MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrcom Structured version   Visualization version   GIF version

Theorem psrcom 21905
Description: Commutative law for the ring of power series. (Contributed by Mario Carneiro, 7-Jan-2015.)
Hypotheses
Ref Expression
psrring.s 𝑆 = (𝐼 mPwSer 𝑅)
psrring.i (𝜑𝐼𝑉)
psrring.r (𝜑𝑅 ∈ Ring)
psrass.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psrass.t × = (.r𝑆)
psrass.b 𝐵 = (Base‘𝑆)
psrass.x (𝜑𝑋𝐵)
psrass.y (𝜑𝑌𝐵)
psrcom.c (𝜑𝑅 ∈ CRing)
Assertion
Ref Expression
psrcom (𝜑 → (𝑋 × 𝑌) = (𝑌 × 𝑋))
Distinct variable groups:   𝑓,𝐼   𝑅,𝑓   𝑓,𝑋   𝑓,𝑌
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑓)   𝐷(𝑓)   𝑆(𝑓)   × (𝑓)   𝑉(𝑓)

Proof of Theorem psrcom
Dummy variables 𝑥 𝑘 𝑧 𝑔 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2731 . . . . 5 (0g𝑅) = (0g𝑅)
3 psrring.r . . . . . . 7 (𝜑𝑅 ∈ Ring)
4 ringcmn 20200 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
53, 4syl 17 . . . . . 6 (𝜑𝑅 ∈ CMnd)
65adantr 480 . . . . 5 ((𝜑𝑥𝐷) → 𝑅 ∈ CMnd)
7 psrass.d . . . . . . 7 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
87psrbaglefi 21863 . . . . . 6 (𝑥𝐷 → {𝑔𝐷𝑔r𝑥} ∈ Fin)
98adantl 481 . . . . 5 ((𝜑𝑥𝐷) → {𝑔𝐷𝑔r𝑥} ∈ Fin)
103ad2antrr 726 . . . . . . 7 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑅 ∈ Ring)
11 psrring.s . . . . . . . . . 10 𝑆 = (𝐼 mPwSer 𝑅)
12 psrass.b . . . . . . . . . 10 𝐵 = (Base‘𝑆)
13 psrass.x . . . . . . . . . 10 (𝜑𝑋𝐵)
1411, 1, 7, 12, 13psrelbas 21871 . . . . . . . . 9 (𝜑𝑋:𝐷⟶(Base‘𝑅))
1514ad2antrr 726 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑋:𝐷⟶(Base‘𝑅))
16 simpr 484 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑘 ∈ {𝑔𝐷𝑔r𝑥})
17 breq1 5092 . . . . . . . . . . 11 (𝑔 = 𝑘 → (𝑔r𝑥𝑘r𝑥))
1817elrab 3642 . . . . . . . . . 10 (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↔ (𝑘𝐷𝑘r𝑥))
1916, 18sylib 218 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑘𝐷𝑘r𝑥))
2019simpld 494 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑘𝐷)
2115, 20ffvelcdmd 7018 . . . . . . 7 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑋𝑘) ∈ (Base‘𝑅))
22 psrass.y . . . . . . . . . 10 (𝜑𝑌𝐵)
2311, 1, 7, 12, 22psrelbas 21871 . . . . . . . . 9 (𝜑𝑌:𝐷⟶(Base‘𝑅))
2423ad2antrr 726 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑌:𝐷⟶(Base‘𝑅))
25 simplr 768 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑥𝐷)
267psrbagf 21855 . . . . . . . . . . 11 (𝑘𝐷𝑘:𝐼⟶ℕ0)
2720, 26syl 17 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑘:𝐼⟶ℕ0)
2819simprd 495 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑘r𝑥)
297psrbagcon 21862 . . . . . . . . . 10 ((𝑥𝐷𝑘:𝐼⟶ℕ0𝑘r𝑥) → ((𝑥f𝑘) ∈ 𝐷 ∧ (𝑥f𝑘) ∘r𝑥))
3025, 27, 28, 29syl3anc 1373 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → ((𝑥f𝑘) ∈ 𝐷 ∧ (𝑥f𝑘) ∘r𝑥))
