Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscmet3lem1 Structured version   Visualization version   GIF version

Theorem iscmet3lem1 23899
 Description: Lemma for iscmet3 23901. (Contributed by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
iscmet3.1 𝑍 = (ℤ𝑀)
iscmet3.2 𝐽 = (MetOpen‘𝐷)
iscmet3.3 (𝜑𝑀 ∈ ℤ)
iscmet3.4 (𝜑𝐷 ∈ (Met‘𝑋))
iscmet3.6 (𝜑𝐹:𝑍𝑋)
iscmet3.9 (𝜑 → ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑆𝑘)∀𝑣 ∈ (𝑆𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘))
iscmet3.10 (𝜑 → ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝐹𝑘) ∈ (𝑆𝑛))
Assertion
Ref Expression
iscmet3lem1 (𝜑𝐹 ∈ (Cau‘𝐷))
Distinct variable groups:   𝑘,𝑛,𝑢,𝑣,𝐷   𝑘,𝐹,𝑛,𝑢,𝑣   𝑘,𝑋,𝑛   𝑘,𝐽,𝑛   𝑆,𝑘,𝑛,𝑢,𝑣   𝑘,𝑍,𝑛   𝑘,𝑀,𝑛   𝜑,𝑘,𝑛
Allowed substitution hints:   𝜑(𝑣,𝑢)   𝐽(𝑣,𝑢)   𝑀(𝑣,𝑢)   𝑋(𝑣,𝑢)   𝑍(𝑣,𝑢)

Proof of Theorem iscmet3lem1
Dummy variables 𝑗 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iscmet3.3 . . . . . 6 (𝜑𝑀 ∈ ℤ)
2 iscmet3.1 . . . . . . 7 𝑍 = (ℤ𝑀)
32iscmet3lem3 23898 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑟 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((1 / 2)↑𝑘) < 𝑟)
41, 3sylan 583 . . . . 5 ((𝜑𝑟 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((1 / 2)↑𝑘) < 𝑟)
52r19.2uz 14707 . . . . 5 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((1 / 2)↑𝑘) < 𝑟 → ∃𝑘𝑍 ((1 / 2)↑𝑘) < 𝑟)
64, 5syl 17 . . . 4 ((𝜑𝑟 ∈ ℝ+) → ∃𝑘𝑍 ((1 / 2)↑𝑘) < 𝑟)
7 fveq2 6649 . . . . . . . . . . 11 (𝑛 = 𝑘 → (𝑆𝑛) = (𝑆𝑘))
87eleq2d 2878 . . . . . . . . . 10 (𝑛 = 𝑘 → ((𝐹𝑘) ∈ (𝑆𝑛) ↔ (𝐹𝑘) ∈ (𝑆𝑘)))
9 iscmet3.10 . . . . . . . . . . . 12 (𝜑 → ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝐹𝑘) ∈ (𝑆𝑛))
109ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝐹𝑘) ∈ (𝑆𝑛))
11 simpl 486 . . . . . . . . . . . 12 ((𝑘𝑍𝑗 ∈ (ℤ𝑘)) → 𝑘𝑍)
1211adantl 485 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → 𝑘𝑍)
13 rsp 3173 . . . . . . . . . . 11 (∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝐹𝑘) ∈ (𝑆𝑛) → (𝑘𝑍 → ∀𝑛 ∈ (𝑀...𝑘)(𝐹𝑘) ∈ (𝑆𝑛)))
1410, 12, 13sylc 65 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → ∀𝑛 ∈ (𝑀...𝑘)(𝐹𝑘) ∈ (𝑆𝑛))
1512, 2eleqtrdi 2903 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → 𝑘 ∈ (ℤ𝑀))
16 eluzfz2 12914 . . . . . . . . . . 11 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ (𝑀...𝑘))
1715, 16syl 17 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → 𝑘 ∈ (𝑀...𝑘))
188, 14, 17rspcdva 3576 . . . . . . . . 9 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → (𝐹𝑘) ∈ (𝑆𝑘))
197eleq2d 2878 . . . . . . . . . 10 (𝑛 = 𝑘 → ((𝐹𝑗) ∈ (𝑆𝑛) ↔ (𝐹𝑗) ∈ (𝑆𝑘)))
20 oveq2 7147 . . . . . . . . . . . 12 (𝑘 = 𝑗 → (𝑀...𝑘) = (𝑀...𝑗))
21 fveq2 6649 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
2221eleq1d 2877 . . . . . . . . . . . 12 (𝑘 = 𝑗 → ((𝐹𝑘) ∈ (𝑆𝑛) ↔ (𝐹𝑗) ∈ (𝑆𝑛)))
2320, 22raleqbidv 3357 . . . . . . . . . . 11 (𝑘 = 𝑗 → (∀𝑛 ∈ (𝑀...𝑘)(𝐹𝑘) ∈ (𝑆𝑛) ↔ ∀𝑛 ∈ (𝑀...𝑗)(𝐹𝑗) ∈ (𝑆𝑛)))
242uztrn2 12254 . . . . . . . . . . . 12 ((𝑘𝑍𝑗 ∈ (ℤ𝑘)) → 𝑗𝑍)
2524adantl 485 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → 𝑗𝑍)
