MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscmet3lem1 Structured version   Visualization version   GIF version

Theorem iscmet3lem1 25344
Description: Lemma for iscmet3 25346. (Contributed by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
iscmet3.1 𝑍 = (ℤ𝑀)
iscmet3.2 𝐽 = (MetOpen‘𝐷)
iscmet3.3 (𝜑𝑀 ∈ ℤ)
iscmet3.4 (𝜑𝐷 ∈ (Met‘𝑋))
iscmet3.6 (𝜑𝐹:𝑍𝑋)
iscmet3.9 (𝜑 → ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑆𝑘)∀𝑣 ∈ (𝑆𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘))
iscmet3.10 (𝜑 → ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝐹𝑘) ∈ (𝑆𝑛))
Assertion
Ref Expression
iscmet3lem1 (𝜑𝐹 ∈ (Cau‘𝐷))
Distinct variable groups:   𝑘,𝑛,𝑢,𝑣,𝐷   𝑘,𝐹,𝑛,𝑢,𝑣   𝑘,𝑋,𝑛   𝑘,𝐽,𝑛   𝑆,𝑘,𝑛,𝑢,𝑣   𝑘,𝑍,𝑛   𝑘,𝑀,𝑛   𝜑,𝑘,𝑛
Allowed substitution hints:   𝜑(𝑣,𝑢)   𝐽(𝑣,𝑢)   𝑀(𝑣,𝑢)   𝑋(𝑣,𝑢)   𝑍(𝑣,𝑢)

Proof of Theorem iscmet3lem1
Dummy variables 𝑗 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iscmet3.3 . . . . . 6 (𝜑𝑀 ∈ ℤ)
2 iscmet3.1 . . . . . . 7 𝑍 = (ℤ𝑀)
32iscmet3lem3 25343 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑟 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((1 / 2)↑𝑘) < 𝑟)
41, 3sylan 579 . . . . 5 ((𝜑𝑟 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((1 / 2)↑𝑘) < 𝑟)
52r19.2uz 15400 . . . . 5 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((1 / 2)↑𝑘) < 𝑟 → ∃𝑘𝑍 ((1 / 2)↑𝑘) < 𝑟)
64, 5syl 17 . . . 4 ((𝜑𝑟 ∈ ℝ+) → ∃𝑘𝑍 ((1 / 2)↑𝑘) < 𝑟)
7 fveq2 6920 . . . . . . . . . . 11 (𝑛 = 𝑘 → (𝑆𝑛) = (𝑆𝑘))
87eleq2d 2830 . . . . . . . . . 10 (𝑛 = 𝑘 → ((𝐹𝑘) ∈ (𝑆𝑛) ↔ (𝐹𝑘) ∈ (𝑆𝑘)))
9 iscmet3.10 . . . . . . . . . . . 12 (𝜑 → ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝐹𝑘) ∈ (𝑆𝑛))
109ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝐹𝑘) ∈ (𝑆𝑛))
11 simpl 482 . . . . . . . . . . . 12 ((𝑘𝑍𝑗 ∈ (ℤ𝑘)) → 𝑘𝑍)
1211adantl 481 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → 𝑘𝑍)
13 rsp 3253 . . . . . . . . . . 11 (∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝐹𝑘) ∈ (𝑆𝑛) → (𝑘𝑍 → ∀𝑛 ∈ (𝑀...𝑘)(𝐹𝑘) ∈ (𝑆𝑛)))
1410, 12, 13sylc 65 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → ∀𝑛 ∈ (𝑀...𝑘)(𝐹𝑘) ∈ (𝑆𝑛))
1512, 2eleqtrdi 2854 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → 𝑘 ∈ (ℤ𝑀))
16 eluzfz2 13592 . . . . . . . . . . 11 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ (𝑀...𝑘))
1715, 16syl 17 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → 𝑘 ∈ (𝑀...𝑘))
188, 14, 17rspcdva 3636 . . . . . . . . 9 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → (𝐹𝑘) ∈ (𝑆𝑘))
197eleq2d 2830 . . . . . . . . . 10 (𝑛 = 𝑘 → ((𝐹𝑗) ∈ (𝑆𝑛) ↔ (𝐹𝑗) ∈ (𝑆𝑘)))
20 oveq2 7456 . . . . . . . . . . . 12 (𝑘 = 𝑗 → (𝑀...𝑘) = (𝑀...𝑗))
21 fveq2 6920 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
2221eleq1d 2829 . . . . . . . . . . . 12 (𝑘 = 𝑗 → ((𝐹𝑘) ∈ (𝑆𝑛) ↔ (𝐹𝑗) ∈ (𝑆𝑛)))
2320, 22raleqbidv 3354 . . . . . . . . . . 11 (𝑘 = 𝑗 → (∀𝑛 ∈ (𝑀...𝑘)(𝐹𝑘) ∈ (𝑆𝑛) ↔ ∀𝑛 ∈ (𝑀...𝑗)(𝐹𝑗) ∈ (𝑆𝑛)))
242uztrn2 12922 . . . . . . . . . . . 12 ((𝑘𝑍𝑗 ∈ (ℤ𝑘)) → 𝑗𝑍)
