Step | Hyp | Ref
| Expression |
1 | | iscmet3.3 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ ℤ) |
2 | | iscmet3.1 |
. . . . . . 7
⊢ 𝑍 =
(ℤ≥‘𝑀) |
3 | 2 | iscmet3lem3 24454 |
. . . . . 6
⊢ ((𝑀 ∈ ℤ ∧ 𝑟 ∈ ℝ+)
→ ∃𝑗 ∈
𝑍 ∀𝑘 ∈
(ℤ≥‘𝑗)((1 / 2)↑𝑘) < 𝑟) |
4 | 1, 3 | sylan 580 |
. . . . 5
⊢ ((𝜑 ∧ 𝑟 ∈ ℝ+) →
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((1 / 2)↑𝑘) < 𝑟) |
5 | 2 | r19.2uz 15063 |
. . . . 5
⊢
(∃𝑗 ∈
𝑍 ∀𝑘 ∈
(ℤ≥‘𝑗)((1 / 2)↑𝑘) < 𝑟 → ∃𝑘 ∈ 𝑍 ((1 / 2)↑𝑘) < 𝑟) |
6 | 4, 5 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑟 ∈ ℝ+) →
∃𝑘 ∈ 𝑍 ((1 / 2)↑𝑘) < 𝑟) |
7 | | fveq2 6774 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑘 → (𝑆‘𝑛) = (𝑆‘𝑘)) |
8 | 7 | eleq2d 2824 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑘 → ((𝐹‘𝑘) ∈ (𝑆‘𝑛) ↔ (𝐹‘𝑘) ∈ (𝑆‘𝑘))) |
9 | | iscmet3.10 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑘 ∈ 𝑍 ∀𝑛 ∈ (𝑀...𝑘)(𝐹‘𝑘) ∈ (𝑆‘𝑛)) |
10 | 9 | ad2antrr 723 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑘 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑘))) → ∀𝑘 ∈ 𝑍 ∀𝑛 ∈ (𝑀...𝑘)(𝐹‘𝑘) ∈ (𝑆‘𝑛)) |
11 | | simpl 483 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → 𝑘 ∈ 𝑍) |
12 | 11 | adantl 482 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑘 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑘))) → 𝑘 ∈ 𝑍) |
13 | | rsp 3131 |
. . . . . . . . . . 11
⊢
(∀𝑘 ∈
𝑍 ∀𝑛 ∈ (𝑀...𝑘)(𝐹‘𝑘) ∈ (𝑆‘𝑛) → (𝑘 ∈ 𝑍 → ∀𝑛 ∈ (𝑀...𝑘)(𝐹‘𝑘) ∈ (𝑆‘𝑛))) |
14 | 10, 12, 13 | sylc 65 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑘 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑘))) → ∀𝑛 ∈ (𝑀...𝑘)(𝐹‘𝑘) ∈ (𝑆‘𝑛)) |
15 | 12, 2 | eleqtrdi 2849 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑘 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑘))) → 𝑘 ∈ (ℤ≥‘𝑀)) |
16 | | eluzfz2 13264 |
. . . . . . . . . . 11
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → 𝑘 ∈ (𝑀...𝑘)) |
17 | 15, 16 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑘 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑘))) → 𝑘 ∈ (𝑀...𝑘)) |
18 | 8, 14, 17 | rspcdva 3562 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑘 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑘))) → (𝐹‘𝑘) ∈ (𝑆‘𝑘)) |
19 | 7 | eleq2d 2824 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑘 → ((𝐹‘𝑗) ∈ (𝑆‘𝑛) ↔ (𝐹‘𝑗) ∈ (𝑆‘𝑘))) |
20 | | oveq2 7283 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑗 → (𝑀...𝑘) = (𝑀...𝑗)) |
21 | | fveq2 6774 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑗 → (𝐹‘𝑘) = (𝐹‘𝑗)) |
22 | 21 | eleq1d 2823 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑗 → ((𝐹‘𝑘) ∈ (𝑆‘𝑛) ↔ (𝐹‘𝑗) ∈ (𝑆‘𝑛))) |
23 | 20, 22 | raleqbidv 3336 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑗 → (∀𝑛 ∈ (𝑀...𝑘)(𝐹‘𝑘) ∈ (𝑆‘𝑛) ↔ ∀𝑛 ∈ (𝑀...𝑗)(𝐹‘𝑗) ∈ (𝑆‘𝑛))) |
24 | 2 | uztrn2 12601 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → 𝑗 ∈ 𝑍) |
25 | 24 | adantl 482 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑘 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑘))) → 𝑗 ∈ 𝑍) |
26 | 23, 10, 25 | rspcdva 3562 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑘 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑘))) → ∀𝑛 ∈ (𝑀...𝑗)(𝐹‘𝑗) ∈ (𝑆‘𝑛)) |
27 | | simprr 770 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑘 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑘))) → 𝑗 ∈ (ℤ≥‘𝑘)) |
