Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartlem1 Structured version   Visualization version   GIF version

Theorem eulerpartlem1 32967
Description: Lemma for eulerpart 32982. (Contributed by Thierry Arnoux, 27-Aug-2017.) (Revised by Thierry Arnoux, 1-Sep-2019.)
Hypotheses
Ref Expression
eulerpart.p 𝑃 = {𝑓 ∈ (ℕ0m ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
eulerpart.o 𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}
eulerpart.d 𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}
eulerpart.j 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
eulerpart.f 𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
eulerpart.h 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}
eulerpart.m 𝑀 = (𝑟𝐻 ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))})
Assertion
Ref Expression
eulerpartlem1 𝑀:𝐻1-1-onto→(𝒫 (𝐽 × ℕ0) ∩ Fin)
Distinct variable groups:   𝑥,𝑟,𝑦,𝐽   𝐻,𝑟
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝑃(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝐹(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝐻(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛)   𝐽(𝑧,𝑓,𝑔,𝑘,𝑛)   𝑀(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝑁(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝑂(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)

Proof of Theorem eulerpartlem1
StepHypRef Expression
1 eulerpart.j . . . 4 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
2 nnex 12159 . . . 4 ℕ ∈ V
31, 2rabex2 5291 . . 3 𝐽 ∈ V
4 nn0ex 12419 . . 3 0 ∈ V
5 eqid 2736 . . 3 (𝑟 ∈ (𝒫 ℕ0m 𝐽) ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))}) = (𝑟 ∈ (𝒫 ℕ0m 𝐽) ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))})
6 eulerpart.h . . 3 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}
73, 4, 5, 6fpwrelmapffs 31651 . 2 ((𝑟 ∈ (𝒫 ℕ0m 𝐽) ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))}) ↾ 𝐻):𝐻1-1-onto→(𝒫 (𝐽 × ℕ0) ∩ Fin)
8 eulerpart.m . . . 4 𝑀 = (𝑟𝐻 ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))})
9 ssrab2 4037 . . . . . . 7 {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin} ⊆ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽)
104pwex 5335 . . . . . . . 8 𝒫 ℕ0 ∈ V
11 inss1 4188 . . . . . . . 8 (𝒫 ℕ0 ∩ Fin) ⊆ 𝒫 ℕ0
12 mapss 8827 . . . . . . . 8 ((𝒫 ℕ0 ∈ V ∧ (𝒫 ℕ0 ∩ Fin) ⊆ 𝒫 ℕ0) → ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ⊆ (𝒫 ℕ0m 𝐽))
1310, 11, 12mp2an 690 . . . . . . 7 ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ⊆ (𝒫 ℕ0m 𝐽)
149, 13sstri 3953 . . . . . 6 {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin} ⊆ (𝒫 ℕ0m 𝐽)
156, 14eqsstri 3978 . . . . 5 𝐻 ⊆ (𝒫 ℕ0m 𝐽)
16 resmpt 5991 . . . . 5 (𝐻 ⊆ (𝒫 ℕ0m 𝐽) → ((𝑟 ∈ (𝒫 ℕ0m 𝐽) ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))}) ↾ 𝐻) = (𝑟𝐻 ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))}))
1715, 16ax-mp 5 . . . 4 ((𝑟 ∈ (𝒫 ℕ0m 𝐽) ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))}) ↾ 𝐻) = (𝑟𝐻 ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))})
188, 17eqtr4i 2767 . . 3 𝑀 = ((𝑟 ∈ (𝒫 ℕ0m 𝐽) ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))}) ↾ 𝐻)
19 f1oeq1 6772 . . 3 (𝑀 = ((𝑟 ∈ (𝒫 ℕ0m 𝐽) ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))}) ↾ 𝐻) → (𝑀:𝐻1-1-onto→(𝒫 (𝐽 × ℕ0) ∩ Fin) ↔ ((𝑟 ∈ (𝒫 ℕ0m 𝐽) ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))}) ↾ 𝐻):𝐻1-1-onto→(𝒫 (𝐽 × ℕ0) ∩ Fin)))
2018, 19ax-mp 5 . 2 (𝑀:𝐻1-1-onto→(𝒫 (𝐽 × ℕ0) ∩ Fin) ↔ ((𝑟 ∈ (𝒫 ℕ0m 𝐽) ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))}) ↾ 𝐻):𝐻1-1-onto→(𝒫 (𝐽 × ℕ0) ∩ Fin))
217, 20mpbir 230 1 𝑀:𝐻1-1-onto→(𝒫 (𝐽 × ℕ0) ∩ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3064  {crab 3407  Vcvv 3445  cin 3909  wss 3910  c0 4282  𝒫 cpw 4560   class class class wbr 5105  {copab 5167  cmpt 5188   × cxp 5631  ccnv 5632  cres 5635  cima 5636  1-1-ontowf1o 6495  cfv 6496  (class class class)co 7357  cmpo 7359   supp csupp 8092  m cmap 8765  Fincfn 8883  1c1 11052   · cmul 11056  cle 11190  cn 12153  2c2 12208  0cn0 12413  cexp 13967  Σcsu 15570  cdvds 16136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-ac2 10399  ax-cnex 11107  ax-1cn 11109  ax-addcl 11111
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-fin 8887  df-card 9875  df-acn 9878  df-ac 10052  df-nn 12154  df-n0 12414
This theorem is referenced by:  eulerpartgbij  32972  eulerpartlemgvv  32976  eulerpartlemgf  32979
  Copyright terms: Public domain W3C validator