MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrcom Structured version   Visualization version   GIF version

Theorem psrcom 21884
Description: Commutative law for the ring of power series. (Contributed by Mario Carneiro, 7-Jan-2015.)
Hypotheses
Ref Expression
psrring.s 𝑆 = (𝐼 mPwSer 𝑅)
psrring.i (𝜑𝐼𝑉)
psrring.r (𝜑𝑅 ∈ Ring)
psrass.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psrass.t × = (.r𝑆)
psrass.b 𝐵 = (Base‘𝑆)
psrass.x (𝜑𝑋𝐵)
psrass.y (𝜑𝑌𝐵)
psrcom.c (𝜑𝑅 ∈ CRing)
Assertion
Ref Expression
psrcom (𝜑 → (𝑋 × 𝑌) = (𝑌 × 𝑋))
Distinct variable groups:   𝑓,𝐼   𝑅,𝑓   𝑓,𝑋   𝑓,𝑌
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑓)   𝐷(𝑓)   𝑆(𝑓)   × (𝑓)   𝑉(𝑓)

Proof of Theorem psrcom
Dummy variables 𝑥 𝑘 𝑧 𝑔 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2730 . . . . 5 (0g𝑅) = (0g𝑅)
3 psrring.r . . . . . . 7 (𝜑𝑅 ∈ Ring)
4 ringcmn 20198 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
53, 4syl 17 . . . . . 6 (𝜑𝑅 ∈ CMnd)
65adantr 480 . . . . 5 ((𝜑𝑥𝐷) → 𝑅 ∈ CMnd)
7 psrass.d . . . . . . 7 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
87psrbaglefi 21842 . . . . . 6 (𝑥𝐷 → {𝑔𝐷𝑔r𝑥} ∈ Fin)
98adantl 481 . . . . 5 ((𝜑𝑥𝐷) → {𝑔𝐷𝑔r𝑥} ∈ Fin)
103ad2antrr 726 . . . . . . 7 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑅 ∈ Ring)
11 psrring.s . . . . . . . . . 10 𝑆 = (𝐼 mPwSer 𝑅)
12 psrass.b . . . . . . . . . 10 𝐵 = (Base‘𝑆)
13 psrass.x . . . . . . . . . 10 (𝜑𝑋𝐵)
1411, 1, 7, 12, 13psrelbas 21850 . . . . . . . . 9 (𝜑𝑋:𝐷⟶(Base‘𝑅))
1514ad2antrr 726 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑋:𝐷⟶(Base‘𝑅))
16 simpr 484 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑘 ∈ {𝑔𝐷𝑔r𝑥})
17 breq1 5113 . . . . . . . . . . 11 (𝑔 = 𝑘 → (𝑔r𝑥𝑘r𝑥))
1817elrab 3662 . . . . . . . . . 10 (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↔ (𝑘𝐷𝑘r𝑥))
1916, 18sylib 218 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑘𝐷𝑘r𝑥))
2019simpld 494 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑘𝐷)
2115, 20ffvelcdmd 7060 . . . . . . 7 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑋𝑘) ∈ (Base‘𝑅))
22 psrass.y . . . . . . . . . 10 (𝜑𝑌𝐵)
2311, 1, 7, 12, 22psrelbas 21850 . . . . . . . . 9 (𝜑𝑌:𝐷⟶(Base‘𝑅))
2423ad2antrr 726 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑌:𝐷⟶(Base‘𝑅))
25 simplr 768 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑥𝐷)
267psrbagf 21834 . . . . . . . . . . 11 (𝑘𝐷𝑘:𝐼⟶ℕ0)
2720, 26syl 17 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑘:𝐼⟶ℕ0)
2819simprd 495 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑘r𝑥)
297psrbagcon 21841 . . . . . . . . . 10 ((𝑥𝐷𝑘:𝐼⟶ℕ0𝑘r𝑥) → ((𝑥f𝑘) ∈ 𝐷 ∧ (𝑥f𝑘) ∘r𝑥))
3025, 27, 28, 29syl3anc 1373 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → ((𝑥f𝑘) ∈ 𝐷 ∧ (𝑥f𝑘) ∘r𝑥))
3130simpld 494 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑥f𝑘) ∈ 𝐷)
3224, 31ffvelcdmd 7060 . . . . . . 7 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑌‘(𝑥f𝑘)) ∈ (Base‘𝑅))
33 eqid 2730 . . . . . . . 8 (.r𝑅) = (.r𝑅)
341, 33ringcl 20166 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑋𝑘) ∈ (Base‘𝑅) ∧ (𝑌‘(𝑥f𝑘)) ∈ (Base‘𝑅)) → ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘))) ∈ (Base‘𝑅))
3510, 21, 32, 34syl3anc 1373 . . . . . 6 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘))) ∈ (Base‘𝑅))
