MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulmbdd Structured version   Visualization version   GIF version

Theorem ulmbdd 24988
Description: A uniform limit of bounded functions is bounded. (Contributed by Mario Carneiro, 27-Feb-2015.)
Hypotheses
Ref Expression
ulmbdd.z 𝑍 = (ℤ𝑀)
ulmbdd.m (𝜑𝑀 ∈ ℤ)
ulmbdd.f (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))
ulmbdd.b ((𝜑𝑘𝑍) → ∃𝑥 ∈ ℝ ∀𝑧𝑆 (abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥)
ulmbdd.u (𝜑𝐹(⇝𝑢𝑆)𝐺)
Assertion
Ref Expression
ulmbdd (𝜑 → ∃𝑥 ∈ ℝ ∀𝑧𝑆 (abs‘(𝐺𝑧)) ≤ 𝑥)
Distinct variable groups:   𝑥,𝑘,𝑧,𝐹   𝑘,𝐺,𝑥,𝑧   𝜑,𝑘,𝑥,𝑧   𝑆,𝑘,𝑥,𝑧   𝑘,𝑀,𝑧   𝑘,𝑍,𝑥,𝑧
Allowed substitution hint:   𝑀(𝑥)

Proof of Theorem ulmbdd
Dummy variables 𝑗 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ulmbdd.z . . 3 𝑍 = (ℤ𝑀)
2 ulmbdd.m . . 3 (𝜑𝑀 ∈ ℤ)
3 ulmbdd.f . . 3 (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))
4 eqidd 2824 . . 3 ((𝜑 ∧ (𝑘𝑍𝑧𝑆)) → ((𝐹𝑘)‘𝑧) = ((𝐹𝑘)‘𝑧))
5 eqidd 2824 . . 3 ((𝜑𝑧𝑆) → (𝐺𝑧) = (𝐺𝑧))
6 ulmbdd.u . . 3 (𝜑𝐹(⇝𝑢𝑆)𝐺)
7 1rp 12396 . . . 4 1 ∈ ℝ+
87a1i 11 . . 3 (𝜑 → 1 ∈ ℝ+)
91, 2, 3, 4, 5, 6, 8ulmi 24976 . 2 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1)
101r19.2uz 14713 . . 3 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1 → ∃𝑘𝑍𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1)
11 ulmbdd.b . . . . . 6 ((𝜑𝑘𝑍) → ∃𝑥 ∈ ℝ ∀𝑧𝑆 (abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥)
12 r19.26 3172 . . . . . . . . 9 (∀𝑧𝑆 ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1) ↔ (∀𝑧𝑆 (abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))
13 peano2re 10815 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (𝑥 + 1) ∈ ℝ)
1413adantl 484 . . . . . . . . . 10 (((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) → (𝑥 + 1) ∈ ℝ)
15 ulmcl 24971 . . . . . . . . . . . . . . . . 17 (𝐹(⇝𝑢𝑆)𝐺𝐺:𝑆⟶ℂ)
166, 15syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐺:𝑆⟶ℂ)
1716ad3antrrr 728 . . . . . . . . . . . . . . 15 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → 𝐺:𝑆⟶ℂ)
18 simprl 769 . . . . . . . . . . . . . . 15 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → 𝑧𝑆)
1917, 18ffvelrnd 6854 . . . . . . . . . . . . . 14 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → (𝐺𝑧) ∈ ℂ)
2019abscld 14798 . . . . . . . . . . . . 13 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → (abs‘(𝐺𝑧)) ∈ ℝ)
213ad3antrrr 728 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → 𝐹:𝑍⟶(ℂ ↑m 𝑆))
22 simpllr 774 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → 𝑘𝑍)
2321, 22ffvelrnd 6854 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → (𝐹𝑘) ∈ (ℂ ↑m 𝑆))
24 elmapi 8430 . . . . . . . . . . . . . . . . 17 ((𝐹𝑘) ∈ (ℂ ↑m 𝑆) → (𝐹𝑘):𝑆⟶ℂ)
2523, 24syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → (𝐹𝑘):𝑆⟶ℂ)
2625, 18ffvelrnd 6854 . . . . . . . . . . . . . . 15 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → ((𝐹𝑘)‘𝑧) ∈ ℂ)
2726abscld 14798 . . . . . . . . . . . . . 14 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → (abs‘((𝐹𝑘)‘𝑧)) ∈ ℝ)
2819, 26subcld 10999 . . . . . . . . . . . . . . 15 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → ((𝐺𝑧) − ((𝐹𝑘)‘𝑧)) ∈ ℂ)
2928abscld 14798 . . . . . . . . . . . . . 14 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → (abs‘((𝐺𝑧) − ((𝐹𝑘)‘𝑧))) ∈ ℝ)
3027, 29readdcld 10672 . . . . . . . . . . . . 13 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → ((abs‘((𝐹𝑘)‘𝑧)) + (abs‘((𝐺𝑧) − ((𝐹𝑘)‘𝑧)))) ∈ ℝ)
3114adantr 483 . . . . . . . . . . . . 13 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → (𝑥 + 1) ∈ ℝ)
3226, 19pncan3d 11002 . . . . . . . . . . . . . . 15 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → (((𝐹𝑘)‘𝑧) + ((𝐺𝑧) − ((𝐹𝑘)‘𝑧))) = (𝐺𝑧))
3332fveq2d 6676 . . . . . . . . . . . . . 14 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → (abs‘(((𝐹𝑘)‘𝑧) + ((𝐺𝑧) − ((𝐹𝑘)‘𝑧)))) = (abs‘(𝐺𝑧)))
3426, 28abstrid 14818 . . . . . . . . . . . . . 14 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → (abs‘(((𝐹𝑘)‘𝑧) + ((𝐺𝑧) − ((𝐹𝑘)‘𝑧)))) ≤ ((abs‘((𝐹𝑘)‘𝑧)) + (abs‘((𝐺𝑧) − ((𝐹𝑘)‘𝑧)))))
3533, 34eqbrtrrd 5092 . . . . . . . . . . . . 13 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → (abs‘(𝐺𝑧)) ≤ ((abs‘((𝐹𝑘)‘𝑧)) + (abs‘((𝐺𝑧) − ((𝐹𝑘)‘𝑧)))))
36 simplr 767 . . . . . . . . . . . . . 14 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → 𝑥 ∈ ℝ)
37 1re 10643 . . . . . . . . . . . . . . 15 1 ∈ ℝ
3837a1i 11 . . . . . . . . . . . . . 14 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → 1 ∈ ℝ)
39 simprrl 779 . . . . . . . . . . . . . 14 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → (abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥)
4019, 26abssubd 14815 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → (abs‘((𝐺𝑧) − ((𝐹𝑘)‘𝑧))) = (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))))
41 simprrr 780 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1)
4240, 41eqbrtrd 5090 . . . . . . . . . . . . . . 15 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → (abs‘((𝐺𝑧) − ((𝐹𝑘)‘𝑧))) < 1)
43 ltle 10731 . . . . . . . . . . . . . . . 16 (((abs‘((𝐺𝑧) − ((𝐹𝑘)‘𝑧))) ∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘((𝐺𝑧) − ((𝐹𝑘)‘𝑧))) < 1 → (abs‘((𝐺𝑧) − ((𝐹𝑘)‘𝑧))) ≤ 1))
4429, 37, 43sylancl 588 . . . . . . . . . . . . . . 15 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → ((abs‘((𝐺𝑧) − ((𝐹𝑘)‘𝑧))) < 1 → (abs‘((𝐺𝑧) − ((𝐹𝑘)‘𝑧))) ≤ 1))
4542, 44mpd 15 . . . . . . . . . . . . . 14 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → (abs‘((𝐺𝑧) − ((𝐹𝑘)‘𝑧))) ≤ 1)
4627, 29, 36, 38, 39, 45le2addd 11261 . . . . . . . . . . . . 13 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → ((abs‘((𝐹𝑘)‘𝑧)) + (abs‘((𝐺𝑧) − ((𝐹𝑘)‘𝑧)))) ≤ (𝑥 + 1))
