MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscmet3lem1 Structured version   Visualization version   GIF version

Theorem iscmet3lem1 23497
Description: Lemma for iscmet3 23499. (Contributed by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
iscmet3.1 𝑍 = (ℤ𝑀)
iscmet3.2 𝐽 = (MetOpen‘𝐷)
iscmet3.3 (𝜑𝑀 ∈ ℤ)
iscmet3.4 (𝜑𝐷 ∈ (Met‘𝑋))
iscmet3.6 (𝜑𝐹:𝑍𝑋)
iscmet3.9 (𝜑 → ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑆𝑘)∀𝑣 ∈ (𝑆𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘))
iscmet3.10 (𝜑 → ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝐹𝑘) ∈ (𝑆𝑛))
Assertion
Ref Expression
iscmet3lem1 (𝜑𝐹 ∈ (Cau‘𝐷))
Distinct variable groups:   𝑘,𝑛,𝑢,𝑣,𝐷   𝑘,𝐹,𝑛,𝑢,𝑣   𝑘,𝑋,𝑛   𝑘,𝐽,𝑛   𝑆,𝑘,𝑛,𝑢,𝑣   𝑘,𝑍,𝑛   𝑘,𝑀,𝑛   𝜑,𝑘,𝑛
Allowed substitution hints:   𝜑(𝑣,𝑢)   𝐽(𝑣,𝑢)   𝑀(𝑣,𝑢)   𝑋(𝑣,𝑢)   𝑍(𝑣,𝑢)

Proof of Theorem iscmet3lem1
Dummy variables 𝑗 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iscmet3.3 . . . . . 6 (𝜑𝑀 ∈ ℤ)
2 iscmet3.1 . . . . . . 7 𝑍 = (ℤ𝑀)
32iscmet3lem3 23496 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑟 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((1 / 2)↑𝑘) < 𝑟)
41, 3sylan 575 . . . . 5 ((𝜑𝑟 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((1 / 2)↑𝑘) < 𝑟)
52r19.2uz 14498 . . . . 5 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((1 / 2)↑𝑘) < 𝑟 → ∃𝑘𝑍 ((1 / 2)↑𝑘) < 𝑟)
64, 5syl 17 . . . 4 ((𝜑𝑟 ∈ ℝ+) → ∃𝑘𝑍 ((1 / 2)↑𝑘) < 𝑟)
7 fveq2 6446 . . . . . . . . . . 11 (𝑛 = 𝑘 → (𝑆𝑛) = (𝑆𝑘))
87eleq2d 2844 . . . . . . . . . 10 (𝑛 = 𝑘 → ((𝐹𝑘) ∈ (𝑆𝑛) ↔ (𝐹𝑘) ∈ (𝑆𝑘)))
9 iscmet3.10 . . . . . . . . . . . 12 (𝜑 → ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝐹𝑘) ∈ (𝑆𝑛))
109ad2antrr 716 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝐹𝑘) ∈ (𝑆𝑛))
11 simpl 476 . . . . . . . . . . . 12 ((𝑘𝑍𝑗 ∈ (ℤ𝑘)) → 𝑘𝑍)
1211adantl 475 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → 𝑘𝑍)
13 rsp 3110 . . . . . . . . . . 11 (∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝐹𝑘) ∈ (𝑆𝑛) → (𝑘𝑍 → ∀𝑛 ∈ (𝑀...𝑘)(𝐹𝑘) ∈ (𝑆𝑛)))
1410, 12, 13sylc 65 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → ∀𝑛 ∈ (𝑀...𝑘)(𝐹𝑘) ∈ (𝑆𝑛))
1512, 2syl6eleq 2868 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → 𝑘 ∈ (ℤ𝑀))
16 eluzfz2 12666 . . . . . . . . . . 11 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ (𝑀...𝑘))
1715, 16syl 17 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → 𝑘 ∈ (𝑀...𝑘))
188, 14, 17rspcdva 3516 . . . . . . . . 9 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → (𝐹𝑘) ∈ (𝑆𝑘))
197eleq2d 2844 . . . . . . . . . 10 (𝑛 = 𝑘 → ((𝐹𝑗) ∈ (𝑆𝑛) ↔ (𝐹𝑗) ∈ (𝑆𝑘)))
20 oveq2 6930 . . . . . . . . . . . 12 (𝑘 = 𝑗 → (𝑀...𝑘) = (𝑀...𝑗))
21 fveq2 6446 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
2221eleq1d 2843 . . . . . . . . . . . 12 (𝑘 = 𝑗 → ((𝐹𝑘) ∈ (𝑆𝑛) ↔ (𝐹𝑗) ∈ (𝑆𝑛)))
2320, 22raleqbidv 3325 . . . . . . . . . . 11 (𝑘 = 𝑗 → (∀𝑛 ∈ (𝑀...𝑘)(𝐹𝑘) ∈ (𝑆𝑛) ↔ ∀𝑛 ∈ (𝑀...𝑗)(𝐹𝑗) ∈ (𝑆𝑛)))
242uztrn2 12010 . . . . . . . . . . . 12 ((𝑘𝑍𝑗 ∈ (ℤ𝑘)) → 𝑗𝑍)
2524adantl 475 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → 𝑗𝑍)