3130simpld 494 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑥f𝑘) ∈ 𝐷)
3224, 31ffvelcdmd 7018 . . . . . . 7 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑌‘(𝑥f𝑘)) ∈ (Base‘𝑅))
33 eqid 2731 . . . . . . . 8 (.r𝑅) = (.r𝑅)
341, 33ringcl 20168 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑋𝑘) ∈ (Base‘𝑅) ∧ (𝑌‘(𝑥f𝑘)) ∈ (Base‘𝑅)) → ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘))) ∈ (Base‘𝑅))
3510, 21, 32, 34syl3anc 1373 . . . . . 6 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘))) ∈ (Base‘𝑅))
3635fmpttd 7048 . . . . 5 ((𝜑𝑥𝐷) → (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))):{𝑔𝐷𝑔r𝑥}⟶(Base‘𝑅))
37 ovex 7379 . . . . . . . . . 10 (ℕ0m 𝐼) ∈ V
387, 37rabex2 5277 . . . . . . . . 9 𝐷 ∈ V
3938a1i 11 . . . . . . . 8 ((𝜑𝑥𝐷) → 𝐷 ∈ V)
40 rabexg 5273 . . . . . . . 8 (𝐷 ∈ V → {𝑔𝐷𝑔r𝑥} ∈ V)
4139, 40syl 17 . . . . . . 7 ((𝜑𝑥𝐷) → {𝑔𝐷𝑔r𝑥} ∈ V)
4241mptexd 7158 . . . . . 6 ((𝜑𝑥𝐷) → (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))) ∈ V)
43 funmpt 6519 . . . . . . 7 Fun (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘))))
4443a1i 11 . . . . . 6 ((𝜑𝑥𝐷) → Fun (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))))
45 fvexd 6837 . . . . . 6 ((𝜑𝑥𝐷) → (0g𝑅) ∈ V)
46 suppssdm 8107 . . . . . . . 8 ((𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))) supp (0g𝑅)) ⊆ dom (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘))))
47 eqid 2731 . . . . . . . . 9 (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))) = (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘))))
4847dmmptss 6188 . . . . . . . 8 dom (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))) ⊆ {𝑔𝐷𝑔r𝑥}
4946, 48sstri 3939 . . . . . . 7 ((𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))) supp (0g𝑅)) ⊆ {𝑔𝐷𝑔r𝑥}
5049a1i 11 . . . . . 6 ((𝜑𝑥𝐷) → ((𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))) supp (0g𝑅)) ⊆ {𝑔𝐷𝑔r𝑥})
51 suppssfifsupp 9264 . . . . . 6 ((((𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))) ∈ V ∧ Fun (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))) ∧ (0g𝑅) ∈ V) ∧ ({𝑔𝐷𝑔r𝑥} ∈ Fin ∧ ((𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))) supp (0g𝑅)) ⊆ {𝑔𝐷𝑔r𝑥})) → (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))) finSupp (0g𝑅))
5242, 44, 45, 9, 50, 51syl32anc 1380 . . . . 5 ((𝜑𝑥𝐷) → (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))) finSupp (0g𝑅))
53 eqid 2731 . . . . . . 7 {𝑔𝐷𝑔r𝑥} = {𝑔𝐷𝑔r𝑥}
547, 53psrbagconf1o 21866 . . . . . 6 (𝑥𝐷 → (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ (𝑥f𝑗)):{𝑔𝐷𝑔r𝑥}–1-1-onto→{𝑔𝐷𝑔r𝑥})
5554adantl 481 . . . . 5 ((𝜑𝑥𝐷) → (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ (𝑥f𝑗)):{𝑔𝐷𝑔r𝑥}–1-1-onto→{𝑔𝐷𝑔r𝑥})