2524adantl 481 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → 𝑗𝑍)
2623, 10, 25rspcdva 3636 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → ∀𝑛 ∈ (𝑀...𝑗)(𝐹𝑗) ∈ (𝑆𝑛))
27 simprr 772 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → 𝑗 ∈ (ℤ𝑘))
28 elfzuzb 13578 . . . . . . . . . . 11 (𝑘 ∈ (𝑀...𝑗) ↔ (𝑘 ∈ (ℤ𝑀) ∧ 𝑗 ∈ (ℤ𝑘)))
2915, 27, 28sylanbrc 582 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → 𝑘 ∈ (𝑀...𝑗))
3019, 26, 29rspcdva 3636 . . . . . . . . 9 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → (𝐹𝑗) ∈ (𝑆𝑘))
31 iscmet3.9 . . . . . . . . . . 11 (𝜑 → ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑆𝑘)∀𝑣 ∈ (𝑆𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘))
3231ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑆𝑘)∀𝑣 ∈ (𝑆𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘))
33 eluzelz 12913 . . . . . . . . . . . 12 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℤ)
3433, 2eleq2s 2862 . . . . . . . . . . 11 (𝑘𝑍𝑘 ∈ ℤ)
3534ad2antrl 727 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → 𝑘 ∈ ℤ)
36 rsp 3253 . . . . . . . . . 10 (∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑆𝑘)∀𝑣 ∈ (𝑆𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘) → (𝑘 ∈ ℤ → ∀𝑢 ∈ (𝑆𝑘)∀𝑣 ∈ (𝑆𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))
3732, 35, 36sylc 65 . . . . . . . . 9 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → ∀𝑢 ∈ (𝑆𝑘)∀𝑣 ∈ (𝑆𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘))
38 oveq1 7455 . . . . . . . . . . 11 (𝑢 = (𝐹𝑘) → (𝑢𝐷𝑣) = ((𝐹𝑘)𝐷𝑣))
3938breq1d 5176 . . . . . . . . . 10 (𝑢 = (𝐹𝑘) → ((𝑢𝐷𝑣) < ((1 / 2)↑𝑘) ↔ ((𝐹𝑘)𝐷𝑣) < ((1 / 2)↑𝑘)))
40 oveq2 7456 . . . . . . . . . . 11 (𝑣 = (𝐹𝑗) → ((𝐹𝑘)𝐷𝑣) = ((𝐹𝑘)𝐷(𝐹𝑗)))
4140breq1d 5176 . . . . . . . . . 10 (𝑣 = (𝐹𝑗) → (((𝐹𝑘)𝐷𝑣) < ((1 / 2)↑𝑘) ↔ ((𝐹𝑘)𝐷(𝐹𝑗)) < ((1 / 2)↑𝑘)))
4239, 41rspc2va 3647 . . . . . . . . 9 ((((𝐹𝑘) ∈ (𝑆𝑘) ∧ (𝐹𝑗) ∈ (𝑆𝑘)) ∧ ∀𝑢 ∈ (𝑆𝑘)∀𝑣 ∈ (𝑆𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)) → ((𝐹𝑘)𝐷(𝐹𝑗)) < ((1 / 2)↑𝑘))
4318, 30, 37, 42syl21anc 837 . . . . . . . 8 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → ((𝐹𝑘)𝐷(𝐹𝑗)) < ((1 / 2)↑𝑘))
44 iscmet3.4 . . . . . . . . . . 11 (𝜑𝐷 ∈ (Met‘𝑋))
4544ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → 𝐷 ∈ (Met‘𝑋))
46 iscmet3.6 . . . . . . . . . . . 12 (𝜑𝐹:𝑍𝑋)
4746adantr 480 . . . . . . . . . . 11 ((𝜑𝑟 ∈ ℝ+) → 𝐹:𝑍𝑋)
48 ffvelcdm 7115 . . . . . . . . . . 11 ((𝐹:𝑍𝑋𝑘𝑍) → (𝐹𝑘) ∈ 𝑋)
4947, 11, 48syl2an 595 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → (𝐹𝑘) ∈ 𝑋)
50 ffvelcdm 7115 . . . . . . . . . . 11 ((𝐹:𝑍𝑋𝑗𝑍) → (𝐹𝑗) ∈ 𝑋)
5147, 24, 50syl2an 595 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → (𝐹𝑗) ∈ 𝑋)
52 metcl 24363 . . . . . . . . . 10 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑗) ∈ 𝑋) → ((𝐹𝑘)𝐷(𝐹𝑗)) ∈ ℝ)
5345, 49, 51, 52syl3anc 1371 . . . . . . . . 9 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → ((𝐹𝑘)𝐷(𝐹𝑗)) ∈ ℝ)
