MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrcom Structured version   Visualization version   GIF version

Theorem psrcom 21178
Description: Commutative law for the ring of power series. (Contributed by Mario Carneiro, 7-Jan-2015.)
Hypotheses
Ref Expression
psrring.s 𝑆 = (𝐼 mPwSer 𝑅)
psrring.i (𝜑𝐼𝑉)
psrring.r (𝜑𝑅 ∈ Ring)
psrass.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psrass.t × = (.r𝑆)
psrass.b 𝐵 = (Base‘𝑆)
psrass.x (𝜑𝑋𝐵)
psrass.y (𝜑𝑌𝐵)
psrcom.c (𝜑𝑅 ∈ CRing)
Assertion
Ref Expression
psrcom (𝜑 → (𝑋 × 𝑌) = (𝑌 × 𝑋))
Distinct variable groups:   𝑓,𝐼   𝑅,𝑓   𝑓,𝑋   𝑓,𝑌
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑓)   𝐷(𝑓)   𝑆(𝑓)   × (𝑓)   𝑉(𝑓)

Proof of Theorem psrcom
Dummy variables 𝑥 𝑘 𝑧 𝑔 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2738 . . . . 5 (0g𝑅) = (0g𝑅)
3 psrring.r . . . . . . 7 (𝜑𝑅 ∈ Ring)
4 ringcmn 19820 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
53, 4syl 17 . . . . . 6 (𝜑𝑅 ∈ CMnd)
65adantr 481 . . . . 5 ((𝜑𝑥𝐷) → 𝑅 ∈ CMnd)
7 psrass.d . . . . . . 7 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
87psrbaglefi 21135 . . . . . 6 (𝑥𝐷 → {𝑔𝐷𝑔r𝑥} ∈ Fin)
98adantl 482 . . . . 5 ((𝜑𝑥𝐷) → {𝑔𝐷𝑔r𝑥} ∈ Fin)
103ad2antrr 723 . . . . . . 7 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑅 ∈ Ring)
11 psrring.s . . . . . . . . . 10 𝑆 = (𝐼 mPwSer 𝑅)
12 psrass.b . . . . . . . . . 10 𝐵 = (Base‘𝑆)
13 psrass.x . . . . . . . . . 10 (𝜑𝑋𝐵)
1411, 1, 7, 12, 13psrelbas 21148 . . . . . . . . 9 (𝜑𝑋:𝐷⟶(Base‘𝑅))
1514ad2antrr 723 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑋:𝐷⟶(Base‘𝑅))
16 simpr 485 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑘 ∈ {𝑔𝐷𝑔r𝑥})
17 breq1 5077 . . . . . . . . . . 11 (𝑔 = 𝑘 → (𝑔r𝑥𝑘r𝑥))
1817elrab 3624 . . . . . . . . . 10 (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↔ (𝑘𝐷𝑘r𝑥))
1916, 18sylib 217 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑘𝐷𝑘r𝑥))
2019simpld 495 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑘𝐷)
2115, 20ffvelrnd 6962 . . . . . . 7 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑋𝑘) ∈ (Base‘𝑅))
22 psrass.y . . . . . . . . . 10 (𝜑𝑌𝐵)
2311, 1, 7, 12, 22psrelbas 21148 . . . . . . . . 9 (𝜑𝑌:𝐷⟶(Base‘𝑅))
2423ad2antrr 723 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑌:𝐷⟶(Base‘𝑅))
25 simplr 766 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑥𝐷)
267psrbagf 21121 . . . . . . . . . . 11 (𝑘𝐷𝑘:𝐼⟶ℕ0)
2720, 26syl 17 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑘:𝐼⟶ℕ0)
2819simprd 496 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑘r𝑥)
297psrbagcon 21133 . . . . . . . . . 10 ((𝑥𝐷𝑘:𝐼⟶ℕ0𝑘r𝑥) → ((𝑥f𝑘) ∈ 𝐷 ∧ (𝑥f𝑘) ∘r𝑥))
3025, 27, 28, 29syl3anc 1370 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → ((𝑥f𝑘) ∈ 𝐷 ∧ (𝑥f𝑘) ∘r𝑥))