561, 2, 6, 9, 36, 52, 55gsumf1o 19828 . . . 4 ((𝜑𝑥𝐷) → (𝑅 Σg (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘))))) = (𝑅 Σg ((𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))) ∘ (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ (𝑥f𝑗)))))
57 simplr 768 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑥𝐷)
58 simpr 484 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑗 ∈ {𝑔𝐷𝑔r𝑥})
597, 53psrbagconcl 21864 . . . . . . . 8 ((𝑥𝐷𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑥f𝑗) ∈ {𝑔𝐷𝑔r𝑥})
6057, 58, 59syl2anc 584 . . . . . . 7 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑥f𝑗) ∈ {𝑔𝐷𝑔r𝑥})
61 eqidd 2732 . . . . . . 7 ((𝜑𝑥𝐷) → (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ (𝑥f𝑗)) = (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ (𝑥f𝑗)))
62 eqidd 2732 . . . . . . 7 ((𝜑𝑥𝐷) → (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))) = (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))))
63 fveq2 6822 . . . . . . . 8 (𝑘 = (𝑥f𝑗) → (𝑋𝑘) = (𝑋‘(𝑥f𝑗)))
64 oveq2 7354 . . . . . . . . 9 (𝑘 = (𝑥f𝑗) → (𝑥f𝑘) = (𝑥f − (𝑥f𝑗)))
6564fveq2d 6826 . . . . . . . 8 (𝑘 = (𝑥f𝑗) → (𝑌‘(𝑥f𝑘)) = (𝑌‘(𝑥f − (𝑥f𝑗))))
6663, 65oveq12d 7364 . . . . . . 7 (𝑘 = (𝑥f𝑗) → ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘))) = ((𝑋‘(𝑥f𝑗))(.r𝑅)(𝑌‘(𝑥f − (𝑥f𝑗)))))
6760, 61, 62, 66fmptco 7062 . . . . . 6 ((𝜑𝑥𝐷) → ((𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))) ∘ (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ (𝑥f𝑗))) = (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋‘(𝑥f𝑗))(.r𝑅)(𝑌‘(𝑥f − (𝑥f𝑗))))))
687psrbagf 21855 . . . . . . . . . . . . . . . 16 (𝑥𝐷𝑥:𝐼⟶ℕ0)
6968adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐷) → 𝑥:𝐼⟶ℕ0)
7069adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑥:𝐼⟶ℕ0)
7170ffvelcdmda 7017 . . . . . . . . . . . . 13 ((((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑧𝐼) → (𝑥𝑧) ∈ ℕ0)
72 breq1 5092 . . . . . . . . . . . . . . . . . 18 (𝑔 = 𝑗 → (𝑔r𝑥𝑗r𝑥))
7372elrab 3642 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↔ (𝑗𝐷𝑗r𝑥))
7458, 73sylib 218 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑗𝐷𝑗r𝑥))
7574simpld 494 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑗𝐷)
767psrbagf 21855 . . . . . . . . . . . . . . 15 (𝑗𝐷𝑗:𝐼⟶ℕ0)
7775, 76syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑗:𝐼⟶ℕ0)
7877ffvelcdmda 7017 . . . . . . . . . . . . 13 ((((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑧𝐼) → (𝑗𝑧) ∈ ℕ0)
79 nn0cn 12391 . . . . . . . . . . . . . 14 ((𝑥𝑧) ∈ ℕ0 → (𝑥𝑧) ∈ ℂ)
80 nn0cn 12391 . . . . . . . . . . . . . 14 ((𝑗𝑧) ∈ ℕ0 → (𝑗𝑧) ∈ ℂ)
