MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscmet3lem1 Structured version   Visualization version   GIF version

Theorem iscmet3lem1 25218
Description: Lemma for iscmet3 25220. (Contributed by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
iscmet3.1 𝑍 = (ℤ𝑀)
iscmet3.2 𝐽 = (MetOpen‘𝐷)
iscmet3.3 (𝜑𝑀 ∈ ℤ)
iscmet3.4 (𝜑𝐷 ∈ (Met‘𝑋))
iscmet3.6 (𝜑𝐹:𝑍𝑋)
iscmet3.9 (𝜑 → ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑆𝑘)∀𝑣 ∈ (𝑆𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘))
iscmet3.10 (𝜑 → ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝐹𝑘) ∈ (𝑆𝑛))
Assertion
Ref Expression
iscmet3lem1 (𝜑𝐹 ∈ (Cau‘𝐷))
Distinct variable groups:   𝑘,𝑛,𝑢,𝑣,𝐷   𝑘,𝐹,𝑛,𝑢,𝑣   𝑘,𝑋,𝑛   𝑘,𝐽,𝑛   𝑆,𝑘,𝑛,𝑢,𝑣   𝑘,𝑍,𝑛   𝑘,𝑀,𝑛   𝜑,𝑘,𝑛
Allowed substitution hints:   𝜑(𝑣,𝑢)   𝐽(𝑣,𝑢)   𝑀(𝑣,𝑢)   𝑋(𝑣,𝑢)   𝑍(𝑣,𝑢)

Proof of Theorem iscmet3lem1
Dummy variables 𝑗 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iscmet3.3 . . . . . 6 (𝜑𝑀 ∈ ℤ)
2 iscmet3.1 . . . . . . 7 𝑍 = (ℤ𝑀)
32iscmet3lem3 25217 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑟 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((1 / 2)↑𝑘) < 𝑟)
41, 3sylan 580 . . . . 5 ((𝜑𝑟 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((1 / 2)↑𝑘) < 𝑟)
52r19.2uz 15259 . . . . 5 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((1 / 2)↑𝑘) < 𝑟 → ∃𝑘𝑍 ((1 / 2)↑𝑘) < 𝑟)
64, 5syl 17 . . . 4 ((𝜑𝑟 ∈ ℝ+) → ∃𝑘𝑍 ((1 / 2)↑𝑘) < 𝑟)
7 fveq2 6822 . . . . . . . . . . 11 (𝑛 = 𝑘 → (𝑆𝑛) = (𝑆𝑘))
87eleq2d 2817 . . . . . . . . . 10 (𝑛 = 𝑘 → ((𝐹𝑘) ∈ (𝑆𝑛) ↔ (𝐹𝑘) ∈ (𝑆𝑘)))
9 iscmet3.10 . . . . . . . . . . . 12 (𝜑 → ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝐹𝑘) ∈ (𝑆𝑛))
109ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝐹𝑘) ∈ (𝑆𝑛))
11 simpl 482 . . . . . . . . . . . 12 ((𝑘𝑍𝑗 ∈ (ℤ𝑘)) → 𝑘𝑍)
1211adantl 481 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → 𝑘𝑍)
13 rsp 3220 . . . . . . . . . . 11 (∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝐹𝑘) ∈ (𝑆𝑛) → (𝑘𝑍 → ∀𝑛 ∈ (𝑀...𝑘)(𝐹𝑘) ∈ (𝑆𝑛)))
1410, 12, 13sylc 65 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → ∀𝑛 ∈ (𝑀...𝑘)(𝐹𝑘) ∈ (𝑆𝑛))
1512, 2eleqtrdi 2841 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → 𝑘 ∈ (ℤ𝑀))
16 eluzfz2 13432 . . . . . . . . . . 11 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ (𝑀...𝑘))
1715, 16syl 17 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → 𝑘 ∈ (𝑀...𝑘))
188, 14, 17rspcdva 3573 . . . . . . . . 9 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → (𝐹𝑘) ∈ (𝑆𝑘))
197eleq2d 2817 . . . . . . . . . 10 (𝑛 = 𝑘 → ((𝐹𝑗) ∈ (𝑆𝑛) ↔ (𝐹𝑗) ∈ (𝑆𝑘)))
20 oveq2 7354 . . . . . . . . . . . 12 (𝑘 = 𝑗 → (𝑀...𝑘) = (𝑀...𝑗))
21 fveq2 6822 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
2221eleq1d 2816 . . . . . . . . . . . 12 (𝑘 = 𝑗 → ((𝐹𝑘) ∈ (𝑆𝑛) ↔ (𝐹𝑗) ∈ (𝑆𝑛)))
2320, 22raleqbidv 3312 . . . . . . . . . . 11 (𝑘 = 𝑗 → (∀𝑛 ∈ (𝑀...𝑘)(𝐹𝑘) ∈ (𝑆𝑛) ↔ ∀𝑛 ∈ (𝑀...𝑗)(𝐹𝑗) ∈ (𝑆𝑛)))
242uztrn2 12751 . . . . . . . . . . . 12 ((𝑘𝑍𝑗 ∈ (ℤ𝑘)) → 𝑗𝑍)