28 | | elfzuzb 13250 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ (𝑀...𝑗) ↔ (𝑘 ∈ (ℤ≥‘𝑀) ∧ 𝑗 ∈ (ℤ≥‘𝑘))) |
29 | 15, 27, 28 | sylanbrc 583 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑘 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑘))) → 𝑘 ∈ (𝑀...𝑗)) |
30 | 19, 26, 29 | rspcdva 3562 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑘 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑘))) → (𝐹‘𝑗) ∈ (𝑆‘𝑘)) |
31 | | iscmet3.9 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑆‘𝑘)∀𝑣 ∈ (𝑆‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)) |
32 | 31 | ad2antrr 723 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑘 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑘))) → ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑆‘𝑘)∀𝑣 ∈ (𝑆‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)) |
33 | | eluzelz 12592 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → 𝑘 ∈ ℤ) |
34 | 33, 2 | eleq2s 2857 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ 𝑍 → 𝑘 ∈ ℤ) |
35 | 34 | ad2antrl 725 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑘 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑘))) → 𝑘 ∈ ℤ) |
36 | | rsp 3131 |
. . . . . . . . . 10
⊢
(∀𝑘 ∈
ℤ ∀𝑢 ∈
(𝑆‘𝑘)∀𝑣 ∈ (𝑆‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘) → (𝑘 ∈ ℤ → ∀𝑢 ∈ (𝑆‘𝑘)∀𝑣 ∈ (𝑆‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘))) |
37 | 32, 35, 36 | sylc 65 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑘 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑘))) → ∀𝑢 ∈ (𝑆‘𝑘)∀𝑣 ∈ (𝑆‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)) |
38 | | oveq1 7282 |
. . . . . . . . . . 11
⊢ (𝑢 = (𝐹‘𝑘) → (𝑢𝐷𝑣) = ((𝐹‘𝑘)𝐷𝑣)) |
39 | 38 | breq1d 5084 |
. . . . . . . . . 10
⊢ (𝑢 = (𝐹‘𝑘) → ((𝑢𝐷𝑣) < ((1 / 2)↑𝑘) ↔ ((𝐹‘𝑘)𝐷𝑣) < ((1 / 2)↑𝑘))) |
40 | | oveq2 7283 |
. . . . . . . . . . 11
⊢ (𝑣 = (𝐹‘𝑗) → ((𝐹‘𝑘)𝐷𝑣) = ((𝐹‘𝑘)𝐷(𝐹‘𝑗))) |
41 | 40 | breq1d 5084 |
. . . . . . . . . 10
⊢ (𝑣 = (𝐹‘𝑗) → (((𝐹‘𝑘)𝐷𝑣) < ((1 / 2)↑𝑘) ↔ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < ((1 / 2)↑𝑘))) |
42 | 39, 41 | rspc2va 3571 |
. . . . . . . . 9
⊢ ((((𝐹‘𝑘) ∈ (𝑆‘𝑘) ∧ (𝐹‘𝑗) ∈ (𝑆‘𝑘)) ∧ ∀𝑢 ∈ (𝑆‘𝑘)∀𝑣 ∈ (𝑆‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)) → ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < ((1 / 2)↑𝑘)) |
43 | 18, 30, 37, 42 | syl21anc 835 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑘 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑘))) → ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < ((1 / 2)↑𝑘)) |
44 | | iscmet3.4 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) |
45 | 44 | ad2antrr 723 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑘 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑘))) → 𝐷 ∈ (Met‘𝑋)) |
46 | | iscmet3.6 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹:𝑍⟶𝑋) |
47 | 46 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑟 ∈ ℝ+) → 𝐹:𝑍⟶𝑋) |
48 | | ffvelrn 6959 |
. . . . . . . . . . 11
⊢ ((𝐹:𝑍⟶𝑋 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ 𝑋) |
49 | 47, 11, 48 | syl2an 596 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑘 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑘))) → (𝐹‘𝑘) ∈ 𝑋) |
50 | | ffvelrn 6959 |
. . . . . . . . . . 11
⊢ ((𝐹:𝑍⟶𝑋 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) ∈ 𝑋) |
51 | 47, 24, 50 | syl2an 596 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑘 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑘))) → (𝐹‘𝑗) ∈ 𝑋) |