81 nncan 11390 . . . . . . . . . . . . . 14 (((𝑥𝑧) ∈ ℂ ∧ (𝑗𝑧) ∈ ℂ) → ((𝑥𝑧) − ((𝑥𝑧) − (𝑗𝑧))) = (𝑗𝑧))
8279, 80, 81syl2an 596 . . . . . . . . . . . . 13 (((𝑥𝑧) ∈ ℕ0 ∧ (𝑗𝑧) ∈ ℕ0) → ((𝑥𝑧) − ((𝑥𝑧) − (𝑗𝑧))) = (𝑗𝑧))
8371, 78, 82syl2anc 584 . . . . . . . . . . . 12 ((((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑧𝐼) → ((𝑥𝑧) − ((𝑥𝑧) − (𝑗𝑧))) = (𝑗𝑧))
8483mpteq2dva 5182 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑧𝐼 ↦ ((𝑥𝑧) − ((𝑥𝑧) − (𝑗𝑧)))) = (𝑧𝐼 ↦ (𝑗𝑧)))
85 psrring.i . . . . . . . . . . . . 13 (𝜑𝐼𝑉)
8685ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝐼𝑉)
87 ovex 7379 . . . . . . . . . . . . 13 ((𝑥𝑧) − (𝑗𝑧)) ∈ V
8887a1i 11 . . . . . . . . . . . 12 ((((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑧𝐼) → ((𝑥𝑧) − (𝑗𝑧)) ∈ V)
8970feqmptd 6890 . . . . . . . . . . . 12 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑥 = (𝑧𝐼 ↦ (𝑥𝑧)))
9077feqmptd 6890 . . . . . . . . . . . . 13 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑗 = (𝑧𝐼 ↦ (𝑗𝑧)))
9186, 71, 78, 89, 90offval2 7630 . . . . . . . . . . . 12 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑥f𝑗) = (𝑧𝐼 ↦ ((𝑥𝑧) − (𝑗𝑧))))
9286, 71, 88, 89, 91offval2 7630 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑥f − (𝑥f𝑗)) = (𝑧𝐼 ↦ ((𝑥𝑧) − ((𝑥𝑧) − (𝑗𝑧)))))
9384, 92, 903eqtr4d 2776 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑥f − (𝑥f𝑗)) = 𝑗)
9493fveq2d 6826 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑌‘(𝑥f − (𝑥f𝑗))) = (𝑌𝑗))
9594oveq2d 7362 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → ((𝑋‘(𝑥f𝑗))(.r𝑅)(𝑌‘(𝑥f − (𝑥f𝑗)))) = ((𝑋‘(𝑥f𝑗))(.r𝑅)(𝑌𝑗)))
96 psrcom.c . . . . . . . . . 10 (𝜑𝑅 ∈ CRing)
9796ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑅 ∈ CRing)
9814ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑋:𝐷⟶(Base‘𝑅))
9974simprd 495 . . . . . . . . . . . 12 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑗r𝑥)
1007psrbagcon 21862 . . . . . . . . . . . 12 ((𝑥𝐷𝑗:𝐼⟶ℕ0𝑗r𝑥) → ((𝑥f𝑗) ∈ 𝐷 ∧ (𝑥f𝑗) ∘r𝑥))
10157, 77, 99, 100syl3anc 1373 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → ((𝑥f𝑗) ∈ 𝐷 ∧ (𝑥f𝑗) ∘r𝑥))
102101simpld 494 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑥f𝑗) ∈ 𝐷)
10398, 102ffvelcdmd 7018 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑋‘(𝑥f𝑗)) ∈ (Base‘𝑅))
10423ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑌:𝐷⟶(Base‘𝑅))
105104, 75ffvelcdmd 7018 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑌𝑗) ∈ (Base‘𝑅))
1061, 33crngcom 20169 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ (𝑋‘(𝑥f𝑗)) ∈ (Base‘𝑅) ∧ (𝑌𝑗) ∈ (Base‘𝑅)) → ((𝑋‘(𝑥f𝑗))(.r𝑅)(𝑌𝑗)) = ((𝑌𝑗)(.r𝑅)(𝑋‘(𝑥f𝑗))))
10797, 103, 105, 106syl3anc 1373 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → ((𝑋‘(𝑥f𝑗))(.r𝑅)(𝑌𝑗)) = ((𝑌𝑗)(.r𝑅)(𝑋‘(𝑥f𝑗))))