3130simpld 495 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑥f𝑘) ∈ 𝐷)
3224, 31ffvelrnd 6962 . . . . . . 7 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑌‘(𝑥f𝑘)) ∈ (Base‘𝑅))
33 eqid 2738 . . . . . . . 8 (.r𝑅) = (.r𝑅)
341, 33ringcl 19800 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑋𝑘) ∈ (Base‘𝑅) ∧ (𝑌‘(𝑥f𝑘)) ∈ (Base‘𝑅)) → ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘))) ∈ (Base‘𝑅))
3510, 21, 32, 34syl3anc 1370 . . . . . 6 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘))) ∈ (Base‘𝑅))
3635fmpttd 6989 . . . . 5 ((𝜑𝑥𝐷) → (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))):{𝑔𝐷𝑔r𝑥}⟶(Base‘𝑅))
37 ovex 7308 . . . . . . . . . 10 (ℕ0m 𝐼) ∈ V
387, 37rabex2 5258 . . . . . . . . 9 𝐷 ∈ V
3938a1i 11 . . . . . . . 8 ((𝜑𝑥𝐷) → 𝐷 ∈ V)
40 rabexg 5255 . . . . . . . 8 (𝐷 ∈ V → {𝑔𝐷𝑔r𝑥} ∈ V)
4139, 40syl 17 . . . . . . 7 ((𝜑𝑥𝐷) → {𝑔𝐷𝑔r𝑥} ∈ V)
4241mptexd 7100 . . . . . 6 ((𝜑𝑥𝐷) → (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))) ∈ V)
43 funmpt 6472 . . . . . . 7 Fun (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘))))
4443a1i 11 . . . . . 6 ((𝜑𝑥𝐷) → Fun (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))))
45 fvexd 6789 . . . . . 6 ((𝜑𝑥𝐷) → (0g𝑅) ∈ V)
46 suppssdm 7993 . . . . . . . 8 ((𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))) supp (0g𝑅)) ⊆ dom (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘))))
47 eqid 2738 . . . . . . . . 9 (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))) = (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘))))
4847dmmptss 6144 . . . . . . . 8 dom (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))) ⊆ {𝑔𝐷𝑔r𝑥}
4946, 48sstri 3930 . . . . . . 7 ((𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))) supp (0g𝑅)) ⊆ {𝑔𝐷𝑔r𝑥}
5049a1i 11 . . . . . 6 ((𝜑𝑥𝐷) → ((𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))) supp (0g𝑅)) ⊆ {𝑔𝐷𝑔r𝑥})
51 suppssfifsupp 9143 . . . . . 6 ((((𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))) ∈ V ∧ Fun (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))) ∧ (0g𝑅) ∈ V) ∧ ({𝑔𝐷𝑔r𝑥} ∈ Fin ∧ ((𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))) supp (0g𝑅)) ⊆ {𝑔𝐷𝑔r𝑥})) → (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))) finSupp (0g𝑅))
5242, 44, 45, 9, 50, 51syl32anc 1377 . . . . 5 ((𝜑𝑥𝐷) → (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))) finSupp (0g𝑅))
53 eqid 2738 . . . . . . 7 {𝑔𝐷𝑔r𝑥} = {𝑔𝐷𝑔r𝑥}
547, 53psrbagconf1o 21139 . . . . . 6 (𝑥𝐷 → (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ (𝑥f𝑗)):{𝑔𝐷𝑔r𝑥}–1-1-onto→{𝑔𝐷𝑔r𝑥})
5554adantl 482 . . . . 5 ((𝜑𝑥𝐷) → (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ (𝑥f𝑗)):{𝑔𝐷𝑔r𝑥}–1-1-onto→{𝑔𝐷𝑔r𝑥})