2623, 10, 25rspcdva 3516 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → ∀𝑛 ∈ (𝑀...𝑗)(𝐹𝑗) ∈ (𝑆𝑛))
27 simprr 763 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → 𝑗 ∈ (ℤ𝑘))
28 elfzuzb 12653 . . . . . . . . . . 11 (𝑘 ∈ (𝑀...𝑗) ↔ (𝑘 ∈ (ℤ𝑀) ∧ 𝑗 ∈ (ℤ𝑘)))
2915, 27, 28sylanbrc 578 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → 𝑘 ∈ (𝑀...𝑗))
3019, 26, 29rspcdva 3516 . . . . . . . . 9 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → (𝐹𝑗) ∈ (𝑆𝑘))
31 iscmet3.9 . . . . . . . . . . 11 (𝜑 → ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑆𝑘)∀𝑣 ∈ (𝑆𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘))
3231ad2antrr 716 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑆𝑘)∀𝑣 ∈ (𝑆𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘))
33 eluzelz 12002 . . . . . . . . . . . 12 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℤ)
3433, 2eleq2s 2876 . . . . . . . . . . 11 (𝑘𝑍𝑘 ∈ ℤ)
3534ad2antrl 718 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → 𝑘 ∈ ℤ)
36 rsp 3110 . . . . . . . . . 10 (∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑆𝑘)∀𝑣 ∈ (𝑆𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘) → (𝑘 ∈ ℤ → ∀𝑢 ∈ (𝑆𝑘)∀𝑣 ∈ (𝑆𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))
3732, 35, 36sylc 65 . . . . . . . . 9 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → ∀𝑢 ∈ (𝑆𝑘)∀𝑣 ∈ (𝑆𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘))
38 oveq1 6929 . . . . . . . . . . 11 (𝑢 = (𝐹𝑘) → (𝑢𝐷𝑣) = ((𝐹𝑘)𝐷𝑣))
3938breq1d 4896 . . . . . . . . . 10 (𝑢 = (𝐹𝑘) → ((𝑢𝐷𝑣) < ((1 / 2)↑𝑘) ↔ ((𝐹𝑘)𝐷𝑣) < ((1 / 2)↑𝑘)))
40 oveq2 6930 . . . . . . . . . . 11 (𝑣 = (𝐹𝑗) → ((𝐹𝑘)𝐷𝑣) = ((𝐹𝑘)𝐷(𝐹𝑗)))
4140breq1d 4896 . . . . . . . . . 10 (𝑣 = (𝐹𝑗) → (((𝐹𝑘)𝐷𝑣) < ((1 / 2)↑𝑘) ↔ ((𝐹𝑘)𝐷(𝐹𝑗)) < ((1 / 2)↑𝑘)))
4239, 41rspc2va 3524 . . . . . . . . 9 ((((𝐹𝑘) ∈ (𝑆𝑘) ∧ (𝐹𝑗) ∈ (𝑆𝑘)) ∧ ∀𝑢 ∈ (𝑆𝑘)∀𝑣 ∈ (𝑆𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)) → ((𝐹𝑘)𝐷(𝐹𝑗)) < ((1 / 2)↑𝑘))
4318, 30, 37, 42syl21anc 828 . . . . . . . 8 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → ((𝐹𝑘)𝐷(𝐹𝑗)) < ((1 / 2)↑𝑘))
44 iscmet3.4 . . . . . . . . . . 11 (𝜑𝐷 ∈ (Met‘𝑋))
4544ad2antrr 716 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → 𝐷 ∈ (Met‘𝑋))
46 iscmet3.6 . . . . . . . . . . . 12 (𝜑𝐹:𝑍𝑋)
4746adantr 474 . . . . . . . . . . 11 ((𝜑𝑟 ∈ ℝ+) → 𝐹:𝑍𝑋)
48 ffvelrn 6621 . . . . . . . . . . 11 ((𝐹:𝑍𝑋𝑘𝑍) → (𝐹𝑘) ∈ 𝑋)
4947, 11, 48syl2an 589 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → (𝐹𝑘) ∈ 𝑋)
50 ffvelrn 6621 . . . . . . . . . . 11 ((𝐹:𝑍𝑋𝑗𝑍) → (𝐹𝑗) ∈ 𝑋)
5147, 24, 50syl2an 589 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → (𝐹𝑗) ∈ 𝑋)
52 metcl 22545 . . . . . . . . . 10 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹𝑘) ∈ 𝑋 ∧ (𝐹𝑗) ∈ 𝑋) → ((𝐹𝑘)𝐷(𝐹𝑗)) ∈ ℝ)
5345, 49, 51, 52syl3anc 1439 . . . . . . . . 9 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → ((𝐹𝑘)𝐷(𝐹𝑗)) ∈ ℝ)
54 1rp 12141 . . . . . . . . . . . 12 1 ∈ ℝ+
55 rphalfcl 12166 . . . . . . . . . . . 12 (1 ∈ ℝ+ → (1 / 2) ∈ ℝ+)
5654, 55ax-mp 5 . . . . . . . . . . 11 (1 / 2) ∈ ℝ+