3635fmpttd 7090 . . . . 5 ((𝜑𝑥𝐷) → (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))):{𝑔𝐷𝑔r𝑥}⟶(Base‘𝑅))
37 ovex 7423 . . . . . . . . . 10 (ℕ0m 𝐼) ∈ V
387, 37rabex2 5299 . . . . . . . . 9 𝐷 ∈ V
3938a1i 11 . . . . . . . 8 ((𝜑𝑥𝐷) → 𝐷 ∈ V)
40 rabexg 5295 . . . . . . . 8 (𝐷 ∈ V → {𝑔𝐷𝑔r𝑥} ∈ V)
4139, 40syl 17 . . . . . . 7 ((𝜑𝑥𝐷) → {𝑔𝐷𝑔r𝑥} ∈ V)
4241mptexd 7201 . . . . . 6 ((𝜑𝑥𝐷) → (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))) ∈ V)
43 funmpt 6557 . . . . . . 7 Fun (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘))))
4443a1i 11 . . . . . 6 ((𝜑𝑥𝐷) → Fun (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))))
45 fvexd 6876 . . . . . 6 ((𝜑𝑥𝐷) → (0g𝑅) ∈ V)
46 suppssdm 8159 . . . . . . . 8 ((𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))) supp (0g𝑅)) ⊆ dom (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘))))
47 eqid 2730 . . . . . . . . 9 (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))) = (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘))))
4847dmmptss 6217 . . . . . . . 8 dom (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))) ⊆ {𝑔𝐷𝑔r𝑥}
4946, 48sstri 3959 . . . . . . 7 ((𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))) supp (0g𝑅)) ⊆ {𝑔𝐷𝑔r𝑥}
5049a1i 11 . . . . . 6 ((𝜑𝑥𝐷) → ((𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))) supp (0g𝑅)) ⊆ {𝑔𝐷𝑔r𝑥})
51 suppssfifsupp 9338 . . . . . 6 ((((𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))) ∈ V ∧ Fun (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))) ∧ (0g𝑅) ∈ V) ∧ ({𝑔𝐷𝑔r𝑥} ∈ Fin ∧ ((𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))) supp (0g𝑅)) ⊆ {𝑔𝐷𝑔r𝑥})) → (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))) finSupp (0g𝑅))
5242, 44, 45, 9, 50, 51syl32anc 1380 . . . . 5 ((𝜑𝑥𝐷) → (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))) finSupp (0g𝑅))
53 eqid 2730 . . . . . . 7 {𝑔𝐷𝑔r𝑥} = {𝑔𝐷𝑔r𝑥}
547, 53psrbagconf1o 21845 . . . . . 6 (𝑥𝐷 → (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ (𝑥f𝑗)):{𝑔𝐷𝑔r𝑥}–1-1-onto→{𝑔𝐷𝑔r𝑥})
5554adantl 481 . . . . 5 ((𝜑𝑥𝐷) → (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ (𝑥f𝑗)):{𝑔𝐷𝑔r𝑥}–1-1-onto→{𝑔𝐷𝑔r𝑥})
561, 2, 6, 9, 36, 52, 55gsumf1o 19853 . . . 4 ((𝜑𝑥𝐷) → (𝑅 Σg (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘))))) = (𝑅 Σg ((𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))) ∘ (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ (𝑥f𝑗)))))
57 simplr 768 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑥𝐷)
58 simpr 484 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑗 ∈ {𝑔𝐷𝑔r𝑥})
597, 53psrbagconcl 21843 . . . . . . . 8 ((𝑥𝐷𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑥f𝑗) ∈ {𝑔𝐷𝑔r𝑥})
6057, 58, 59syl2anc 584 . . . . . . 7 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑥f𝑗) ∈ {𝑔𝐷𝑔r𝑥})
61 eqidd 2731 . . . . . . 7 ((𝜑𝑥𝐷) → (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ (𝑥f𝑗)) = (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ (𝑥f𝑗)))
62 eqidd 2731 . . . . . . 7 ((𝜑𝑥𝐷) → (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))) = (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))))
63 fveq2 6861 . . . . . . . 8 (𝑘 = (𝑥f𝑗) → (𝑋𝑘) = (𝑋‘(𝑥f𝑗)))
64 oveq2 7398 . . . . . . . . 9 (𝑘 = (𝑥f𝑗) → (𝑥f𝑘) = (𝑥f − (𝑥f𝑗)))
6564fveq2d 6865 . . . . . . . 8 (𝑘 = (𝑥f𝑗) → (𝑌‘(𝑥f𝑘)) = (𝑌‘(𝑥f − (𝑥f𝑗))))