2524adantl 481 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → 𝑗𝑍)
2623, 10, 25rspcdva 3573 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → ∀𝑛 ∈ (𝑀...𝑗)(𝐹𝑗) ∈ (𝑆𝑛))
27 simprr 772 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → 𝑗 ∈ (ℤ𝑘))
28 elfzuzb 13418 . . . . . . . . . . 11 (𝑘 ∈ (𝑀...𝑗) ↔ (𝑘 ∈ (ℤ𝑀) ∧ 𝑗 ∈ (ℤ𝑘)))
2915, 27, 28sylanbrc 583 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → 𝑘 ∈ (𝑀...𝑗))
3019, 26, 29rspcdva 3573 . . . . . . . . 9 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → (𝐹𝑗) ∈ (𝑆𝑘))
31 iscmet3.9 . . . . . . . . . . 11 (𝜑 → ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑆𝑘)∀𝑣 ∈ (𝑆𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘))
3231ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑆𝑘)∀𝑣 ∈ (𝑆𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘))
33 eluzelz 12742 . . . . . . . . . . . 12 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℤ)
3433, 2eleq2s 2849 . . . . . . . . . . 11 (𝑘𝑍𝑘 ∈ ℤ)
3534ad2antrl 728 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → 𝑘 ∈ ℤ)
36 rsp 3220 . . . . . . . . . 10 (∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑆𝑘)∀𝑣 ∈ (𝑆𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘) → (𝑘 ∈ ℤ → ∀𝑢 ∈ (𝑆𝑘)∀𝑣 ∈ (𝑆𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))
3732, 35, 36sylc 65 . . . . . . . . 9 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → ∀𝑢 ∈ (𝑆𝑘)∀𝑣 ∈ (𝑆𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘))
38 oveq1 7353 . . . . . . . . . . 11 (𝑢 = (𝐹𝑘) → (𝑢𝐷𝑣) = ((𝐹𝑘)𝐷𝑣))
3938breq1d 5099 . . . . . . . . . 10 (𝑢 = (𝐹𝑘) → ((𝑢𝐷𝑣) < ((1 / 2)↑𝑘) ↔ ((𝐹𝑘)𝐷𝑣) < ((1 / 2)↑𝑘)))
40 oveq2 7354 . . . . . . . . . . 11 (𝑣 = (𝐹𝑗) → ((𝐹𝑘)𝐷𝑣) = ((𝐹𝑘)𝐷(𝐹𝑗)))
4140breq1d 5099 . . . . . . . . . 10 (𝑣 = (𝐹𝑗) → (((𝐹𝑘)𝐷𝑣) < ((1 / 2)↑𝑘) ↔ ((𝐹𝑘)𝐷(𝐹𝑗)) < ((1 / 2)↑𝑘)))
4239, 41rspc2va 3584 . . . . . . . . 9 ((((𝐹𝑘) ∈ (𝑆𝑘) ∧ (𝐹𝑗) ∈ (𝑆𝑘)) ∧ ∀𝑢 ∈ (𝑆𝑘)∀𝑣 ∈ (𝑆𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)) → ((𝐹𝑘)𝐷(𝐹𝑗)) < ((1 / 2)↑𝑘))
4318, 30, 37, 42syl21anc 837 . . . . . . . 8 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → ((𝐹𝑘)𝐷(𝐹𝑗)) < ((1 / 2)↑𝑘))
44 iscmet3.4 . . . . . . . . . . 11 (𝜑𝐷 ∈ (Met‘𝑋))
4544ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → 𝐷 ∈ (Met‘𝑋))
46 iscmet3.6 . . . . . . . . . . . 12 (𝜑𝐹:𝑍𝑋)
4746adantr 480 . . . . . . . . . . 11 ((𝜑𝑟 ∈ ℝ+) → 𝐹:𝑍𝑋)
48 ffvelcdm 7014 . . . . . . . . . . 11 ((𝐹:𝑍𝑋𝑘𝑍) → (𝐹𝑘) ∈ 𝑋)
4947, 11, 48syl2an 596 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → (𝐹𝑘) ∈ 𝑋)
50 ffvelcdm 7014 . . . . . . . . . . 11 ((𝐹:𝑍𝑋𝑗𝑍) → (𝐹𝑗) ∈ 𝑋)
5147, 24, 50syl2an 596 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → (𝐹𝑗) ∈ 𝑋)
52 metcl 24247 . . . . . . . . . 10 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑗) ∈ 𝑋) → ((𝐹𝑘)𝐷(𝐹𝑗)) ∈ ℝ)
5345, 49, 51, 52syl3anc 1373 . . . . . . . . 9 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → ((𝐹𝑘)𝐷(𝐹𝑗)) ∈ ℝ)