2623, 10, 25rspcdva 3576 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → ∀𝑛 ∈ (𝑀...𝑗)(𝐹𝑗) ∈ (𝑆𝑛))
27 simprr 772 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → 𝑗 ∈ (ℤ𝑘))
28 elfzuzb 12900 . . . . . . . . . . 11 (𝑘 ∈ (𝑀...𝑗) ↔ (𝑘 ∈ (ℤ𝑀) ∧ 𝑗 ∈ (ℤ𝑘)))
2915, 27, 28sylanbrc 586 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → 𝑘 ∈ (𝑀...𝑗))
3019, 26, 29rspcdva 3576 . . . . . . . . 9 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → (𝐹𝑗) ∈ (𝑆𝑘))
31 iscmet3.9 . . . . . . . . . . 11 (𝜑 → ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑆𝑘)∀𝑣 ∈ (𝑆𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘))
3231ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑆𝑘)∀𝑣 ∈ (𝑆𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘))
33 eluzelz 12245 . . . . . . . . . . . 12 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℤ)
3433, 2eleq2s 2911 . . . . . . . . . . 11 (𝑘𝑍𝑘 ∈ ℤ)
3534ad2antrl 727 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → 𝑘 ∈ ℤ)
36 rsp 3173 . . . . . . . . . 10 (∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑆𝑘)∀𝑣 ∈ (𝑆𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘) → (𝑘 ∈ ℤ → ∀𝑢 ∈ (𝑆𝑘)∀𝑣 ∈ (𝑆𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))
3732, 35, 36sylc 65 . . . . . . . . 9 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → ∀𝑢 ∈ (𝑆𝑘)∀𝑣 ∈ (𝑆𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘))
38 oveq1 7146 . . . . . . . . . . 11 (𝑢 = (𝐹𝑘) → (𝑢𝐷𝑣) = ((𝐹𝑘)𝐷𝑣))
3938breq1d 5043 . . . . . . . . . 10 (𝑢 = (𝐹𝑘) → ((𝑢𝐷𝑣) < ((1 / 2)↑𝑘) ↔ ((𝐹𝑘)𝐷𝑣) < ((1 / 2)↑𝑘)))
40 oveq2 7147 . . . . . . . . . . 11 (𝑣 = (𝐹𝑗) → ((𝐹𝑘)𝐷𝑣) = ((𝐹𝑘)𝐷(𝐹𝑗)))
4140breq1d 5043 . . . . . . . . . 10 (𝑣 = (𝐹𝑗) → (((𝐹𝑘)𝐷𝑣) < ((1 / 2)↑𝑘) ↔ ((𝐹𝑘)𝐷(𝐹𝑗)) < ((1 / 2)↑𝑘)))
4239, 41rspc2va 3585 . . . . . . . . 9 ((((𝐹𝑘) ∈ (𝑆𝑘) ∧ (𝐹𝑗) ∈ (𝑆𝑘)) ∧ ∀𝑢 ∈ (𝑆𝑘)∀𝑣 ∈ (𝑆𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)) → ((𝐹𝑘)𝐷(𝐹𝑗)) < ((1 / 2)↑𝑘))
4318, 30, 37, 42syl21anc 836 . . . . . . . 8 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → ((𝐹𝑘)𝐷(𝐹𝑗)) < ((1 / 2)↑𝑘))
44 iscmet3.4 . . . . . . . . . . 11 (𝜑𝐷 ∈ (Met‘𝑋))
4544ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → 𝐷 ∈ (Met‘𝑋))
46 iscmet3.6 . . . . . . . . . . . 12 (𝜑𝐹:𝑍𝑋)
4746adantr 484 . . . . . . . . . . 11 ((𝜑𝑟 ∈ ℝ+) → 𝐹:𝑍𝑋)
48 ffvelrn 6830 . . . . . . . . . . 11 ((𝐹:𝑍𝑋𝑘𝑍) → (𝐹𝑘) ∈ 𝑋)
4947, 11, 48syl2an 598 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → (𝐹𝑘) ∈ 𝑋)
50 ffvelrn 6830 . . . . . . . . . . 11 ((𝐹:𝑍𝑋𝑗𝑍) → (𝐹𝑗) ∈ 𝑋)
5147, 24, 50syl2an 598 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → (𝐹𝑗) ∈ 𝑋)
52 metcl 22943 . . . . . . . . . 10 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑗) ∈ 𝑋) → ((𝐹𝑘)𝐷(𝐹𝑗)) ∈ ℝ)
5345, 49, 51, 52syl3anc 1368 . . . . . . . . 9 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → ((𝐹𝑘)𝐷(𝐹𝑗)) ∈ ℝ)
54 1rp 12385 . . . . . . . . . . . 12 1 ∈ ℝ+
55 rphalfcl 12408 . . . . . . . . . . . 12 (1 ∈ ℝ+ → (1 / 2) ∈ ℝ+)
5654, 55ax-mp 5 . . . . . . . . . . 11 (1 / 2) ∈ ℝ+