10895, 107eqtrd 2766 . . . . . . 7 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → ((𝑋‘(𝑥f𝑗))(.r𝑅)(𝑌‘(𝑥f − (𝑥f𝑗)))) = ((𝑌𝑗)(.r𝑅)(𝑋‘(𝑥f𝑗))))
109108mpteq2dva 5182 . . . . . 6 ((𝜑𝑥𝐷) → (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋‘(𝑥f𝑗))(.r𝑅)(𝑌‘(𝑥f − (𝑥f𝑗))))) = (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑌𝑗)(.r𝑅)(𝑋‘(𝑥f𝑗)))))
11067, 109eqtrd 2766 . . . . 5 ((𝜑𝑥𝐷) → ((𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))) ∘ (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ (𝑥f𝑗))) = (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑌𝑗)(.r𝑅)(𝑋‘(𝑥f𝑗)))))
111110oveq2d 7362 . . . 4 ((𝜑𝑥𝐷) → (𝑅 Σg ((𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))) ∘ (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ (𝑥f𝑗)))) = (𝑅 Σg (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑌𝑗)(.r𝑅)(𝑋‘(𝑥f𝑗))))))
11256, 111eqtrd 2766 . . 3 ((𝜑𝑥𝐷) → (𝑅 Σg (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘))))) = (𝑅 Σg (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑌𝑗)(.r𝑅)(𝑋‘(𝑥f𝑗))))))
113112mpteq2dva 5182 . 2 (𝜑 → (𝑥𝐷 ↦ (𝑅 Σg (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))))) = (𝑥𝐷 ↦ (𝑅 Σg (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑌𝑗)(.r𝑅)(𝑋‘(𝑥f𝑗)))))))
114 psrass.t . . 3 × = (.r𝑆)
11511, 12, 33, 114, 7, 13, 22psrmulfval 21880 . 2 (𝜑 → (𝑋 × 𝑌) = (𝑥𝐷 ↦ (𝑅 Σg (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))))))
11611, 12, 33, 114, 7, 22, 13psrmulfval 21880 . 2 (𝜑 → (𝑌 × 𝑋) = (𝑥𝐷 ↦ (𝑅 Σg (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑌𝑗)(.r𝑅)(𝑋‘(𝑥f𝑗)))))))
117113, 115, 1163eqtr4d 2776 1 (𝜑 → (𝑋 × 𝑌) = (𝑌 × 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  {crab 3395  Vcvv 3436  wss 3897   class class class wbr 5089  cmpt 5170  ccnv 5613  dom cdm 5614  cima 5617  ccom 5618  Fun wfun 6475  wf 6477  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  f cof 7608  r cofr 7609   supp csupp 8090  m cmap 8750  Fincfn 8869   finSupp cfsupp 9245  cc 11004  cle 11147  cmin 11344  cn 12125  0cn0 12381  Basecbs 17120  .rcmulr 17162  0gc0g 17343   Σg cgsu 17344  CMndccmn 19692  Ringcrg 20151  CRingccrg 20152   mPwSer cmps 21841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-ofr 7611  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-fzo 13555  df-seq 13909  df-hash 14238  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-tset 17180  df-0g 17345  df-gsum 17346  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-minusg 18850  df-cntz 19229  df-cmn 19694  df-abl 19695  df-mgp 20059  df-ur 20100  df-ring 20153  df-cring 20154  df-psr 21846
This theorem is referenced by:  psrcrng  21909
  Copyright terms: Public domain W3C validator