6663, 65oveq12d 7408 . . . . . . 7 (𝑘 = (𝑥f𝑗) → ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘))) = ((𝑋‘(𝑥f𝑗))(.r𝑅)(𝑌‘(𝑥f − (𝑥f𝑗)))))
6760, 61, 62, 66fmptco 7104 . . . . . 6 ((𝜑𝑥𝐷) → ((𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))) ∘ (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ (𝑥f𝑗))) = (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋‘(𝑥f𝑗))(.r𝑅)(𝑌‘(𝑥f − (𝑥f𝑗))))))
687psrbagf 21834 . . . . . . . . . . . . . . . 16 (𝑥𝐷𝑥:𝐼⟶ℕ0)
6968adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐷) → 𝑥:𝐼⟶ℕ0)
7069adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑥:𝐼⟶ℕ0)
7170ffvelcdmda 7059 . . . . . . . . . . . . 13 ((((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑧𝐼) → (𝑥𝑧) ∈ ℕ0)
72 breq1 5113 . . . . . . . . . . . . . . . . . 18 (𝑔 = 𝑗 → (𝑔r𝑥𝑗r𝑥))
7372elrab 3662 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↔ (𝑗𝐷𝑗r𝑥))
7458, 73sylib 218 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑗𝐷𝑗r𝑥))
7574simpld 494 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑗𝐷)
767psrbagf 21834 . . . . . . . . . . . . . . 15 (𝑗𝐷𝑗:𝐼⟶ℕ0)
7775, 76syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑗:𝐼⟶ℕ0)
7877ffvelcdmda 7059 . . . . . . . . . . . . 13 ((((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑧𝐼) → (𝑗𝑧) ∈ ℕ0)
79 nn0cn 12459 . . . . . . . . . . . . . 14 ((𝑥𝑧) ∈ ℕ0 → (𝑥𝑧) ∈ ℂ)
80 nn0cn 12459 . . . . . . . . . . . . . 14 ((𝑗𝑧) ∈ ℕ0 → (𝑗𝑧) ∈ ℂ)
81 nncan 11458 . . . . . . . . . . . . . 14 (((𝑥𝑧) ∈ ℂ ∧ (𝑗𝑧) ∈ ℂ) → ((𝑥𝑧) − ((𝑥𝑧) − (𝑗𝑧))) = (𝑗𝑧))
8279, 80, 81syl2an 596 . . . . . . . . . . . . 13 (((𝑥𝑧) ∈ ℕ0 ∧ (𝑗𝑧) ∈ ℕ0) → ((𝑥𝑧) − ((𝑥𝑧) − (𝑗𝑧))) = (𝑗𝑧))
8371, 78, 82syl2anc 584 . . . . . . . . . . . 12 ((((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑧𝐼) → ((𝑥𝑧) − ((𝑥𝑧) − (𝑗𝑧))) = (𝑗𝑧))
8483mpteq2dva 5203 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑧𝐼 ↦ ((𝑥𝑧) − ((𝑥𝑧) − (𝑗𝑧)))) = (𝑧𝐼 ↦ (𝑗𝑧)))
85 psrring.i . . . . . . . . . . . . 13 (𝜑𝐼𝑉)
8685ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝐼𝑉)
87 ovex 7423 . . . . . . . . . . . . 13 ((𝑥𝑧) − (𝑗𝑧)) ∈ V
8887a1i 11 . . . . . . . . . . . 12 ((((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑧𝐼) → ((𝑥𝑧) − (𝑗𝑧)) ∈ V)
8970feqmptd 6932 . . . . . . . . . . . 12 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑥 = (𝑧𝐼 ↦ (𝑥𝑧)))
9077feqmptd 6932 . . . . . . . . . . . . 13 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑗 = (𝑧𝐼 ↦ (𝑗𝑧)))
9186, 71, 78, 89, 90offval2 7676 . . . . . . . . . . . 12 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑥f𝑗) = (𝑧𝐼 ↦ ((𝑥𝑧) − (𝑗𝑧))))
9286, 71, 88, 89, 91offval2 7676 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑥f − (𝑥f𝑗)) = (𝑧𝐼 ↦ ((𝑥𝑧) − ((𝑥𝑧) − (𝑗𝑧)))))
9384, 92, 903eqtr4d 2775 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑥f − (𝑥f𝑗)) = 𝑗)
9493fveq2d 6865 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑌‘(𝑥f − (𝑥f𝑗))) = (𝑌𝑗))
9594oveq2d 7406 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → ((𝑋‘(𝑥f𝑗))(.r𝑅)(𝑌‘(𝑥f − (𝑥f𝑗)))) = ((𝑋‘(𝑥f𝑗))(.r𝑅)(𝑌𝑗)))
96 psrcom.c . . . . . . . . . 10 (𝜑𝑅 ∈ CRing)
9796ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑅 ∈ CRing)
9814ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑋:𝐷⟶(Base‘𝑅))
9974simprd 495 . . . . . . . . . . . 12 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑗r𝑥)
1007psrbagcon 21841 . . . . . . . . . . . 12 ((𝑥𝐷𝑗:𝐼⟶ℕ0𝑗r𝑥) → ((𝑥f𝑗) ∈ 𝐷 ∧ (𝑥f𝑗) ∘r𝑥))
10157, 77, 99, 100syl3anc 1373 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → ((𝑥f𝑗) ∈ 𝐷 ∧ (𝑥f𝑗) ∘r𝑥))
102101simpld 494 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑥f𝑗) ∈ 𝐷)
10398, 102ffvelcdmd 7060 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑋‘(𝑥f𝑗)) ∈ (Base‘𝑅))
10423ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑌:𝐷⟶(Base‘𝑅))
105104, 75ffvelcdmd 7060 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑌𝑗) ∈ (Base‘𝑅))
1061, 33crngcom 20167 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ (𝑋‘(𝑥f𝑗)) ∈ (Base‘𝑅) ∧ (𝑌𝑗) ∈ (Base‘𝑅)) → ((𝑋‘(𝑥f𝑗))(.r𝑅)(𝑌𝑗)) = ((𝑌𝑗)(.r𝑅)(𝑋‘(𝑥f𝑗))))
10797, 103, 105, 106syl3anc 1373 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → ((𝑋‘(𝑥f𝑗))(.r𝑅)(𝑌𝑗)) = ((𝑌𝑗)(.r𝑅)(𝑋‘(𝑥f𝑗))))
10895, 107eqtrd 2765 . . . . . . 7 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → ((𝑋‘(𝑥f𝑗))(.r𝑅)(𝑌‘(𝑥f − (𝑥f𝑗)))) = ((𝑌𝑗)(.r𝑅)(𝑋‘(𝑥f𝑗))))
109108mpteq2dva 5203 . . . . . 6 ((𝜑𝑥𝐷) → (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋‘(𝑥f𝑗))(.r𝑅)(𝑌‘(𝑥f − (𝑥f𝑗))))) = (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑌𝑗)(.r𝑅)(𝑋‘(𝑥f𝑗)))))
11067, 109eqtrd 2765 . . . . 5 ((𝜑𝑥𝐷) → ((𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))) ∘ (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ (𝑥f𝑗))) = (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑌𝑗)(.r𝑅)(𝑋‘(𝑥f𝑗)))))
111110oveq2d 7406 . . . 4 ((𝜑𝑥𝐷) → (𝑅 Σg ((𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))) ∘ (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ (𝑥f𝑗)))) = (𝑅 Σg (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑌𝑗)(.r𝑅)(𝑋‘(𝑥f𝑗))))))
11256, 111eqtrd 2765 . . 3 ((𝜑𝑥𝐷) → (𝑅 Σg (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘))))) = (𝑅 Σg (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑌𝑗)(.r𝑅)(𝑋‘(𝑥f𝑗))))))
113112mpteq2dva 5203 . 2 (𝜑 → (𝑥𝐷 ↦ (𝑅 Σg (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))))) = (𝑥𝐷 ↦ (𝑅 Σg (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑌𝑗)(.r𝑅)(𝑋‘(𝑥f𝑗)))))))
114 psrass.t . . 3 × = (.r𝑆)
11511, 12, 33, 114, 7, 13, 22psrmulfval 21859 . 2 (𝜑 → (𝑋 × 𝑌) = (𝑥𝐷 ↦ (𝑅 Σg (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))))))
11611, 12, 33, 114, 7, 22, 13psrmulfval 21859 . 2 (𝜑 → (𝑌 × 𝑋) = (𝑥𝐷 ↦ (𝑅 Σg (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑌𝑗)(.r𝑅)(𝑋‘(𝑥f𝑗)))))))
117113, 115, 1163eqtr4d 2775 1 (𝜑 → (𝑋 × 𝑌) = (𝑌 × 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3408  Vcvv 3450  wss 3917   class class class wbr 5110  cmpt 5191  ccnv 5640  dom cdm 5641  cima 5644  ccom 5645  Fun wfun 6508  wf 6510  1-1-ontowf1o 6513  cfv 6514  (class class class)co 7390  f cof 7654  r cofr 7655   supp csupp 8142  m cmap 8802  Fincfn 8921   finSupp cfsupp 9319  cc 11073  cle 11216  cmin 11412  cn 12193  0cn0 12449  Basecbs 17186  .rcmulr 17228  0gc0g 17409   Σg cgsu 17410  CMndccmn 19717  Ringcrg 20149  CRingccrg 20150   mPwSer cmps 21820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-tset 17246  df-0g 17411  df-gsum 17412  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-ur 20098  df-ring 20151  df-cring 20152  df-psr 21825
This theorem is referenced by:  psrcrng  21888
  Copyright terms: Public domain W3C validator