561, 2, 6, 9, 36, 52, 55gsumf1o 19517 . . . 4 ((𝜑𝑥𝐷) → (𝑅 Σg (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘))))) = (𝑅 Σg ((𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))) ∘ (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ (𝑥f𝑗)))))
57 simplr 766 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑥𝐷)
58 simpr 485 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑗 ∈ {𝑔𝐷𝑔r𝑥})
597, 53psrbagconcl 21137 . . . . . . . 8 ((𝑥𝐷𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑥f𝑗) ∈ {𝑔𝐷𝑔r𝑥})
6057, 58, 59syl2anc 584 . . . . . . 7 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑥f𝑗) ∈ {𝑔𝐷𝑔r𝑥})
61 eqidd 2739 . . . . . . 7 ((𝜑𝑥𝐷) → (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ (𝑥f𝑗)) = (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ (𝑥f𝑗)))
62 eqidd 2739 . . . . . . 7 ((𝜑𝑥𝐷) → (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))) = (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))))
63 fveq2 6774 . . . . . . . 8 (𝑘 = (𝑥f𝑗) → (𝑋𝑘) = (𝑋‘(𝑥f𝑗)))
64 oveq2 7283 . . . . . . . . 9 (𝑘 = (𝑥f𝑗) → (𝑥f𝑘) = (𝑥f − (𝑥f𝑗)))
6564fveq2d 6778 . . . . . . . 8 (𝑘 = (𝑥f𝑗) → (𝑌‘(𝑥f𝑘)) = (𝑌‘(𝑥f − (𝑥f𝑗))))
6663, 65oveq12d 7293 . . . . . . 7 (𝑘 = (𝑥f𝑗) → ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘))) = ((𝑋‘(𝑥f𝑗))(.r𝑅)(𝑌‘(𝑥f − (𝑥f𝑗)))))
6760, 61, 62, 66fmptco 7001 . . . . . 6 ((𝜑𝑥𝐷) → ((𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))) ∘ (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ (𝑥f𝑗))) = (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋‘(𝑥f𝑗))(.r𝑅)(𝑌‘(𝑥f − (𝑥f𝑗))))))
687psrbagf 21121 . . . . . . . . . . . . . . . 16 (𝑥𝐷𝑥:𝐼⟶ℕ0)
6968adantl 482 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐷) → 𝑥:𝐼⟶ℕ0)
7069adantr 481 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑥:𝐼⟶ℕ0)
7170ffvelrnda 6961 . . . . . . . . . . . . 13 ((((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑧𝐼) → (𝑥𝑧) ∈ ℕ0)
72 breq1 5077 . . . . . . . . . . . . . . . . . 18 (𝑔 = 𝑗 → (𝑔r𝑥𝑗r𝑥))
7372elrab 3624 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↔ (𝑗𝐷𝑗r𝑥))
7458, 73sylib 217 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑗𝐷𝑗r𝑥))
7574simpld 495 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑗𝐷)
767psrbagf 21121 . . . . . . . . . . . . . . 15 (𝑗𝐷𝑗:𝐼⟶ℕ0)
7775, 76syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑗:𝐼⟶ℕ0)
7877ffvelrnda 6961 . . . . . . . . . . . . 13 ((((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑧𝐼) → (𝑗𝑧) ∈ ℕ0)
79 nn0cn 12243 . . . . . . . . . . . . . 14 ((𝑥𝑧) ∈ ℕ0 → (𝑥𝑧) ∈ ℂ)
80 nn0cn 12243 . . . . . . . . . . . . . 14 ((𝑗𝑧) ∈ ℕ0 → (𝑗𝑧) ∈ ℂ)
81 nncan 11250 . . . . . . . . . . . . . 14 (((𝑥𝑧) ∈ ℂ ∧ (𝑗𝑧) ∈ ℂ) → ((𝑥𝑧) − ((𝑥𝑧) − (𝑗𝑧))) = (𝑗𝑧))
