MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulmbdd Structured version   Visualization version   GIF version

Theorem ulmbdd 25663
Description: A uniform limit of bounded functions is bounded. (Contributed by Mario Carneiro, 27-Feb-2015.)
Hypotheses
Ref Expression
ulmbdd.z 𝑍 = (ℤ𝑀)
ulmbdd.m (𝜑𝑀 ∈ ℤ)
ulmbdd.f (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))
ulmbdd.b ((𝜑𝑘𝑍) → ∃𝑥 ∈ ℝ ∀𝑧𝑆 (abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥)
ulmbdd.u (𝜑𝐹(⇝𝑢𝑆)𝐺)
Assertion
Ref Expression
ulmbdd (𝜑 → ∃𝑥 ∈ ℝ ∀𝑧𝑆 (abs‘(𝐺𝑧)) ≤ 𝑥)
Distinct variable groups:   𝑥,𝑘,𝑧,𝐹   𝑘,𝐺,𝑥,𝑧   𝜑,𝑘,𝑥,𝑧   𝑆,𝑘,𝑥,𝑧   𝑘,𝑀,𝑧   𝑘,𝑍,𝑥,𝑧
Allowed substitution hint:   𝑀(𝑥)

Proof of Theorem ulmbdd
Dummy variables 𝑗 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ulmbdd.z . . 3 𝑍 = (ℤ𝑀)
2 ulmbdd.m . . 3 (𝜑𝑀 ∈ ℤ)
3 ulmbdd.f . . 3 (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))
4 eqidd 2738 . . 3 ((𝜑 ∧ (𝑘𝑍𝑧𝑆)) → ((𝐹𝑘)‘𝑧) = ((𝐹𝑘)‘𝑧))
5 eqidd 2738 . . 3 ((𝜑𝑧𝑆) → (𝐺𝑧) = (𝐺𝑧))
6 ulmbdd.u . . 3 (𝜑𝐹(⇝𝑢𝑆)𝐺)
7 1rp 12840 . . . 4 1 ∈ ℝ+
87a1i 11 . . 3 (𝜑 → 1 ∈ ℝ+)
91, 2, 3, 4, 5, 6, 8ulmi 25651 . 2 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1)
101r19.2uz 15163 . . 3 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1 → ∃𝑘𝑍𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1)
11 ulmbdd.b . . . . . 6 ((𝜑𝑘𝑍) → ∃𝑥 ∈ ℝ ∀𝑧𝑆 (abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥)
12 r19.26 3111 . . . . . . . . 9 (∀𝑧𝑆 ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1) ↔ (∀𝑧𝑆 (abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))
13 peano2re 11254 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (𝑥 + 1) ∈ ℝ)
1413adantl 483 . . . . . . . . . 10 (((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) → (𝑥 + 1) ∈ ℝ)
15 ulmcl 25646 . . . . . . . . . . . . . . . . 17 (𝐹(⇝𝑢𝑆)𝐺𝐺:𝑆⟶ℂ)
166, 15syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐺:𝑆⟶ℂ)
1716ad3antrrr 728 . . . . . . . . . . . . . . 15 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → 𝐺:𝑆⟶ℂ)
18 simprl 769 . . . . . . . . . . . . . . 15 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → 𝑧𝑆)
1917, 18ffvelcdmd 7023 . . . . . . . . . . . . . 14 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → (𝐺𝑧) ∈ ℂ)
2019abscld 15248 . . . . . . . . . . . . 13 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → (abs‘(𝐺𝑧)) ∈ ℝ)
213ad3antrrr 728 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → 𝐹:𝑍⟶(ℂ ↑m 𝑆))
22 simpllr 774 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → 𝑘𝑍)
2321, 22ffvelcdmd 7023 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → (𝐹𝑘) ∈ (ℂ ↑m 𝑆))
24 elmapi 8713 . . . . . . . . . . . . . . . . 17 ((𝐹𝑘) ∈ (ℂ ↑m 𝑆) → (𝐹𝑘):𝑆⟶ℂ)
2523, 24syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → (𝐹𝑘):𝑆⟶ℂ)
2625, 18ffvelcdmd 7023 . . . . . . . . . . . . . . 15 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → ((𝐹𝑘)‘𝑧) ∈ ℂ)
2726abscld 15248 . . . . . . . . . . . . . 14 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → (abs‘((𝐹𝑘)‘𝑧)) ∈ ℝ)
2819, 26subcld 11438 . . . . . . . . . . . . . . 15 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → ((𝐺𝑧) − ((𝐹𝑘)‘𝑧)) ∈ ℂ)
2928abscld 15248 . . . . . . . . . . . . . 14 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → (abs‘((𝐺𝑧) − ((𝐹𝑘)‘𝑧))) ∈ ℝ)
