![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eulerpartlem1 | Structured version Visualization version GIF version |
Description: Lemma for eulerpart 34363. (Contributed by Thierry Arnoux, 27-Aug-2017.) (Revised by Thierry Arnoux, 1-Sep-2019.) |
Ref | Expression |
---|---|
eulerpart.p | ⊢ 𝑃 = {𝑓 ∈ (ℕ0 ↑m ℕ) ∣ ((◡𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓‘𝑘) · 𝑘) = 𝑁)} |
eulerpart.o | ⊢ 𝑂 = {𝑔 ∈ 𝑃 ∣ ∀𝑛 ∈ (◡𝑔 “ ℕ) ¬ 2 ∥ 𝑛} |
eulerpart.d | ⊢ 𝐷 = {𝑔 ∈ 𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔‘𝑛) ≤ 1} |
eulerpart.j | ⊢ 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} |
eulerpart.f | ⊢ 𝐹 = (𝑥 ∈ 𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) |
eulerpart.h | ⊢ 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin} |
eulerpart.m | ⊢ 𝑀 = (𝑟 ∈ 𝐻 ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ (𝑟‘𝑥))}) |
Ref | Expression |
---|---|
eulerpartlem1 | ⊢ 𝑀:𝐻–1-1-onto→(𝒫 (𝐽 × ℕ0) ∩ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eulerpart.j | . . . 4 ⊢ 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} | |
2 | nnex 12269 | . . . 4 ⊢ ℕ ∈ V | |
3 | 1, 2 | rabex2 5346 | . . 3 ⊢ 𝐽 ∈ V |
4 | nn0ex 12529 | . . 3 ⊢ ℕ0 ∈ V | |
5 | eqid 2734 | . . 3 ⊢ (𝑟 ∈ (𝒫 ℕ0 ↑m 𝐽) ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ (𝑟‘𝑥))}) = (𝑟 ∈ (𝒫 ℕ0 ↑m 𝐽) ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ (𝑟‘𝑥))}) | |
6 | eulerpart.h | . . 3 ⊢ 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin} | |
7 | 3, 4, 5, 6 | fpwrelmapffs 32751 | . 2 ⊢ ((𝑟 ∈ (𝒫 ℕ0 ↑m 𝐽) ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ (𝑟‘𝑥))}) ↾ 𝐻):𝐻–1-1-onto→(𝒫 (𝐽 × ℕ0) ∩ Fin) |
8 | eulerpart.m | . . . 4 ⊢ 𝑀 = (𝑟 ∈ 𝐻 ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ (𝑟‘𝑥))}) | |
9 | ssrab2 4089 | . . . . . . 7 ⊢ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin} ⊆ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) | |
10 | 4 | pwex 5385 | . . . . . . . 8 ⊢ 𝒫 ℕ0 ∈ V |
11 | inss1 4244 | . . . . . . . 8 ⊢ (𝒫 ℕ0 ∩ Fin) ⊆ 𝒫 ℕ0 | |
12 | mapss 8927 | . . . . . . . 8 ⊢ ((𝒫 ℕ0 ∈ V ∧ (𝒫 ℕ0 ∩ Fin) ⊆ 𝒫 ℕ0) → ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ⊆ (𝒫 ℕ0 ↑m 𝐽)) | |
13 | 10, 11, 12 | mp2an 692 | . . . . . . 7 ⊢ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ⊆ (𝒫 ℕ0 ↑m 𝐽) |
14 | 9, 13 | sstri 4004 | . . . . . 6 ⊢ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin} ⊆ (𝒫 ℕ0 ↑m 𝐽) |
15 | 6, 14 | eqsstri 4029 | . . . . 5 ⊢ 𝐻 ⊆ (𝒫 ℕ0 ↑m 𝐽) |
16 | resmpt 6056 | . . . . 5 ⊢ (𝐻 ⊆ (𝒫 ℕ0 ↑m 𝐽) → ((𝑟 ∈ (𝒫 ℕ0 ↑m 𝐽) ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ (𝑟‘𝑥))}) ↾ 𝐻) = (𝑟 ∈ 𝐻 ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ (𝑟‘𝑥))})) | |
17 | 15, 16 | ax-mp 5 | . . . 4 ⊢ ((𝑟 ∈ (𝒫 ℕ0 ↑m 𝐽) ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ (𝑟‘𝑥))}) ↾ 𝐻) = (𝑟 ∈ 𝐻 ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ (𝑟‘𝑥))}) |
18 | 8, 17 | eqtr4i 2765 | . . 3 ⊢ 𝑀 = ((𝑟 ∈ (𝒫 ℕ0 ↑m 𝐽) ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ (𝑟‘𝑥))}) ↾ 𝐻) |
19 | f1oeq1 6836 | . . 3 ⊢ (𝑀 = ((𝑟 ∈ (𝒫 ℕ0 ↑m 𝐽) ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ (𝑟‘𝑥))}) ↾ 𝐻) → (𝑀:𝐻–1-1-onto→(𝒫 (𝐽 × ℕ0) ∩ Fin) ↔ ((𝑟 ∈ (𝒫 ℕ0 ↑m 𝐽) ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ (𝑟‘𝑥))}) ↾ 𝐻):𝐻–1-1-onto→(𝒫 (𝐽 × ℕ0) ∩ Fin))) | |
20 | 18, 19 | ax-mp 5 | . 2 ⊢ (𝑀:𝐻–1-1-onto→(𝒫 (𝐽 × ℕ0) ∩ Fin) ↔ ((𝑟 ∈ (𝒫 ℕ0 ↑m 𝐽) ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ (𝑟‘𝑥))}) ↾ 𝐻):𝐻–1-1-onto→(𝒫 (𝐽 × ℕ0) ∩ Fin)) |
21 | 7, 20 | mpbir 231 | 1 ⊢ 𝑀:𝐻–1-1-onto→(𝒫 (𝐽 × ℕ0) ∩ Fin) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ∀wral 3058 {crab 3432 Vcvv 3477 ∩ cin 3961 ⊆ wss 3962 ∅c0 4338 𝒫 cpw 4604 class class class wbr 5147 {copab 5209 ↦ cmpt 5230 × cxp 5686 ◡ccnv 5687 ↾ cres 5690 “ cima 5691 –1-1-onto→wf1o 6561 ‘cfv 6562 (class class class)co 7430 ∈ cmpo 7432 supp csupp 8183 ↑m cmap 8864 Fincfn 8983 1c1 11153 · cmul 11157 ≤ cle 11293 ℕcn 12263 2c2 12318 ℕ0cn0 12523 ↑cexp 14098 Σcsu 15718 ∥ cdvds 16286 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-ac2 10500 ax-cnex 11208 ax-1cn 11210 ax-addcl 11212 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-int 4951 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-se 5641 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-isom 6571 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-1st 8012 df-2nd 8013 df-supp 8184 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-er 8743 df-map 8866 df-en 8984 df-dom 8985 df-fin 8987 df-card 9976 df-acn 9979 df-ac 10153 df-nn 12264 df-n0 12524 |
This theorem is referenced by: eulerpartgbij 34353 eulerpartlemgvv 34357 eulerpartlemgf 34360 |
Copyright terms: Public domain | W3C validator |