8279, 80, 81syl2an 596 . . . . . . . . . . . . 13 (((𝑥𝑧) ∈ ℕ0 ∧ (𝑗𝑧) ∈ ℕ0) → ((𝑥𝑧) − ((𝑥𝑧) − (𝑗𝑧))) = (𝑗𝑧))
8371, 78, 82syl2anc 584 . . . . . . . . . . . 12 ((((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑧𝐼) → ((𝑥𝑧) − ((𝑥𝑧) − (𝑗𝑧))) = (𝑗𝑧))
8483mpteq2dva 5174 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑧𝐼 ↦ ((𝑥𝑧) − ((𝑥𝑧) − (𝑗𝑧)))) = (𝑧𝐼 ↦ (𝑗𝑧)))
85 psrring.i . . . . . . . . . . . . 13 (𝜑𝐼𝑉)
8685ad2antrr 723 . . . . . . . . . . . 12 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝐼𝑉)
87 ovex 7308 . . . . . . . . . . . . 13 ((𝑥𝑧) − (𝑗𝑧)) ∈ V
8887a1i 11 . . . . . . . . . . . 12 ((((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑧𝐼) → ((𝑥𝑧) − (𝑗𝑧)) ∈ V)
8970feqmptd 6837 . . . . . . . . . . . 12 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑥 = (𝑧𝐼 ↦ (𝑥𝑧)))
9077feqmptd 6837 . . . . . . . . . . . . 13 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑗 = (𝑧𝐼 ↦ (𝑗𝑧)))
9186, 71, 78, 89, 90offval2 7553 . . . . . . . . . . . 12 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑥f𝑗) = (𝑧𝐼 ↦ ((𝑥𝑧) − (𝑗𝑧))))
9286, 71, 88, 89, 91offval2 7553 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑥f − (𝑥f𝑗)) = (𝑧𝐼 ↦ ((𝑥𝑧) − ((𝑥𝑧) − (𝑗𝑧)))))
9384, 92, 903eqtr4d 2788 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑥f − (𝑥f𝑗)) = 𝑗)
9493fveq2d 6778 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑌‘(𝑥f − (𝑥f𝑗))) = (𝑌𝑗))
9594oveq2d 7291 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → ((𝑋‘(𝑥f𝑗))(.r𝑅)(𝑌‘(𝑥f − (𝑥f𝑗)))) = ((𝑋‘(𝑥f𝑗))(.r𝑅)(𝑌𝑗)))
96 psrcom.c . . . . . . . . . 10 (𝜑𝑅 ∈ CRing)
9796ad2antrr 723 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑅 ∈ CRing)
9814ad2antrr 723 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑋:𝐷⟶(Base‘𝑅))
9974simprd 496 . . . . . . . . . . . 12 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑗r𝑥)
1007psrbagcon 21133 . . . . . . . . . . . 12 ((𝑥𝐷𝑗:𝐼⟶ℕ0𝑗r𝑥) → ((𝑥f𝑗) ∈ 𝐷 ∧ (𝑥f𝑗) ∘r𝑥))
10157, 77, 99, 100syl3anc 1370 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → ((𝑥f𝑗) ∈ 𝐷 ∧ (𝑥f𝑗) ∘r𝑥))
102101simpld 495 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑥f𝑗) ∈ 𝐷)
10398, 102ffvelrnd 6962 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑋‘(𝑥f𝑗)) ∈ (Base‘𝑅))
10423ad2antrr 723 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑌:𝐷⟶(Base‘𝑅))
105104, 75ffvelrnd 6962 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑌𝑗) ∈ (Base‘𝑅))
1061, 33crngcom 19801 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ (𝑋‘(𝑥f𝑗)) ∈ (Base‘𝑅) ∧ (𝑌𝑗) ∈ (Base‘𝑅)) → ((𝑋‘(𝑥f𝑗))(.r𝑅)(𝑌𝑗)) = ((𝑌𝑗)(.r𝑅)(𝑋‘(𝑥f𝑗))))
10797, 103, 105, 106syl3anc 1370 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → ((𝑋‘(𝑥f𝑗))(.r𝑅)(𝑌𝑗)) = ((𝑌𝑗)(.r𝑅)(𝑋‘(𝑥f𝑗))))