52 | | metcl 23485 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ (𝐹‘𝑗) ∈ 𝑋) → ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) ∈ ℝ) |
53 | 45, 49, 51, 52 | syl3anc 1370 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑘 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑘))) → ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) ∈ ℝ) |
54 | | 1rp 12734 |
. . . . . . . . . . . 12
⊢ 1 ∈
ℝ+ |
55 | | rphalfcl 12757 |
. . . . . . . . . . . 12
⊢ (1 ∈
ℝ+ → (1 / 2) ∈ ℝ+) |
56 | 54, 55 | ax-mp 5 |
. . . . . . . . . . 11
⊢ (1 / 2)
∈ ℝ+ |
57 | | rpexpcl 13801 |
. . . . . . . . . . 11
⊢ (((1 / 2)
∈ ℝ+ ∧ 𝑘 ∈ ℤ) → ((1 / 2)↑𝑘) ∈
ℝ+) |
58 | 56, 35, 57 | sylancr 587 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑘 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑘))) → ((1 / 2)↑𝑘) ∈
ℝ+) |
59 | 58 | rpred 12772 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑘 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑘))) → ((1 / 2)↑𝑘) ∈
ℝ) |
60 | | rpre 12738 |
. . . . . . . . . 10
⊢ (𝑟 ∈ ℝ+
→ 𝑟 ∈
ℝ) |
61 | 60 | ad2antlr 724 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑘 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑘))) → 𝑟 ∈ ℝ) |
62 | | lttr 11051 |
. . . . . . . . 9
⊢ ((((𝐹‘𝑘)𝐷(𝐹‘𝑗)) ∈ ℝ ∧ ((1 / 2)↑𝑘) ∈ ℝ ∧ 𝑟 ∈ ℝ) →
((((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < ((1 / 2)↑𝑘) ∧ ((1 / 2)↑𝑘) < 𝑟) → ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑟)) |
63 | 53, 59, 61, 62 | syl3anc 1370 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑘 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑘))) → ((((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < ((1 / 2)↑𝑘) ∧ ((1 / 2)↑𝑘) < 𝑟) → ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑟)) |
64 | 43, 63 | mpand 692 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑘 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑘))) → (((1 / 2)↑𝑘) < 𝑟 → ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑟)) |
65 | 64 | anassrs 468 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ 𝑍) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → (((1 / 2)↑𝑘) < 𝑟 → ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑟)) |
66 | 65 | ralrimdva 3106 |
. . . . 5
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ 𝑍) → (((1 / 2)↑𝑘) < 𝑟 → ∀𝑗 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑟)) |
67 | 66 | reximdva 3203 |
. . . 4
⊢ ((𝜑 ∧ 𝑟 ∈ ℝ+) →
(∃𝑘 ∈ 𝑍 ((1 / 2)↑𝑘) < 𝑟 → ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑟)) |
68 | 6, 67 | mpd 15 |
. . 3
⊢ ((𝜑 ∧ 𝑟 ∈ ℝ+) →
∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑟) |
69 | 68 | ralrimiva 3103 |
. 2
⊢ (𝜑 → ∀𝑟 ∈ ℝ+ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑟) |
70 | | metxmet 23487 |
. . . 4
⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) |
71 | 44, 70 | syl 17 |
. . 3
⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
72 | | eqidd 2739 |
. . 3
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) = (𝐹‘𝑗)) |
73 | | eqidd 2739 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐹‘𝑘)) |
74 | 2, 71, 1, 72, 73, 46 | iscauf 24444 |
. 2
⊢ (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ ∀𝑟 ∈ ℝ+ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑟)) |
75 | 69, 74 | mpbird 256 |
1
⊢ (𝜑 → 𝐹 ∈ (Cau‘𝐷)) |