3027, 29readdcld 11110 . . . . . . . . . . . . 13 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → ((abs‘((𝐹𝑘)‘𝑧)) + (abs‘((𝐺𝑧) − ((𝐹𝑘)‘𝑧)))) ∈ ℝ)
3114adantr 482 . . . . . . . . . . . . 13 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → (𝑥 + 1) ∈ ℝ)
3226, 19pncan3d 11441 . . . . . . . . . . . . . . 15 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → (((𝐹𝑘)‘𝑧) + ((𝐺𝑧) − ((𝐹𝑘)‘𝑧))) = (𝐺𝑧))
3332fveq2d 6834 . . . . . . . . . . . . . 14 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → (abs‘(((𝐹𝑘)‘𝑧) + ((𝐺𝑧) − ((𝐹𝑘)‘𝑧)))) = (abs‘(𝐺𝑧)))
3426, 28abstrid 15268 . . . . . . . . . . . . . 14 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → (abs‘(((𝐹𝑘)‘𝑧) + ((𝐺𝑧) − ((𝐹𝑘)‘𝑧)))) ≤ ((abs‘((𝐹𝑘)‘𝑧)) + (abs‘((𝐺𝑧) − ((𝐹𝑘)‘𝑧)))))
3533, 34eqbrtrrd 5121 . . . . . . . . . . . . 13 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → (abs‘(𝐺𝑧)) ≤ ((abs‘((𝐹𝑘)‘𝑧)) + (abs‘((𝐺𝑧) − ((𝐹𝑘)‘𝑧)))))
36 simplr 767 . . . . . . . . . . . . . 14 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → 𝑥 ∈ ℝ)
37 1re 11081 . . . . . . . . . . . . . . 15 1 ∈ ℝ
3837a1i 11 . . . . . . . . . . . . . 14 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → 1 ∈ ℝ)
39 simprrl 779 . . . . . . . . . . . . . 14 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → (abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥)
4019, 26abssubd 15265 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → (abs‘((𝐺𝑧) − ((𝐹𝑘)‘𝑧))) = (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))))
41 simprrr 780 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1)
4240, 41eqbrtrd 5119 . . . . . . . . . . . . . . 15 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → (abs‘((𝐺𝑧) − ((𝐹𝑘)‘𝑧))) < 1)
43 ltle 11169 . . . . . . . . . . . . . . . 16 (((abs‘((𝐺𝑧) − ((𝐹𝑘)‘𝑧))) ∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘((𝐺𝑧) − ((𝐹𝑘)‘𝑧))) < 1 → (abs‘((𝐺𝑧) − ((𝐹𝑘)‘𝑧))) ≤ 1))
4429, 37, 43sylancl 587 . . . . . . . . . . . . . . 15 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → ((abs‘((𝐺𝑧) − ((𝐹𝑘)‘𝑧))) < 1 → (abs‘((𝐺𝑧) − ((𝐹𝑘)‘𝑧))) ≤ 1))
4542, 44mpd 15 . . . . . . . . . . . . . 14 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → (abs‘((𝐺𝑧) − ((𝐹𝑘)‘𝑧))) ≤ 1)
4627, 29, 36, 38, 39, 45le2addd 11700 . . . . . . . . . . . . 13 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → ((abs‘((𝐹𝑘)‘𝑧)) + (abs‘((𝐺𝑧) − ((𝐹𝑘)‘𝑧)))) ≤ (𝑥 + 1))
4720, 30, 31, 35, 46letrd 11238 . . . . . . . . . . . 12 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → (abs‘(𝐺𝑧)) ≤ (𝑥 + 1))
4847expr 458 . . . . . . . . . . 11 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ 𝑧𝑆) → (((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1) → (abs‘(𝐺𝑧)) ≤ (𝑥 + 1)))
4948ralimdva 3161 . . . . . . . . . 10 (((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) → (∀𝑧𝑆 ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1) → ∀𝑧𝑆 (abs‘(𝐺𝑧)) ≤ (𝑥 + 1)))
50 brralrspcev 5157 . . . . . . . . . 10 (((𝑥 + 1) ∈ ℝ ∧ ∀𝑧𝑆 (abs‘(𝐺𝑧)) ≤ (𝑥 + 1)) → ∃𝑦 ∈ ℝ ∀𝑧𝑆 (abs‘(𝐺𝑧)) ≤ 𝑦)
5114, 49, 50syl6an 682 . . . . . . . . 9 (((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) → (∀𝑧𝑆 ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1) → ∃𝑦 ∈ ℝ ∀𝑧𝑆 (abs‘(𝐺𝑧)) ≤ 𝑦))
5212, 51syl5bir 243 . . . . . . . 8 (((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) → ((∀𝑧𝑆 (abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1) → ∃𝑦 ∈ ℝ ∀𝑧𝑆 (abs‘(𝐺𝑧)) ≤ 𝑦))