10895, 107eqtrd 2778 . . . . . . 7 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → ((𝑋‘(𝑥f𝑗))(.r𝑅)(𝑌‘(𝑥f − (𝑥f𝑗)))) = ((𝑌𝑗)(.r𝑅)(𝑋‘(𝑥f𝑗))))
109108mpteq2dva 5174 . . . . . 6 ((𝜑𝑥𝐷) → (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋‘(𝑥f𝑗))(.r𝑅)(𝑌‘(𝑥f − (𝑥f𝑗))))) = (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑌𝑗)(.r𝑅)(𝑋‘(𝑥f𝑗)))))
11067, 109eqtrd 2778 . . . . 5 ((𝜑𝑥𝐷) → ((𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))) ∘ (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ (𝑥f𝑗))) = (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑌𝑗)(.r𝑅)(𝑋‘(𝑥f𝑗)))))
111110oveq2d 7291 . . . 4 ((𝜑𝑥𝐷) → (𝑅 Σg ((𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))) ∘ (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ (𝑥f𝑗)))) = (𝑅 Σg (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑌𝑗)(.r𝑅)(𝑋‘(𝑥f𝑗))))))
11256, 111eqtrd 2778 . . 3 ((𝜑𝑥𝐷) → (𝑅 Σg (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘))))) = (𝑅 Σg (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑌𝑗)(.r𝑅)(𝑋‘(𝑥f𝑗))))))
113112mpteq2dva 5174 . 2 (𝜑 → (𝑥𝐷 ↦ (𝑅 Σg (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))))) = (𝑥𝐷 ↦ (𝑅 Σg (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑌𝑗)(.r𝑅)(𝑋‘(𝑥f𝑗)))))))
114 psrass.t . . 3 × = (.r𝑆)
11511, 12, 33, 114, 7, 13, 22psrmulfval 21154 . 2 (𝜑 → (𝑋 × 𝑌) = (𝑥𝐷 ↦ (𝑅 Σg (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))))))
11611, 12, 33, 114, 7, 22, 13psrmulfval 21154 . 2 (𝜑 → (𝑌 × 𝑋) = (𝑥𝐷 ↦ (𝑅 Σg (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑌𝑗)(.r𝑅)(𝑋‘(𝑥f𝑗)))))))
117113, 115, 1163eqtr4d 2788 1 (𝜑 → (𝑋 × 𝑌) = (𝑌 × 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  {crab 3068  Vcvv 3432  wss 3887   class class class wbr 5074  cmpt 5157  ccnv 5588  dom cdm 5589  cima 5592  ccom 5593  Fun wfun 6427  wf 6429  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275  f cof 7531  r cofr 7532   supp csupp 7977  m cmap 8615  Fincfn 8733   finSupp cfsupp 9128  cc 10869  cle 11010  cmin 11205  cn 11973  0cn0 12233  Basecbs 16912  .rcmulr 16963  0gc0g 17150   Σg cgsu 17151  CMndccmn 19386  Ringcrg 19783  CRingccrg 19784   mPwSer cmps 21107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-ofr 7534  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-seq 13722  df-hash 14045  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-tset 16981  df-0g 17152  df-gsum 17153  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-cntz 18923  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-cring 19786  df-psr 21112
This theorem is referenced by:  psrcrng  21182
  Copyright terms: Public domain W3C validator