrti 15392 | Square of square root. (Contributed by NM, 11-Aug-1999.) |
| ⊢ 𝐴 ∈ ℝ ⇒ ⊢ (0 ≤ 𝐴 → ((√‘𝐴)↑2) = 𝐴) | ||
| Theorem | sqrtge0i 15393 | The square root of a nonnegative real is nonnegative. (Contributed by NM, 26-May-1999.) (Revised by Mario Carneiro, 6-Sep-2013.) |
| ⊢ 𝐴 ∈ ℝ ⇒ ⊢ (0 ≤ 𝐴 → 0 ≤ (√‘𝐴)) | ||
| Theorem | absidi 15394 | A nonnegative number is its own absolute value. (Contributed by NM, 2-Aug-1999.) |
| ⊢ 𝐴 ∈ ℝ ⇒ ⊢ (0 ≤ 𝐴 → (abs‘𝐴) = 𝐴) | ||
| Theorem | absnidi 15395 | A negative number is the negative of its own absolute value. (Contributed by NM, 2-Aug-1999.) |
| ⊢ 𝐴 ∈ ℝ ⇒ ⊢ (𝐴 ≤ 0 → (abs‘𝐴) = -𝐴) | ||
| Theorem | leabsi 15396 | A real number is less than or equal to its absolute value. (Contributed by NM, 2-Aug-1999.) |
| ⊢ 𝐴 ∈ ℝ ⇒ ⊢ 𝐴 ≤ (abs‘𝐴) | ||
| Theorem | absori 15397 | The absolute value of a real number is either that number or its negative. (Contributed by NM, 30-Sep-1999.) |
| ⊢ 𝐴 ∈ ℝ ⇒ ⊢ ((abs‘𝐴) = 𝐴 ∨ (abs‘𝐴) = -𝐴) | ||
| Theorem | absrei 15398 | Absolute value of a real number. (Contributed by NM, 3-Aug-1999.) |
| ⊢ 𝐴 ∈ ℝ ⇒ ⊢ (abs‘𝐴) = (√‘(𝐴↑2)) | ||
| Theorem | sqrtpclii 15399 | The square root of a positive real is a real. (Contributed by Mario Carneiro, 6-Sep-2013.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 0 < 𝐴 ⇒ ⊢ (√‘𝐴) ∈ ℝ | ||
| Theorem | sqrtgt0ii 15400 | The square root of a positive real is positive. (Contributed by NM, 26-May-1999.) (Revised by Mario Carneiro, 6-Sep-2013.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 0 < 𝐴 ⇒ ⊢ 0 < (√‘𝐴) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |