MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrcom Structured version   Visualization version   GIF version

Theorem psrcom 19906
Description: Commutative law for the ring of power series. (Contributed by Mario Carneiro, 7-Jan-2015.)
Hypotheses
Ref Expression
psrring.s 𝑆 = (𝐼 mPwSer 𝑅)
psrring.i (𝜑𝐼𝑉)
psrring.r (𝜑𝑅 ∈ Ring)
psrass.d 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psrass.t × = (.r𝑆)
psrass.b 𝐵 = (Base‘𝑆)
psrass.x (𝜑𝑋𝐵)
psrass.y (𝜑𝑌𝐵)
psrcom.c (𝜑𝑅 ∈ CRing)
Assertion
Ref Expression
psrcom (𝜑 → (𝑋 × 𝑌) = (𝑌 × 𝑋))
Distinct variable groups:   𝑓,𝐼   𝑅,𝑓   𝑓,𝑋   𝑓,𝑌
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑓)   𝐷(𝑓)   𝑆(𝑓)   × (𝑓)   𝑉(𝑓)

Proof of Theorem psrcom
Dummy variables 𝑥 𝑘 𝑧 𝑔 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2778 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2778 . . . . 5 (0g𝑅) = (0g𝑅)
3 psrring.r . . . . . . 7 (𝜑𝑅 ∈ Ring)
4 ringcmn 19057 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
53, 4syl 17 . . . . . 6 (𝜑𝑅 ∈ CMnd)
65adantr 473 . . . . 5 ((𝜑𝑥𝐷) → 𝑅 ∈ CMnd)
7 psrring.i . . . . . 6 (𝜑𝐼𝑉)
8 psrass.d . . . . . . 7 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
98psrbaglefi 19869 . . . . . 6 ((𝐼𝑉𝑥𝐷) → {𝑔𝐷𝑔𝑟𝑥} ∈ Fin)
107, 9sylan 572 . . . . 5 ((𝜑𝑥𝐷) → {𝑔𝐷𝑔𝑟𝑥} ∈ Fin)
113ad2antrr 713 . . . . . . 7 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥}) → 𝑅 ∈ Ring)
12 psrring.s . . . . . . . . . 10 𝑆 = (𝐼 mPwSer 𝑅)
13 psrass.b . . . . . . . . . 10 𝐵 = (Base‘𝑆)
14 psrass.x . . . . . . . . . 10 (𝜑𝑋𝐵)
1512, 1, 8, 13, 14psrelbas 19876 . . . . . . . . 9 (𝜑𝑋:𝐷⟶(Base‘𝑅))
1615ad2antrr 713 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥}) → 𝑋:𝐷⟶(Base‘𝑅))
17 simpr 477 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥}) → 𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥})
18 breq1 4933 . . . . . . . . . . 11 (𝑔 = 𝑘 → (𝑔𝑟𝑥𝑘𝑟𝑥))
1918elrab 3595 . . . . . . . . . 10 (𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥} ↔ (𝑘𝐷𝑘𝑟𝑥))
2017, 19sylib 210 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥}) → (𝑘𝐷𝑘𝑟𝑥))
2120simpld 487 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥}) → 𝑘𝐷)
2216, 21ffvelrnd 6679 . . . . . . 7 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥}) → (𝑋𝑘) ∈ (Base‘𝑅))
23 psrass.y . . . . . . . . . 10 (𝜑𝑌𝐵)
2412, 1, 8, 13, 23psrelbas 19876 . . . . . . . . 9 (𝜑𝑌:𝐷⟶(Base‘𝑅))
2524ad2antrr 713 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥}) → 𝑌:𝐷⟶(Base‘𝑅))
267ad2antrr 713 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥}) → 𝐼𝑉)
27 simplr 756 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥}) → 𝑥𝐷)
288psrbagf 19862 . . . . . . . . . . 11 ((𝐼𝑉𝑘𝐷) → 𝑘:𝐼⟶ℕ0)
2926, 21, 28syl2anc 576 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥}) → 𝑘:𝐼⟶ℕ0)
3020simprd 488 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥}) → 𝑘𝑟𝑥)
318psrbagcon 19868 . . . . . . . . . 10 ((𝐼𝑉 ∧ (𝑥𝐷𝑘:𝐼⟶ℕ0𝑘𝑟𝑥)) → ((𝑥𝑓𝑘) ∈ 𝐷 ∧ (𝑥𝑓𝑘) ∘𝑟𝑥))
3226, 27, 29, 30, 31syl13anc 1352 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥}) → ((𝑥𝑓𝑘) ∈ 𝐷 ∧ (𝑥𝑓𝑘) ∘𝑟𝑥))
3332simpld 487 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥}) → (𝑥𝑓𝑘) ∈ 𝐷)
3425, 33ffvelrnd 6679 . . . . . . 7 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥}) → (𝑌‘(𝑥𝑓𝑘)) ∈ (Base‘𝑅))
35 eqid 2778 . . . . . . . 8 (.r𝑅) = (.r𝑅)
361, 35ringcl 19037 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑋𝑘) ∈ (Base‘𝑅) ∧ (𝑌‘(𝑥𝑓𝑘)) ∈ (Base‘𝑅)) → ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥𝑓𝑘))) ∈ (Base‘𝑅))
3711, 22, 34, 36syl3anc 1351 . . . . . 6 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥}) → ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥𝑓𝑘))) ∈ (Base‘𝑅))
3837fmpttd 6704 . . . . 5 ((𝜑𝑥𝐷) → (𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥𝑓𝑘)))):{𝑔𝐷𝑔𝑟𝑥}⟶(Base‘𝑅))
39 ovex 7010 . . . . . . . . . 10 (ℕ0𝑚 𝐼) ∈ V
408, 39rabex2 5094 . . . . . . . . 9 𝐷 ∈ V
4140a1i 11 . . . . . . . 8 ((𝜑𝑥𝐷) → 𝐷 ∈ V)
42 rabexg 5091 . . . . . . . 8 (𝐷 ∈ V → {𝑔𝐷𝑔𝑟𝑥} ∈ V)
4341, 42syl 17 . . . . . . 7 ((𝜑𝑥𝐷) → {𝑔𝐷𝑔𝑟𝑥} ∈ V)
4443mptexd 6815 . . . . . 6 ((𝜑𝑥𝐷) → (𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥𝑓𝑘)))) ∈ V)
45 funmpt 6228 . . . . . . 7 Fun (𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥𝑓𝑘))))
4645a1i 11 . . . . . 6 ((𝜑𝑥𝐷) → Fun (𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥𝑓𝑘)))))
47 fvexd 6516 . . . . . 6 ((𝜑𝑥𝐷) → (0g𝑅) ∈ V)
48 suppssdm 7648 . . . . . . . 8 ((𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥𝑓𝑘)))) supp (0g𝑅)) ⊆ dom (𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥𝑓𝑘))))
49 eqid 2778 . . . . . . . . 9 (𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥𝑓𝑘)))) = (𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥𝑓𝑘))))
5049dmmptss 5936 . . . . . . . 8 dom (𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥𝑓𝑘)))) ⊆ {𝑔𝐷𝑔𝑟𝑥}
5148, 50sstri 3869 . . . . . . 7 ((𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥𝑓𝑘)))) supp (0g𝑅)) ⊆ {𝑔𝐷𝑔𝑟𝑥}
5251a1i 11 . . . . . 6 ((𝜑𝑥𝐷) → ((𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥𝑓𝑘)))) supp (0g𝑅)) ⊆ {𝑔𝐷𝑔𝑟𝑥})
53 suppssfifsupp 8645 . . . . . 6 ((((𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥𝑓𝑘)))) ∈ V ∧ Fun (𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥𝑓𝑘)))) ∧ (0g𝑅) ∈ V) ∧ ({𝑔𝐷𝑔𝑟𝑥} ∈ Fin ∧ ((𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥𝑓𝑘)))) supp (0g𝑅)) ⊆ {𝑔𝐷𝑔𝑟𝑥})) → (𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥𝑓𝑘)))) finSupp (0g𝑅))
5444, 46, 47, 10, 52, 53syl32anc 1358 . . . . 5 ((𝜑𝑥𝐷) → (𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥𝑓𝑘)))) finSupp (0g𝑅))
55 eqid 2778 . . . . . . 7 {𝑔𝐷𝑔𝑟𝑥} = {𝑔𝐷𝑔𝑟𝑥}
568, 55psrbagconf1o 19871 . . . . . 6 ((𝐼𝑉𝑥𝐷) → (𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥} ↦ (𝑥𝑓𝑗)):{𝑔𝐷𝑔𝑟𝑥}–1-1-onto→{𝑔𝐷𝑔𝑟𝑥})
577, 56sylan 572 . . . . 5 ((𝜑𝑥𝐷) → (𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥} ↦ (𝑥𝑓𝑗)):{𝑔𝐷𝑔𝑟𝑥}–1-1-onto→{𝑔𝐷𝑔𝑟𝑥})
581, 2, 6, 10, 38, 54, 57gsumf1o 18793 . . . 4 ((𝜑𝑥𝐷) → (𝑅 Σg (𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥𝑓𝑘))))) = (𝑅 Σg ((𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥𝑓𝑘)))) ∘ (𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥} ↦ (𝑥𝑓𝑗)))))
597ad2antrr 713 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥}) → 𝐼𝑉)
60 simplr 756 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥}) → 𝑥𝐷)
61 simpr 477 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥}) → 𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥})
628, 55psrbagconcl 19870 . . . . . . . 8 ((𝐼𝑉𝑥𝐷𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥}) → (𝑥𝑓𝑗) ∈ {𝑔𝐷𝑔𝑟𝑥})
6359, 60, 61, 62syl3anc 1351 . . . . . . 7 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥}) → (𝑥𝑓𝑗) ∈ {𝑔𝐷𝑔𝑟𝑥})
64 eqidd 2779 . . . . . . 7 ((𝜑𝑥𝐷) → (𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥} ↦ (𝑥𝑓𝑗)) = (𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥} ↦ (𝑥𝑓𝑗)))
65 eqidd 2779 . . . . . . 7 ((𝜑𝑥𝐷) → (𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥𝑓𝑘)))) = (𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥𝑓𝑘)))))
66 fveq2 6501 . . . . . . . 8 (𝑘 = (𝑥𝑓𝑗) → (𝑋𝑘) = (𝑋‘(𝑥𝑓𝑗)))
67 oveq2 6986 . . . . . . . . 9 (𝑘 = (𝑥𝑓𝑗) → (𝑥𝑓𝑘) = (𝑥𝑓 − (𝑥𝑓𝑗)))
6867fveq2d 6505 . . . . . . . 8 (𝑘 = (𝑥𝑓𝑗) → (𝑌‘(𝑥𝑓𝑘)) = (𝑌‘(𝑥𝑓 − (𝑥𝑓𝑗))))
6966, 68oveq12d 6996 . . . . . . 7 (𝑘 = (𝑥𝑓𝑗) → ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥𝑓𝑘))) = ((𝑋‘(𝑥𝑓𝑗))(.r𝑅)(𝑌‘(𝑥𝑓 − (𝑥𝑓𝑗)))))
7063, 64, 65, 69fmptco 6716 . . . . . 6 ((𝜑𝑥𝐷) → ((𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥𝑓𝑘)))) ∘ (𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥} ↦ (𝑥𝑓𝑗))) = (𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥} ↦ ((𝑋‘(𝑥𝑓𝑗))(.r𝑅)(𝑌‘(𝑥𝑓 − (𝑥𝑓𝑗))))))
718psrbagf 19862 . . . . . . . . . . . . . . . 16 ((𝐼𝑉𝑥𝐷) → 𝑥:𝐼⟶ℕ0)
727, 71sylan 572 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐷) → 𝑥:𝐼⟶ℕ0)
7372adantr 473 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥}) → 𝑥:𝐼⟶ℕ0)
7473ffvelrnda 6678 . . . . . . . . . . . . 13 ((((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥}) ∧ 𝑧𝐼) → (𝑥𝑧) ∈ ℕ0)
75 breq1 4933 . . . . . . . . . . . . . . . . . 18 (𝑔 = 𝑗 → (𝑔𝑟𝑥𝑗𝑟𝑥))
7675elrab 3595 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥} ↔ (𝑗𝐷𝑗𝑟𝑥))
7761, 76sylib 210 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥}) → (𝑗𝐷𝑗𝑟𝑥))
7877simpld 487 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥}) → 𝑗𝐷)
798psrbagf 19862 . . . . . . . . . . . . . . 15 ((𝐼𝑉𝑗𝐷) → 𝑗:𝐼⟶ℕ0)
8059, 78, 79syl2anc 576 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥}) → 𝑗:𝐼⟶ℕ0)
8180ffvelrnda 6678 . . . . . . . . . . . . 13 ((((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥}) ∧ 𝑧𝐼) → (𝑗𝑧) ∈ ℕ0)
82 nn0cn 11721 . . . . . . . . . . . . . 14 ((𝑥𝑧) ∈ ℕ0 → (𝑥𝑧) ∈ ℂ)
83 nn0cn 11721 . . . . . . . . . . . . . 14 ((𝑗𝑧) ∈ ℕ0 → (𝑗𝑧) ∈ ℂ)
84 nncan 10718 . . . . . . . . . . . . . 14 (((𝑥𝑧) ∈ ℂ ∧ (𝑗𝑧) ∈ ℂ) → ((𝑥𝑧) − ((𝑥𝑧) − (𝑗𝑧))) = (𝑗𝑧))
8582, 83, 84syl2an 586 . . . . . . . . . . . . 13 (((𝑥𝑧) ∈ ℕ0 ∧ (𝑗𝑧) ∈ ℕ0) → ((𝑥𝑧) − ((𝑥𝑧) − (𝑗𝑧))) = (𝑗𝑧))
8674, 81, 85syl2anc 576 . . . . . . . . . . . 12 ((((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥}) ∧ 𝑧𝐼) → ((𝑥𝑧) − ((𝑥𝑧) − (𝑗𝑧))) = (𝑗𝑧))
8786mpteq2dva 5023 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥}) → (𝑧𝐼 ↦ ((𝑥𝑧) − ((𝑥𝑧) − (𝑗𝑧)))) = (𝑧𝐼 ↦ (𝑗𝑧)))
88 ovex 7010 . . . . . . . . . . . . 13 ((𝑥𝑧) − (𝑗𝑧)) ∈ V
8988a1i 11 . . . . . . . . . . . 12 ((((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥}) ∧ 𝑧𝐼) → ((𝑥𝑧) − (𝑗𝑧)) ∈ V)
9073feqmptd 6564 . . . . . . . . . . . 12 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥}) → 𝑥 = (𝑧𝐼 ↦ (𝑥𝑧)))
9180feqmptd 6564 . . . . . . . . . . . . 13 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥}) → 𝑗 = (𝑧𝐼 ↦ (𝑗𝑧)))
9259, 74, 81, 90, 91offval2 7246 . . . . . . . . . . . 12 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥}) → (𝑥𝑓𝑗) = (𝑧𝐼 ↦ ((𝑥𝑧) − (𝑗𝑧))))
9359, 74, 89, 90, 92offval2 7246 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥}) → (𝑥𝑓 − (𝑥𝑓𝑗)) = (𝑧𝐼 ↦ ((𝑥𝑧) − ((𝑥𝑧) − (𝑗𝑧)))))
9487, 93, 913eqtr4d 2824 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥}) → (𝑥𝑓 − (𝑥𝑓𝑗)) = 𝑗)
9594fveq2d 6505 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥}) → (𝑌‘(𝑥𝑓 − (𝑥𝑓𝑗))) = (𝑌𝑗))
9695oveq2d 6994 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥}) → ((𝑋‘(𝑥𝑓𝑗))(.r𝑅)(𝑌‘(𝑥𝑓 − (𝑥𝑓𝑗)))) = ((𝑋‘(𝑥𝑓𝑗))(.r𝑅)(𝑌𝑗)))
97 psrcom.c . . . . . . . . . 10 (𝜑𝑅 ∈ CRing)
9897ad2antrr 713 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥}) → 𝑅 ∈ CRing)
9915ad2antrr 713 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥}) → 𝑋:𝐷⟶(Base‘𝑅))
10077simprd 488 . . . . . . . . . . . 12 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥}) → 𝑗𝑟𝑥)
1018psrbagcon 19868 . . . . . . . . . . . 12 ((𝐼𝑉 ∧ (𝑥𝐷𝑗:𝐼⟶ℕ0𝑗𝑟𝑥)) → ((𝑥𝑓𝑗) ∈ 𝐷 ∧ (𝑥𝑓𝑗) ∘𝑟𝑥))
10259, 60, 80, 100, 101syl13anc 1352 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥}) → ((𝑥𝑓𝑗) ∈ 𝐷 ∧ (𝑥𝑓𝑗) ∘𝑟𝑥))
103102simpld 487 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥}) → (𝑥𝑓𝑗) ∈ 𝐷)
10499, 103ffvelrnd 6679 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥}) → (𝑋‘(𝑥𝑓𝑗)) ∈ (Base‘𝑅))
10524ad2antrr 713 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥}) → 𝑌:𝐷⟶(Base‘𝑅))
106105, 78ffvelrnd 6679 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥}) → (𝑌𝑗) ∈ (Base‘𝑅))
1071, 35crngcom 19038 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ (𝑋‘(𝑥𝑓𝑗)) ∈ (Base‘𝑅) ∧ (𝑌𝑗) ∈ (Base‘𝑅)) → ((𝑋‘(𝑥𝑓𝑗))(.r𝑅)(𝑌𝑗)) = ((𝑌𝑗)(.r𝑅)(𝑋‘(𝑥𝑓𝑗))))
10898, 104, 106, 107syl3anc 1351 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥}) → ((𝑋‘(𝑥𝑓𝑗))(.r𝑅)(𝑌𝑗)) = ((𝑌𝑗)(.r𝑅)(𝑋‘(𝑥𝑓𝑗))))
10996, 108eqtrd 2814 . . . . . . 7 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥}) → ((𝑋‘(𝑥𝑓𝑗))(.r𝑅)(𝑌‘(𝑥𝑓 − (𝑥𝑓𝑗)))) = ((𝑌𝑗)(.r𝑅)(𝑋‘(𝑥𝑓𝑗))))
110109mpteq2dva 5023 . . . . . 6 ((𝜑𝑥𝐷) → (𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥} ↦ ((𝑋‘(𝑥𝑓𝑗))(.r𝑅)(𝑌‘(𝑥𝑓 − (𝑥𝑓𝑗))))) = (𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥} ↦ ((𝑌𝑗)(.r𝑅)(𝑋‘(𝑥𝑓𝑗)))))
11170, 110eqtrd 2814 . . . . 5 ((𝜑𝑥𝐷) → ((𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥𝑓𝑘)))) ∘ (𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥} ↦ (𝑥𝑓𝑗))) = (𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥} ↦ ((𝑌𝑗)(.r𝑅)(𝑋‘(𝑥𝑓𝑗)))))
112111oveq2d 6994 . . . 4 ((𝜑𝑥𝐷) → (𝑅 Σg ((𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥𝑓𝑘)))) ∘ (𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥} ↦ (𝑥𝑓𝑗)))) = (𝑅 Σg (𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥} ↦ ((𝑌𝑗)(.r𝑅)(𝑋‘(𝑥𝑓𝑗))))))
11358, 112eqtrd 2814 . . 3 ((𝜑𝑥𝐷) → (𝑅 Σg (𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥𝑓𝑘))))) = (𝑅 Σg (𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥} ↦ ((𝑌𝑗)(.r𝑅)(𝑋‘(𝑥𝑓𝑗))))))
114113mpteq2dva 5023 . 2 (𝜑 → (𝑥𝐷 ↦ (𝑅 Σg (𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥𝑓𝑘)))))) = (𝑥𝐷 ↦ (𝑅 Σg (𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥} ↦ ((𝑌𝑗)(.r𝑅)(𝑋‘(𝑥𝑓𝑗)))))))
115 psrass.t . . 3 × = (.r𝑆)
11612, 13, 35, 115, 8, 14, 23psrmulfval 19882 . 2 (𝜑 → (𝑋 × 𝑌) = (𝑥𝐷 ↦ (𝑅 Σg (𝑘 ∈ {𝑔𝐷𝑔𝑟𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥𝑓𝑘)))))))
11712, 13, 35, 115, 8, 23, 14psrmulfval 19882 . 2 (𝜑 → (𝑌 × 𝑋) = (𝑥𝐷 ↦ (𝑅 Σg (𝑗 ∈ {𝑔𝐷𝑔𝑟𝑥} ↦ ((𝑌𝑗)(.r𝑅)(𝑋‘(𝑥𝑓𝑗)))))))
118114, 116, 1173eqtr4d 2824 1 (𝜑 → (𝑋 × 𝑌) = (𝑌 × 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387   = wceq 1507  wcel 2050  {crab 3092  Vcvv 3415  wss 3831   class class class wbr 4930  cmpt 5009  ccnv 5407  dom cdm 5408  cima 5411  ccom 5412  Fun wfun 6184  wf 6186  1-1-ontowf1o 6189  cfv 6190  (class class class)co 6978  𝑓 cof 7227  𝑟 cofr 7228   supp csupp 7635  𝑚 cmap 8208  Fincfn 8308   finSupp cfsupp 8630  cc 10335  cle 10477  cmin 10672  cn 11441  0cn0 11710  Basecbs 16342  .rcmulr 16425  0gc0g 16572   Σg cgsu 16573  CMndccmn 18669  Ringcrg 19023  CRingccrg 19024   mPwSer cmps 19848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5050  ax-sep 5061  ax-nul 5068  ax-pow 5120  ax-pr 5187  ax-un 7281  ax-cnex 10393  ax-resscn 10394  ax-1cn 10395  ax-icn 10396  ax-addcl 10397  ax-addrcl 10398  ax-mulcl 10399  ax-mulrcl 10400  ax-mulcom 10401  ax-addass 10402  ax-mulass 10403  ax-distr 10404  ax-i2m1 10405  ax-1ne0 10406  ax-1rid 10407  ax-rnegex 10408  ax-rrecex 10409  ax-cnre 10410  ax-pre-lttri 10411  ax-pre-lttrn 10412  ax-pre-ltadd 10413  ax-pre-mulgt0 10414
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2583  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3417  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4181  df-if 4352  df-pw 4425  df-sn 4443  df-pr 4445  df-tp 4447  df-op 4449  df-uni 4714  df-int 4751  df-iun 4795  df-br 4931  df-opab 4993  df-mpt 5010  df-tr 5032  df-id 5313  df-eprel 5318  df-po 5327  df-so 5328  df-fr 5367  df-se 5368  df-we 5369  df-xp 5414  df-rel 5415  df-cnv 5416  df-co 5417  df-dm 5418  df-rn 5419  df-res 5420  df-ima 5421  df-pred 5988  df-ord 6034  df-on 6035  df-lim 6036  df-suc 6037  df-iota 6154  df-fun 6192  df-fn 6193  df-f 6194  df-f1 6195  df-fo 6196  df-f1o 6197  df-fv 6198  df-isom 6199  df-riota 6939  df-ov 6981  df-oprab 6982  df-mpo 6983  df-of 7229  df-ofr 7230  df-om 7399  df-1st 7503  df-2nd 7504  df-supp 7636  df-wrecs 7752  df-recs 7814  df-rdg 7852  df-1o 7907  df-2o 7908  df-oadd 7911  df-er 8091  df-map 8210  df-pm 8211  df-ixp 8262  df-en 8309  df-dom 8310  df-sdom 8311  df-fin 8312  df-fsupp 8631  df-oi 8771  df-card 9164  df-pnf 10478  df-mnf 10479  df-xr 10480  df-ltxr 10481  df-le 10482  df-sub 10674  df-neg 10675  df-nn 11442  df-2 11506  df-3 11507  df-4 11508  df-5 11509  df-6 11510  df-7 11511  df-8 11512  df-9 11513  df-n0 11711  df-z 11797  df-uz 12062  df-fz 12712  df-fzo 12853  df-seq 13188  df-hash 13509  df-struct 16344  df-ndx 16345  df-slot 16346  df-base 16348  df-sets 16349  df-plusg 16437  df-mulr 16438  df-sca 16440  df-vsca 16441  df-tset 16443  df-0g 16574  df-gsum 16575  df-mgm 17713  df-sgrp 17755  df-mnd 17766  df-grp 17897  df-minusg 17898  df-cntz 18221  df-cmn 18671  df-abl 18672  df-mgp 18966  df-ur 18978  df-ring 19025  df-cring 19026  df-psr 19853
This theorem is referenced by:  psrcrng  19910
  Copyright terms: Public domain W3C validator