4720, 30, 31, 35, 46letrd 10799 . . . . . . . . . . . 12 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ (𝑧𝑆 ∧ ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1))) → (abs‘(𝐺𝑧)) ≤ (𝑥 + 1))
4847expr 459 . . . . . . . . . . 11 ((((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) ∧ 𝑧𝑆) → (((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1) → (abs‘(𝐺𝑧)) ≤ (𝑥 + 1)))
4948ralimdva 3179 . . . . . . . . . 10 (((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) → (∀𝑧𝑆 ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1) → ∀𝑧𝑆 (abs‘(𝐺𝑧)) ≤ (𝑥 + 1)))
50 brralrspcev 5128 . . . . . . . . . 10 (((𝑥 + 1) ∈ ℝ ∧ ∀𝑧𝑆 (abs‘(𝐺𝑧)) ≤ (𝑥 + 1)) → ∃𝑦 ∈ ℝ ∀𝑧𝑆 (abs‘(𝐺𝑧)) ≤ 𝑦)
5114, 49, 50syl6an 682 . . . . . . . . 9 (((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) → (∀𝑧𝑆 ((abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1) → ∃𝑦 ∈ ℝ ∀𝑧𝑆 (abs‘(𝐺𝑧)) ≤ 𝑦))
5212, 51syl5bir 245 . . . . . . . 8 (((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) → ((∀𝑧𝑆 (abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1) → ∃𝑦 ∈ ℝ ∀𝑧𝑆 (abs‘(𝐺𝑧)) ≤ 𝑦))
5352expd 418 . . . . . . 7 (((𝜑𝑘𝑍) ∧ 𝑥 ∈ ℝ) → (∀𝑧𝑆 (abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 → (∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1 → ∃𝑦 ∈ ℝ ∀𝑧𝑆 (abs‘(𝐺𝑧)) ≤ 𝑦)))
5453rexlimdva 3286 . . . . . 6 ((𝜑𝑘𝑍) → (∃𝑥 ∈ ℝ ∀𝑧𝑆 (abs‘((𝐹𝑘)‘𝑧)) ≤ 𝑥 → (∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1 → ∃𝑦 ∈ ℝ ∀𝑧𝑆 (abs‘(𝐺𝑧)) ≤ 𝑦)))
5511, 54mpd 15 . . . . 5 ((𝜑𝑘𝑍) → (∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1 → ∃𝑦 ∈ ℝ ∀𝑧𝑆 (abs‘(𝐺𝑧)) ≤ 𝑦))
56 breq2 5072 . . . . . . 7 (𝑦 = 𝑥 → ((abs‘(𝐺𝑧)) ≤ 𝑦 ↔ (abs‘(𝐺𝑧)) ≤ 𝑥))
5756ralbidv 3199 . . . . . 6 (𝑦 = 𝑥 → (∀𝑧𝑆 (abs‘(𝐺𝑧)) ≤ 𝑦 ↔ ∀𝑧𝑆 (abs‘(𝐺𝑧)) ≤ 𝑥))
5857cbvrexvw 3452 . . . . 5 (∃𝑦 ∈ ℝ ∀𝑧𝑆 (abs‘(𝐺𝑧)) ≤ 𝑦 ↔ ∃𝑥 ∈ ℝ ∀𝑧𝑆 (abs‘(𝐺𝑧)) ≤ 𝑥)
5955, 58syl6ib 253 . . . 4 ((𝜑𝑘𝑍) → (∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1 → ∃𝑥 ∈ ℝ ∀𝑧𝑆 (abs‘(𝐺𝑧)) ≤ 𝑥))
6059rexlimdva 3286 . . 3 (𝜑 → (∃𝑘𝑍𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1 → ∃𝑥 ∈ ℝ ∀𝑧𝑆 (abs‘(𝐺𝑧)) ≤ 𝑥))
6110, 60syl5 34 . 2 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 1 → ∃𝑥 ∈ ℝ ∀𝑧𝑆 (abs‘(𝐺𝑧)) ≤ 𝑥))
629, 61mpd 15 1 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑧𝑆 (abs‘(𝐺𝑧)) ≤ 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wral 3140  wrex 3141   class class class wbr 5068  wf 6353  cfv 6357  (class class class)co 7158  m cmap 8408  cc 10537  cr 10538  1c1 10540   + caddc 10542   < clt 10677  cle 10678  cmin 10872  cz 11984  cuz 12246  +crp 12392  abscabs 14595  𝑢culm 24966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-map 8410  df-pm 8411  df-en 8512  df-dom 8513  df-sdom 8514  df-sup 8908  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-seq 13373  df-exp 13433  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-ulm 24967
This theorem is referenced by:  mtestbdd  24995
  Copyright terms: Public domain W3C validator