Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartlem1 Structured version   Visualization version   GIF version

Theorem eulerpartlem1 33195
Description: Lemma for eulerpart 33210. (Contributed by Thierry Arnoux, 27-Aug-2017.) (Revised by Thierry Arnoux, 1-Sep-2019.)
Hypotheses
Ref Expression
eulerpart.p 𝑃 = {𝑓 ∈ (ℕ0m ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
eulerpart.o 𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}
eulerpart.d 𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}
eulerpart.j 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
eulerpart.f 𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
eulerpart.h 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}
eulerpart.m 𝑀 = (𝑟𝐻 ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))})
Assertion
Ref Expression
eulerpartlem1 𝑀:𝐻1-1-onto→(𝒫 (𝐽 × ℕ0) ∩ Fin)
Distinct variable groups:   𝑥,𝑟,𝑦,𝐽   𝐻,𝑟
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝑃(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝐹(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝐻(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛)   𝐽(𝑧,𝑓,𝑔,𝑘,𝑛)   𝑀(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝑁(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝑂(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)

Proof of Theorem eulerpartlem1
StepHypRef Expression
1 eulerpart.j . . . 4 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
2 nnex 12200 . . . 4 ℕ ∈ V
31, 2rabex2 5327 . . 3 𝐽 ∈ V
4 nn0ex 12460 . . 3 0 ∈ V
5 eqid 2731 . . 3 (𝑟 ∈ (𝒫 ℕ0m 𝐽) ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))}) = (𝑟 ∈ (𝒫 ℕ0m 𝐽) ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))})
6 eulerpart.h . . 3 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}
73, 4, 5, 6fpwrelmapffs 31830 . 2 ((𝑟 ∈ (𝒫 ℕ0m 𝐽) ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))}) ↾ 𝐻):𝐻1-1-onto→(𝒫 (𝐽 × ℕ0) ∩ Fin)
8 eulerpart.m . . . 4 𝑀 = (𝑟𝐻 ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))})
9 ssrab2 4073 . . . . . . 7 {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin} ⊆ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽)
104pwex 5371 . . . . . . . 8 𝒫 ℕ0 ∈ V
11 inss1 4224 . . . . . . . 8 (𝒫 ℕ0 ∩ Fin) ⊆ 𝒫 ℕ0
12 mapss 8866 . . . . . . . 8 ((𝒫 ℕ0 ∈ V ∧ (𝒫 ℕ0 ∩ Fin) ⊆ 𝒫 ℕ0) → ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ⊆ (𝒫 ℕ0m 𝐽))
1310, 11, 12mp2an 690 . . . . . . 7 ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ⊆ (𝒫 ℕ0m 𝐽)
149, 13sstri 3987 . . . . . 6 {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin} ⊆ (𝒫 ℕ0m 𝐽)
156, 14eqsstri 4012 . . . . 5 𝐻 ⊆ (𝒫 ℕ0m 𝐽)
16 resmpt 6027 . . . . 5 (𝐻 ⊆ (𝒫 ℕ0m 𝐽) → ((𝑟 ∈ (𝒫 ℕ0m 𝐽) ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))}) ↾ 𝐻) = (𝑟𝐻 ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))}))
1715, 16ax-mp 5 . . . 4 ((𝑟 ∈ (𝒫 ℕ0m 𝐽) ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))}) ↾ 𝐻) = (𝑟𝐻 ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))})
188, 17eqtr4i 2762 . . 3 𝑀 = ((𝑟 ∈ (𝒫 ℕ0m 𝐽) ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))}) ↾ 𝐻)
19 f1oeq1 6808 . . 3 (𝑀 = ((𝑟 ∈ (𝒫 ℕ0m 𝐽) ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))}) ↾ 𝐻) → (𝑀:𝐻1-1-onto→(𝒫 (𝐽 × ℕ0) ∩ Fin) ↔ ((𝑟 ∈ (𝒫 ℕ0m 𝐽) ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))}) ↾ 𝐻):𝐻1-1-onto→(𝒫 (𝐽 × ℕ0) ∩ Fin)))
2018, 19ax-mp 5 . 2 (𝑀:𝐻1-1-onto→(𝒫 (𝐽 × ℕ0) ∩ Fin) ↔ ((𝑟 ∈ (𝒫 ℕ0m 𝐽) ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))}) ↾ 𝐻):𝐻1-1-onto→(𝒫 (𝐽 × ℕ0) ∩ Fin))
217, 20mpbir 230 1 𝑀:𝐻1-1-onto→(𝒫 (𝐽 × ℕ0) ∩ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3060  {crab 3431  Vcvv 3473  cin 3943  wss 3944  c0 4318  𝒫 cpw 4596   class class class wbr 5141  {copab 5203  cmpt 5224   × cxp 5667  ccnv 5668  cres 5671  cima 5672  1-1-ontowf1o 6531  cfv 6532  (class class class)co 7393  cmpo 7395   supp csupp 8128  m cmap 8803  Fincfn 8922  1c1 11093   · cmul 11097  cle 11231  cn 12194  2c2 12249  0cn0 12454  cexp 14009  Σcsu 15614  cdvds 16179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-ac2 10440  ax-cnex 11148  ax-1cn 11150  ax-addcl 11152
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-se 5625  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-isom 6541  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-om 7839  df-1st 7957  df-2nd 7958  df-supp 8129  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-rdg 8392  df-1o 8448  df-er 8686  df-map 8805  df-en 8923  df-dom 8924  df-fin 8926  df-card 9916  df-acn 9919  df-ac 10093  df-nn 12195  df-n0 12455
This theorem is referenced by:  eulerpartgbij  33200  eulerpartlemgvv  33204  eulerpartlemgf  33207
  Copyright terms: Public domain W3C validator