Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eulerpartlem1 | Structured version Visualization version GIF version |
Description: Lemma for eulerpart 32349. (Contributed by Thierry Arnoux, 27-Aug-2017.) (Revised by Thierry Arnoux, 1-Sep-2019.) |
Ref | Expression |
---|---|
eulerpart.p | ⊢ 𝑃 = {𝑓 ∈ (ℕ0 ↑m ℕ) ∣ ((◡𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓‘𝑘) · 𝑘) = 𝑁)} |
eulerpart.o | ⊢ 𝑂 = {𝑔 ∈ 𝑃 ∣ ∀𝑛 ∈ (◡𝑔 “ ℕ) ¬ 2 ∥ 𝑛} |
eulerpart.d | ⊢ 𝐷 = {𝑔 ∈ 𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔‘𝑛) ≤ 1} |
eulerpart.j | ⊢ 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} |
eulerpart.f | ⊢ 𝐹 = (𝑥 ∈ 𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) |
eulerpart.h | ⊢ 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin} |
eulerpart.m | ⊢ 𝑀 = (𝑟 ∈ 𝐻 ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ (𝑟‘𝑥))}) |
Ref | Expression |
---|---|
eulerpartlem1 | ⊢ 𝑀:𝐻–1-1-onto→(𝒫 (𝐽 × ℕ0) ∩ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eulerpart.j | . . . 4 ⊢ 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} | |
2 | nnex 11979 | . . . 4 ⊢ ℕ ∈ V | |
3 | 1, 2 | rabex2 5258 | . . 3 ⊢ 𝐽 ∈ V |
4 | nn0ex 12239 | . . 3 ⊢ ℕ0 ∈ V | |
5 | eqid 2738 | . . 3 ⊢ (𝑟 ∈ (𝒫 ℕ0 ↑m 𝐽) ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ (𝑟‘𝑥))}) = (𝑟 ∈ (𝒫 ℕ0 ↑m 𝐽) ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ (𝑟‘𝑥))}) | |
6 | eulerpart.h | . . 3 ⊢ 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin} | |
7 | 3, 4, 5, 6 | fpwrelmapffs 31069 | . 2 ⊢ ((𝑟 ∈ (𝒫 ℕ0 ↑m 𝐽) ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ (𝑟‘𝑥))}) ↾ 𝐻):𝐻–1-1-onto→(𝒫 (𝐽 × ℕ0) ∩ Fin) |
8 | eulerpart.m | . . . 4 ⊢ 𝑀 = (𝑟 ∈ 𝐻 ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ (𝑟‘𝑥))}) | |
9 | ssrab2 4013 | . . . . . . 7 ⊢ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin} ⊆ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) | |
10 | 4 | pwex 5303 | . . . . . . . 8 ⊢ 𝒫 ℕ0 ∈ V |
11 | inss1 4162 | . . . . . . . 8 ⊢ (𝒫 ℕ0 ∩ Fin) ⊆ 𝒫 ℕ0 | |
12 | mapss 8677 | . . . . . . . 8 ⊢ ((𝒫 ℕ0 ∈ V ∧ (𝒫 ℕ0 ∩ Fin) ⊆ 𝒫 ℕ0) → ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ⊆ (𝒫 ℕ0 ↑m 𝐽)) | |
13 | 10, 11, 12 | mp2an 689 | . . . . . . 7 ⊢ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ⊆ (𝒫 ℕ0 ↑m 𝐽) |
14 | 9, 13 | sstri 3930 | . . . . . 6 ⊢ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin} ⊆ (𝒫 ℕ0 ↑m 𝐽) |
15 | 6, 14 | eqsstri 3955 | . . . . 5 ⊢ 𝐻 ⊆ (𝒫 ℕ0 ↑m 𝐽) |
16 | resmpt 5945 | . . . . 5 ⊢ (𝐻 ⊆ (𝒫 ℕ0 ↑m 𝐽) → ((𝑟 ∈ (𝒫 ℕ0 ↑m 𝐽) ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ (𝑟‘𝑥))}) ↾ 𝐻) = (𝑟 ∈ 𝐻 ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ (𝑟‘𝑥))})) | |
17 | 15, 16 | ax-mp 5 | . . . 4 ⊢ ((𝑟 ∈ (𝒫 ℕ0 ↑m 𝐽) ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ (𝑟‘𝑥))}) ↾ 𝐻) = (𝑟 ∈ 𝐻 ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ (𝑟‘𝑥))}) |
18 | 8, 17 | eqtr4i 2769 | . . 3 ⊢ 𝑀 = ((𝑟 ∈ (𝒫 ℕ0 ↑m 𝐽) ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ (𝑟‘𝑥))}) ↾ 𝐻) |
19 | f1oeq1 6704 | . . 3 ⊢ (𝑀 = ((𝑟 ∈ (𝒫 ℕ0 ↑m 𝐽) ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ (𝑟‘𝑥))}) ↾ 𝐻) → (𝑀:𝐻–1-1-onto→(𝒫 (𝐽 × ℕ0) ∩ Fin) ↔ ((𝑟 ∈ (𝒫 ℕ0 ↑m 𝐽) ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ (𝑟‘𝑥))}) ↾ 𝐻):𝐻–1-1-onto→(𝒫 (𝐽 × ℕ0) ∩ Fin))) | |
20 | 18, 19 | ax-mp 5 | . 2 ⊢ (𝑀:𝐻–1-1-onto→(𝒫 (𝐽 × ℕ0) ∩ Fin) ↔ ((𝑟 ∈ (𝒫 ℕ0 ↑m 𝐽) ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ (𝑟‘𝑥))}) ↾ 𝐻):𝐻–1-1-onto→(𝒫 (𝐽 × ℕ0) ∩ Fin)) |
21 | 7, 20 | mpbir 230 | 1 ⊢ 𝑀:𝐻–1-1-onto→(𝒫 (𝐽 × ℕ0) ∩ Fin) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 {crab 3068 Vcvv 3432 ∩ cin 3886 ⊆ wss 3887 ∅c0 4256 𝒫 cpw 4533 class class class wbr 5074 {copab 5136 ↦ cmpt 5157 × cxp 5587 ◡ccnv 5588 ↾ cres 5591 “ cima 5592 –1-1-onto→wf1o 6432 ‘cfv 6433 (class class class)co 7275 ∈ cmpo 7277 supp csupp 7977 ↑m cmap 8615 Fincfn 8733 1c1 10872 · cmul 10876 ≤ cle 11010 ℕcn 11973 2c2 12028 ℕ0cn0 12233 ↑cexp 13782 Σcsu 15397 ∥ cdvds 15963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-ac2 10219 ax-cnex 10927 ax-1cn 10929 ax-addcl 10931 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-supp 7978 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-fin 8737 df-card 9697 df-acn 9700 df-ac 9872 df-nn 11974 df-n0 12234 |
This theorem is referenced by: eulerpartgbij 32339 eulerpartlemgvv 32343 eulerpartlemgf 32346 |
Copyright terms: Public domain | W3C validator |