57 rpexpcl 13448 . . . . . . . . . . 11 (((1 / 2) ∈ ℝ+𝑘 ∈ ℤ) → ((1 / 2)↑𝑘) ∈ ℝ+)
5856, 35, 57sylancr 590 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → ((1 / 2)↑𝑘) ∈ ℝ+)
5958rpred 12423 . . . . . . . . 9 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → ((1 / 2)↑𝑘) ∈ ℝ)
60 rpre 12389 . . . . . . . . . 10 (𝑟 ∈ ℝ+𝑟 ∈ ℝ)
6160ad2antlr 726 . . . . . . . . 9 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → 𝑟 ∈ ℝ)
62 lttr 10710 . . . . . . . . 9 ((((𝐹𝑘)𝐷(𝐹𝑗)) ∈ ℝ ∧ ((1 / 2)↑𝑘) ∈ ℝ ∧ 𝑟 ∈ ℝ) → ((((𝐹𝑘)𝐷(𝐹𝑗)) < ((1 / 2)↑𝑘) ∧ ((1 / 2)↑𝑘) < 𝑟) → ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑟))
6353, 59, 61, 62syl3anc 1368 . . . . . . . 8 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → ((((𝐹𝑘)𝐷(𝐹𝑗)) < ((1 / 2)↑𝑘) ∧ ((1 / 2)↑𝑘) < 𝑟) → ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑟))
6443, 63mpand 694 . . . . . . 7 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → (((1 / 2)↑𝑘) < 𝑟 → ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑟))
6564anassrs 471 . . . . . 6 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑘𝑍) ∧ 𝑗 ∈ (ℤ𝑘)) → (((1 / 2)↑𝑘) < 𝑟 → ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑟))
6665ralrimdva 3157 . . . . 5 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → (((1 / 2)↑𝑘) < 𝑟 → ∀𝑗 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑟))
6766reximdva 3236 . . . 4 ((𝜑𝑟 ∈ ℝ+) → (∃𝑘𝑍 ((1 / 2)↑𝑘) < 𝑟 → ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑟))
686, 67mpd 15 . . 3 ((𝜑𝑟 ∈ ℝ+) → ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑟)
6968ralrimiva 3152 . 2 (𝜑 → ∀𝑟 ∈ ℝ+𝑘𝑍𝑗 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑟)
70 metxmet 22945 . . . 4 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
7144, 70syl 17 . . 3 (𝜑𝐷 ∈ (∞Met‘𝑋))
72 eqidd 2802 . . 3 ((𝜑𝑗𝑍) → (𝐹𝑗) = (𝐹𝑗))
73 eqidd 2802 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐹𝑘))
742, 71, 1, 72, 73, 46iscauf 23888 . 2 (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ ∀𝑟 ∈ ℝ+𝑘𝑍𝑗 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑟))
7569, 74mpbird 260 1 (𝜑𝐹 ∈ (Cau‘𝐷))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2112  ∀wral 3109  ∃wrex 3110   class class class wbr 5033  ⟶wf 6324  ‘cfv 6328  (class class class)co 7139  ℝcr 10529  1c1 10531   < clt 10668   / cdiv 11290  2c2 11684  ℤcz 11973  ℤ≥cuz 12235  ℝ+crp 12381  ...cfz 12889  ↑cexp 13429  ∞Metcxmet 20080  Metcmet 20081  MetOpencmopn 20085  Cauccau 23861 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-map 8395  df-pm 8396  df-en 8497  df-dom 8498  df-sdom 8499  df-sup 8894  df-inf 8895  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-xneg 12499  df-xadd 12500  df-fz 12890  df-fl 13161  df-seq 13369  df-exp 13430  df-cj 14454  df-re 14455  df-im 14456  df-sqrt 14590  df-abs 14591  df-clim 14841  df-rlim 14842  df-psmet 20087  df-xmet 20088  df-met 20089  df-bl 20090  df-cau 23864 This theorem is referenced by:  iscmet3  23901
 Copyright terms: Public domain W3C validator