57 rpexpcl 13197 . . . . . . . . . . 11 (((1 / 2) ∈ ℝ+𝑘 ∈ ℤ) → ((1 / 2)↑𝑘) ∈ ℝ+)
5856, 35, 57sylancr 581 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → ((1 / 2)↑𝑘) ∈ ℝ+)
5958rpred 12181 . . . . . . . . 9 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → ((1 / 2)↑𝑘) ∈ ℝ)
60 rpre 12145 . . . . . . . . . 10 (𝑟 ∈ ℝ+𝑟 ∈ ℝ)
6160ad2antlr 717 . . . . . . . . 9 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → 𝑟 ∈ ℝ)
62 lttr 10453 . . . . . . . . 9 ((((𝐹𝑘)𝐷(𝐹𝑗)) ∈ ℝ ∧ ((1 / 2)↑𝑘) ∈ ℝ ∧ 𝑟 ∈ ℝ) → ((((𝐹𝑘)𝐷(𝐹𝑗)) < ((1 / 2)↑𝑘) ∧ ((1 / 2)↑𝑘) < 𝑟) → ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑟))
6353, 59, 61, 62syl3anc 1439 . . . . . . . 8 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → ((((𝐹𝑘)𝐷(𝐹𝑗)) < ((1 / 2)↑𝑘) ∧ ((1 / 2)↑𝑘) < 𝑟) → ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑟))
6443, 63mpand 685 . . . . . . 7 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑗 ∈ (ℤ𝑘))) → (((1 / 2)↑𝑘) < 𝑟 → ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑟))
6564anassrs 461 . . . . . 6 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑘𝑍) ∧ 𝑗 ∈ (ℤ𝑘)) → (((1 / 2)↑𝑘) < 𝑟 → ((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑟))
6665ralrimdva 3150 . . . . 5 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑘𝑍) → (((1 / 2)↑𝑘) < 𝑟 → ∀𝑗 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑟))
6766reximdva 3197 . . . 4 ((𝜑𝑟 ∈ ℝ+) → (∃𝑘𝑍 ((1 / 2)↑𝑘) < 𝑟 → ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑟))
686, 67mpd 15 . . 3 ((𝜑𝑟 ∈ ℝ+) → ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑟)
6968ralrimiva 3147 . 2 (𝜑 → ∀𝑟 ∈ ℝ+𝑘𝑍𝑗 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑟)
70 metxmet 22547 . . . 4 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
7144, 70syl 17 . . 3 (𝜑𝐷 ∈ (∞Met‘𝑋))
72 eqidd 2778 . . 3 ((𝜑𝑗𝑍) → (𝐹𝑗) = (𝐹𝑗))
73 eqidd 2778 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐹𝑘))
742, 71, 1, 72, 73, 46iscauf 23486 . 2 (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ ∀𝑟 ∈ ℝ+𝑘𝑍𝑗 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑗)) < 𝑟))
7569, 74mpbird 249 1 (𝜑𝐹 ∈ (Cau‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1601  wcel 2106  wral 3089  wrex 3090   class class class wbr 4886  wf 6131  cfv 6135  (class class class)co 6922  cr 10271  1c1 10273   < clt 10411   / cdiv 11032  2c2 11430  cz 11728  cuz 11992  +crp 12137  ...cfz 12643  cexp 13178  ∞Metcxmet 20127  Metcmet 20128  MetOpencmopn 20132  Cauccau 23459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-er 8026  df-map 8142  df-pm 8143  df-en 8242  df-dom 8243  df-sdom 8244  df-sup 8636  df-inf 8637  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-n0 11643  df-z 11729  df-uz 11993  df-rp 12138  df-xneg 12257  df-xadd 12258  df-fz 12644  df-fl 12912  df-seq 13120  df-exp 13179  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-clim 14627  df-rlim 14628  df-psmet 20134  df-xmet 20135  df-met 20136  df-bl 20137  df-cau 23462
This theorem is referenced by:  iscmet3  23499
  Copyright terms: Public domain W3C validator