54 1rp 13061 . . . . . . . . . . . 12 1 ∈ ℝ+
55 rphalfcl 13084 . . . . . . . . . . . 12 (1 ∈ ℝ+ → (1 / 2) ∈ ℝ+)
5654, 55ax-mp 5 . . . . . . . . . . 11 (1 / 2) ∈ ℝ+
57 rpexpcl 14131 . . . . . . . . . . 11 (((1 / 2) ∈ ℝ+𝑘 ∈ ℤ) → ((1 / 2)↑𝑘) ∈ ℝ+)
5856, 35, 57sylancr 586 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → ((1 / 2)↑𝑘) ∈ ℝ+)
5958rpred 13099 . . . . . . . . 9 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → ((1 / 2)↑𝑘) ∈ ℝ)
60 rpre 13065 . . . . . . . . . 10 (𝑟 ∈ ℝ+𝑟 ∈ ℝ)
6160ad2antlr 726 . . . . . . . . 9 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → 𝑟 ∈ ℝ)
62 lttr 11366 . . . . . . . . 9 ((((𝐹𝑘)𝐷(𝐹𝑗)) ∈ ℝ ∧ ((1 / 2)↑𝑘) ∈ ℝ ∧ 𝑟 ∈ ℝ) → ((((𝐹𝑘)𝐷(𝐹𝑗)) < ((1 / 2)↑𝑘) ∧ ((1 / 2)↑𝑘) < 𝑟) → ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑟))
6353, 59, 61, 62syl3anc 1371 . . . . . . . 8 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → ((((𝐹𝑘)𝐷(𝐹𝑗)) < ((1 / 2)↑𝑘) ∧ ((1 / 2)↑𝑘) < 𝑟) → ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑟))
6443, 63mpand 694 . . . . . . 7 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → (((1 / 2)↑𝑘) < 𝑟 → ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑟))
6564anassrs 467 . . . . . 6 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑘𝑍) ∧ 𝑗 ∈ (ℤ𝑘)) → (((1 / 2)↑𝑘) < 𝑟 → ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑟))
6665ralrimdva 3160 . . . . 5 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → (((1 / 2)↑𝑘) < 𝑟 → ∀𝑗 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑟))
6766reximdva 3174 . . . 4 ((𝜑𝑟 ∈ ℝ+) → (∃𝑘𝑍 ((1 / 2)↑𝑘) < 𝑟 → ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑟))
686, 67mpd 15 . . 3 ((𝜑𝑟 ∈ ℝ+) → ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑟)
6968ralrimiva 3152 . 2 (𝜑 → ∀𝑟 ∈ ℝ+𝑘𝑍𝑗 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑟)
70 metxmet 24365 . . . 4 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
7144, 70syl 17 . . 3 (𝜑𝐷 ∈ (∞Met‘𝑋))
72 eqidd 2741 . . 3 ((𝜑𝑗𝑍) → (𝐹𝑗) = (𝐹𝑗))
73 eqidd 2741 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐹𝑘))
742, 71, 1, 72, 73, 46iscauf 25333 . 2 (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ ∀𝑟 ∈ ℝ+𝑘𝑍𝑗 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑟))
7569, 74mpbird 257 1 (𝜑𝐹 ∈ (Cau‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  wrex 3076   class class class wbr 5166  wf 6569  cfv 6573  (class class class)co 7448  cr 11183  1c1 11185   < clt 11324   / cdiv 11947  2c2 12348  cz 12639  cuz 12903  +crp 13057  ...cfz 13567  cexp 14112  ∞Metcxmet 21372  Metcmet 21373  MetOpencmopn 21377  Cauccau 25306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-xneg 13175  df-xadd 13176  df-fz 13568  df-fl 13843  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-rlim 15535  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-cau 25309
This theorem is referenced by:  iscmet3  25346
  Copyright terms: Public domain W3C validator