54 1rp 12894 . . . . . . . . . . . 12 1 ∈ ℝ+
55 rphalfcl 12919 . . . . . . . . . . . 12 (1 ∈ ℝ+ → (1 / 2) ∈ ℝ+)
5654, 55ax-mp 5 . . . . . . . . . . 11 (1 / 2) ∈ ℝ+
57 rpexpcl 13987 . . . . . . . . . . 11 (((1 / 2) ∈ ℝ+𝑘 ∈ ℤ) → ((1 / 2)↑𝑘) ∈ ℝ+)
5856, 35, 57sylancr 587 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → ((1 / 2)↑𝑘) ∈ ℝ+)
5958rpred 12934 . . . . . . . . 9 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → ((1 / 2)↑𝑘) ∈ ℝ)
60 rpre 12899 . . . . . . . . . 10 (𝑟 ∈ ℝ+𝑟 ∈ ℝ)
6160ad2antlr 727 . . . . . . . . 9 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → 𝑟 ∈ ℝ)
62 lttr 11189 . . . . . . . . 9 ((((𝐹𝑘)𝐷(𝐹𝑗)) ∈ ℝ ∧ ((1 / 2)↑𝑘) ∈ ℝ ∧ 𝑟 ∈ ℝ) → ((((𝐹𝑘)𝐷(𝐹𝑗)) < ((1 / 2)↑𝑘) ∧ ((1 / 2)↑𝑘) < 𝑟) → ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑟))
6353, 59, 61, 62syl3anc 1373 . . . . . . . 8 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → ((((𝐹𝑘)𝐷(𝐹𝑗)) < ((1 / 2)↑𝑘) ∧ ((1 / 2)↑𝑘) < 𝑟) → ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑟))
6443, 63mpand 695 . . . . . . 7 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → (((1 / 2)↑𝑘) < 𝑟 → ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑟))
6564anassrs 467 . . . . . 6 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑘𝑍) ∧ 𝑗 ∈ (ℤ𝑘)) → (((1 / 2)↑𝑘) < 𝑟 → ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑟))
6665ralrimdva 3132 . . . . 5 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → (((1 / 2)↑𝑘) < 𝑟 → ∀𝑗 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑟))
6766reximdva 3145 . . . 4 ((𝜑𝑟 ∈ ℝ+) → (∃𝑘𝑍 ((1 / 2)↑𝑘) < 𝑟 → ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑟))
686, 67mpd 15 . . 3 ((𝜑𝑟 ∈ ℝ+) → ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑟)
6968ralrimiva 3124 . 2 (𝜑 → ∀𝑟 ∈ ℝ+𝑘𝑍𝑗 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑟)
70 metxmet 24249 . . . 4 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
7144, 70syl 17 . . 3 (𝜑𝐷 ∈ (∞Met‘𝑋))
72 eqidd 2732 . . 3 ((𝜑𝑗𝑍) → (𝐹𝑗) = (𝐹𝑗))
73 eqidd 2732 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐹𝑘))
742, 71, 1, 72, 73, 46iscauf 25207 . 2 (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ ∀𝑟 ∈ ℝ+𝑘𝑍𝑗 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑟))
7569, 74mpbird 257 1 (𝜑𝐹 ∈ (Cau‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056   class class class wbr 5089  wf 6477  cfv 6481  (class class class)co 7346  cr 11005  1c1 11007   < clt 11146   / cdiv 11774  2c2 12180  cz 12468  cuz 12732  +crp 12890  ...cfz 13407  cexp 13968  ∞Metcxmet 21276  Metcmet 21277  MetOpencmopn 21281  Cauccau 25180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-xneg 13011  df-xadd 13012  df-fz 13408  df-fl 13696  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-rlim 15396  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-cau 25183
This theorem is referenced by:  iscmet3  25220
  Copyright terms: Public domain W3C validator