5352expd 417 . . . . . . 7 (((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) → (∀𝑧𝑆 (abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 → (∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1 → ∃𝑦 ∈ ℝ ∀𝑧𝑆 (abs‘(𝐺𝑧)) ≤ 𝑦)))
5453rexlimdva 3149 . . . . . 6 ((𝜑𝑘𝑍) → (∃𝑥 ∈ ℝ ∀𝑧𝑆 (abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 → (∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1 → ∃𝑦 ∈ ℝ ∀𝑧𝑆 (abs‘(𝐺𝑧)) ≤ 𝑦)))
5511, 54mpd 15 . . . . 5 ((𝜑𝑘𝑍) → (∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1 → ∃𝑦 ∈ ℝ ∀𝑧𝑆 (abs‘(𝐺𝑧)) ≤ 𝑦))
56 breq2 5101 . . . . . . 7 (𝑦 = 𝑥 → ((abs‘(𝐺𝑧)) ≤ 𝑦 ↔ (abs‘(𝐺𝑧)) ≤ 𝑥))
5756ralbidv 3171 . . . . . 6 (𝑦 = 𝑥 → (∀𝑧𝑆 (abs‘(𝐺𝑧)) ≤ 𝑦 ↔ ∀𝑧𝑆 (abs‘(𝐺𝑧)) ≤ 𝑥))
5857cbvrexvw 3223 . . . . 5 (∃𝑦 ∈ ℝ ∀𝑧𝑆 (abs‘(𝐺𝑧)) ≤ 𝑦 ↔ ∃𝑥 ∈ ℝ ∀𝑧𝑆 (abs‘(𝐺𝑧)) ≤ 𝑥)
5955, 58syl6ib 251 . . . 4 ((𝜑𝑘𝑍) → (∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1 → ∃𝑥 ∈ ℝ ∀𝑧𝑆 (abs‘(𝐺𝑧)) ≤ 𝑥))
6059rexlimdva 3149 . . 3 (𝜑 → (∃𝑘𝑍𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1 → ∃𝑥 ∈ ℝ ∀𝑧𝑆 (abs‘(𝐺𝑧)) ≤ 𝑥))
6110, 60syl5 34 . 2 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1 → ∃𝑥 ∈ ℝ ∀𝑧𝑆 (abs‘(𝐺𝑧)) ≤ 𝑥))
629, 61mpd 15 1 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑧𝑆 (abs‘(𝐺𝑧)) ≤ 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1541  wcel 2106  wral 3062  wrex 3071   class class class wbr 5097  wf 6480  cfv 6484  (class class class)co 7342  m cmap 8691  cc 10975  cr 10976  1c1 10978   + caddc 10980   < clt 11115  cle 11116  cmin 11311  cz 12425  cuz 12688  +crp 12836  abscabs 15045  𝑢culm 25641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5234  ax-sep 5248  ax-nul 5255  ax-pow 5313  ax-pr 5377  ax-un 7655  ax-cnex 11033  ax-resscn 11034  ax-1cn 11035  ax-icn 11036  ax-addcl 11037  ax-addrcl 11038  ax-mulcl 11039  ax-mulrcl 11040  ax-mulcom 11041  ax-addass 11042  ax-mulass 11043  ax-distr 11044  ax-i2m1 11045  ax-1ne0 11046  ax-1rid 11047  ax-rnegex 11048  ax-rrecex 11049  ax-cnre 11050  ax-pre-lttri 11051  ax-pre-lttrn 11052  ax-pre-ltadd 11053  ax-pre-mulgt0 11054  ax-pre-sup 11055
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3732  df-csb 3848  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3921  df-nul 4275  df-if 4479  df-pw 4554  df-sn 4579  df-pr 4581  df-op 4585  df-uni 4858  df-iun 4948  df-br 5098  df-opab 5160  df-mpt 5181  df-tr 5215  df-id 5523  df-eprel 5529  df-po 5537  df-so 5538  df-fr 5580  df-we 5582  df-xp 5631  df-rel 5632  df-cnv 5633  df-co 5634  df-dm 5635  df-rn 5636  df-res 5637  df-ima 5638  df-pred 6243  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6436  df-fun 6486  df-fn 6487  df-f 6488  df-f1 6489  df-fo 6490  df-f1o 6491  df-fv 6492  df-riota 7298  df-ov 7345  df-oprab 7346  df-mpo 7347  df-om 7786  df-1st 7904  df-2nd 7905  df-frecs 8172  df-wrecs 8203  df-recs 8277  df-rdg 8316  df-er 8574  df-map 8693  df-pm 8694  df-en 8810  df-dom 8811  df-sdom 8812  df-sup 9304  df-pnf 11117  df-mnf 11118  df-xr 11119  df-ltxr 11120  df-le 11121  df-sub 11313  df-neg 11314  df-div 11739  df-nn 12080  df-2 12142  df-3 12143  df-n0 12340  df-z 12426  df-uz 12689  df-rp 12837  df-seq 13828  df-exp 13889  df-cj 14910  df-re 14911  df-im 14912  df-sqrt 15046  df-abs 15047  df-ulm 25642
This theorem is referenced by:  mtestbdd  25670
  Copyright terms: Public domain W3C validator