| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eulerpartlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for eulerpart 34384. (Contributed by Thierry Arnoux, 27-Aug-2017.) (Revised by Thierry Arnoux, 1-Sep-2019.) |
| Ref | Expression |
|---|---|
| eulerpart.p | ⊢ 𝑃 = {𝑓 ∈ (ℕ0 ↑m ℕ) ∣ ((◡𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓‘𝑘) · 𝑘) = 𝑁)} |
| eulerpart.o | ⊢ 𝑂 = {𝑔 ∈ 𝑃 ∣ ∀𝑛 ∈ (◡𝑔 “ ℕ) ¬ 2 ∥ 𝑛} |
| eulerpart.d | ⊢ 𝐷 = {𝑔 ∈ 𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔‘𝑛) ≤ 1} |
| eulerpart.j | ⊢ 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} |
| eulerpart.f | ⊢ 𝐹 = (𝑥 ∈ 𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) |
| eulerpart.h | ⊢ 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin} |
| eulerpart.m | ⊢ 𝑀 = (𝑟 ∈ 𝐻 ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ (𝑟‘𝑥))}) |
| Ref | Expression |
|---|---|
| eulerpartlem1 | ⊢ 𝑀:𝐻–1-1-onto→(𝒫 (𝐽 × ℕ0) ∩ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eulerpart.j | . . . 4 ⊢ 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} | |
| 2 | nnex 12272 | . . . 4 ⊢ ℕ ∈ V | |
| 3 | 1, 2 | rabex2 5341 | . . 3 ⊢ 𝐽 ∈ V |
| 4 | nn0ex 12532 | . . 3 ⊢ ℕ0 ∈ V | |
| 5 | eqid 2737 | . . 3 ⊢ (𝑟 ∈ (𝒫 ℕ0 ↑m 𝐽) ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ (𝑟‘𝑥))}) = (𝑟 ∈ (𝒫 ℕ0 ↑m 𝐽) ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ (𝑟‘𝑥))}) | |
| 6 | eulerpart.h | . . 3 ⊢ 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin} | |
| 7 | 3, 4, 5, 6 | fpwrelmapffs 32745 | . 2 ⊢ ((𝑟 ∈ (𝒫 ℕ0 ↑m 𝐽) ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ (𝑟‘𝑥))}) ↾ 𝐻):𝐻–1-1-onto→(𝒫 (𝐽 × ℕ0) ∩ Fin) |
| 8 | eulerpart.m | . . . 4 ⊢ 𝑀 = (𝑟 ∈ 𝐻 ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ (𝑟‘𝑥))}) | |
| 9 | ssrab2 4080 | . . . . . . 7 ⊢ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin} ⊆ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) | |
| 10 | 4 | pwex 5380 | . . . . . . . 8 ⊢ 𝒫 ℕ0 ∈ V |
| 11 | inss1 4237 | . . . . . . . 8 ⊢ (𝒫 ℕ0 ∩ Fin) ⊆ 𝒫 ℕ0 | |
| 12 | mapss 8929 | . . . . . . . 8 ⊢ ((𝒫 ℕ0 ∈ V ∧ (𝒫 ℕ0 ∩ Fin) ⊆ 𝒫 ℕ0) → ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ⊆ (𝒫 ℕ0 ↑m 𝐽)) | |
| 13 | 10, 11, 12 | mp2an 692 | . . . . . . 7 ⊢ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ⊆ (𝒫 ℕ0 ↑m 𝐽) |
| 14 | 9, 13 | sstri 3993 | . . . . . 6 ⊢ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin} ⊆ (𝒫 ℕ0 ↑m 𝐽) |
| 15 | 6, 14 | eqsstri 4030 | . . . . 5 ⊢ 𝐻 ⊆ (𝒫 ℕ0 ↑m 𝐽) |
| 16 | resmpt 6055 | . . . . 5 ⊢ (𝐻 ⊆ (𝒫 ℕ0 ↑m 𝐽) → ((𝑟 ∈ (𝒫 ℕ0 ↑m 𝐽) ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ (𝑟‘𝑥))}) ↾ 𝐻) = (𝑟 ∈ 𝐻 ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ (𝑟‘𝑥))})) | |
| 17 | 15, 16 | ax-mp 5 | . . . 4 ⊢ ((𝑟 ∈ (𝒫 ℕ0 ↑m 𝐽) ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ (𝑟‘𝑥))}) ↾ 𝐻) = (𝑟 ∈ 𝐻 ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ (𝑟‘𝑥))}) |
| 18 | 8, 17 | eqtr4i 2768 | . . 3 ⊢ 𝑀 = ((𝑟 ∈ (𝒫 ℕ0 ↑m 𝐽) ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ (𝑟‘𝑥))}) ↾ 𝐻) |
| 19 | f1oeq1 6836 | . . 3 ⊢ (𝑀 = ((𝑟 ∈ (𝒫 ℕ0 ↑m 𝐽) ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ (𝑟‘𝑥))}) ↾ 𝐻) → (𝑀:𝐻–1-1-onto→(𝒫 (𝐽 × ℕ0) ∩ Fin) ↔ ((𝑟 ∈ (𝒫 ℕ0 ↑m 𝐽) ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ (𝑟‘𝑥))}) ↾ 𝐻):𝐻–1-1-onto→(𝒫 (𝐽 × ℕ0) ∩ Fin))) | |
| 20 | 18, 19 | ax-mp 5 | . 2 ⊢ (𝑀:𝐻–1-1-onto→(𝒫 (𝐽 × ℕ0) ∩ Fin) ↔ ((𝑟 ∈ (𝒫 ℕ0 ↑m 𝐽) ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ (𝑟‘𝑥))}) ↾ 𝐻):𝐻–1-1-onto→(𝒫 (𝐽 × ℕ0) ∩ Fin)) |
| 21 | 7, 20 | mpbir 231 | 1 ⊢ 𝑀:𝐻–1-1-onto→(𝒫 (𝐽 × ℕ0) ∩ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3061 {crab 3436 Vcvv 3480 ∩ cin 3950 ⊆ wss 3951 ∅c0 4333 𝒫 cpw 4600 class class class wbr 5143 {copab 5205 ↦ cmpt 5225 × cxp 5683 ◡ccnv 5684 ↾ cres 5687 “ cima 5688 –1-1-onto→wf1o 6560 ‘cfv 6561 (class class class)co 7431 ∈ cmpo 7433 supp csupp 8185 ↑m cmap 8866 Fincfn 8985 1c1 11156 · cmul 11160 ≤ cle 11296 ℕcn 12266 2c2 12321 ℕ0cn0 12526 ↑cexp 14102 Σcsu 15722 ∥ cdvds 16290 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-ac2 10503 ax-cnex 11211 ax-1cn 11213 ax-addcl 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-supp 8186 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-map 8868 df-en 8986 df-dom 8987 df-fin 8989 df-card 9979 df-acn 9982 df-ac 10156 df-nn 12267 df-n0 12527 |
| This theorem is referenced by: eulerpartgbij 34374 eulerpartlemgvv 34378 eulerpartlemgf 34381 |
| Copyright terms: Public domain | W3C validator |