MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrcom Structured version   Visualization version   GIF version

Theorem psrcom 21088
Description: Commutative law for the ring of power series. (Contributed by Mario Carneiro, 7-Jan-2015.)
Hypotheses
Ref Expression
psrring.s 𝑆 = (𝐼 mPwSer 𝑅)
psrring.i (𝜑𝐼𝑉)
psrring.r (𝜑𝑅 ∈ Ring)
psrass.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psrass.t × = (.r𝑆)
psrass.b 𝐵 = (Base‘𝑆)
psrass.x (𝜑𝑋𝐵)
psrass.y (𝜑𝑌𝐵)
psrcom.c (𝜑𝑅 ∈ CRing)
Assertion
Ref Expression
psrcom (𝜑 → (𝑋 × 𝑌) = (𝑌 × 𝑋))
Distinct variable groups:   𝑓,𝐼   𝑅,𝑓   𝑓,𝑋   𝑓,𝑌
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑓)   𝐷(𝑓)   𝑆(𝑓)   × (𝑓)   𝑉(𝑓)

Proof of Theorem psrcom
Dummy variables 𝑥 𝑘 𝑧 𝑔 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2738 . . . . 5 (0g𝑅) = (0g𝑅)
3 psrring.r . . . . . . 7 (𝜑𝑅 ∈ Ring)
4 ringcmn 19735 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
53, 4syl 17 . . . . . 6 (𝜑𝑅 ∈ CMnd)
65adantr 480 . . . . 5 ((𝜑𝑥𝐷) → 𝑅 ∈ CMnd)
7 psrass.d . . . . . . 7 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
87psrbaglefi 21045 . . . . . 6 (𝑥𝐷 → {𝑔𝐷𝑔r𝑥} ∈ Fin)
98adantl 481 . . . . 5 ((𝜑𝑥𝐷) → {𝑔𝐷𝑔r𝑥} ∈ Fin)
103ad2antrr 722 . . . . . . 7 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑅 ∈ Ring)
11 psrring.s . . . . . . . . . 10 𝑆 = (𝐼 mPwSer 𝑅)
12 psrass.b . . . . . . . . . 10 𝐵 = (Base‘𝑆)
13 psrass.x . . . . . . . . . 10 (𝜑𝑋𝐵)
1411, 1, 7, 12, 13psrelbas 21058 . . . . . . . . 9 (𝜑𝑋:𝐷⟶(Base‘𝑅))
1514ad2antrr 722 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑋:𝐷⟶(Base‘𝑅))
16 simpr 484 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑘 ∈ {𝑔𝐷𝑔r𝑥})
17 breq1 5073 . . . . . . . . . . 11 (𝑔 = 𝑘 → (𝑔r𝑥𝑘r𝑥))
1817elrab 3617 . . . . . . . . . 10 (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↔ (𝑘𝐷𝑘r𝑥))
1916, 18sylib 217 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑘𝐷𝑘r𝑥))
2019simpld 494 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑘𝐷)
2115, 20ffvelrnd 6944 . . . . . . 7 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑋𝑘) ∈ (Base‘𝑅))
22 psrass.y . . . . . . . . . 10 (𝜑𝑌𝐵)
2311, 1, 7, 12, 22psrelbas 21058 . . . . . . . . 9 (𝜑𝑌:𝐷⟶(Base‘𝑅))
2423ad2antrr 722 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑌:𝐷⟶(Base‘𝑅))
25 simplr 765 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑥𝐷)
267psrbagf 21031 . . . . . . . . . . 11 (𝑘𝐷𝑘:𝐼⟶ℕ0)
2720, 26syl 17 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑘:𝐼⟶ℕ0)
2819simprd 495 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑘r𝑥)
297psrbagcon 21043 . . . . . . . . . 10 ((𝑥𝐷𝑘:𝐼⟶ℕ0𝑘r𝑥) → ((𝑥f𝑘) ∈ 𝐷 ∧ (𝑥f𝑘) ∘r𝑥))
3025, 27, 28, 29syl3anc 1369 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → ((𝑥f𝑘) ∈ 𝐷 ∧ (𝑥f𝑘) ∘r𝑥))
3130simpld 494 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑥f𝑘) ∈ 𝐷)
3224, 31ffvelrnd 6944 . . . . . . 7 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑌‘(𝑥f𝑘)) ∈ (Base‘𝑅))
33 eqid 2738 . . . . . . . 8 (.r𝑅) = (.r𝑅)
341, 33ringcl 19715 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑋𝑘) ∈ (Base‘𝑅) ∧ (𝑌‘(𝑥f𝑘)) ∈ (Base‘𝑅)) → ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘))) ∈ (Base‘𝑅))
3510, 21, 32, 34syl3anc 1369 . . . . . 6 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘))) ∈ (Base‘𝑅))
3635fmpttd 6971 . . . . 5 ((𝜑𝑥𝐷) → (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))):{𝑔𝐷𝑔r𝑥}⟶(Base‘𝑅))
37 ovex 7288 . . . . . . . . . 10 (ℕ0m 𝐼) ∈ V
387, 37rabex2 5253 . . . . . . . . 9 𝐷 ∈ V
3938a1i 11 . . . . . . . 8 ((𝜑𝑥𝐷) → 𝐷 ∈ V)
40 rabexg 5250 . . . . . . . 8 (𝐷 ∈ V → {𝑔𝐷𝑔r𝑥} ∈ V)
4139, 40syl 17 . . . . . . 7 ((𝜑𝑥𝐷) → {𝑔𝐷𝑔r𝑥} ∈ V)
4241mptexd 7082 . . . . . 6 ((𝜑𝑥𝐷) → (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))) ∈ V)
43 funmpt 6456 . . . . . . 7 Fun (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘))))
4443a1i 11 . . . . . 6 ((𝜑𝑥𝐷) → Fun (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))))
45 fvexd 6771 . . . . . 6 ((𝜑𝑥𝐷) → (0g𝑅) ∈ V)
46 suppssdm 7964 . . . . . . . 8 ((𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))) supp (0g𝑅)) ⊆ dom (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘))))
47 eqid 2738 . . . . . . . . 9 (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))) = (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘))))
4847dmmptss 6133 . . . . . . . 8 dom (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))) ⊆ {𝑔𝐷𝑔r𝑥}
4946, 48sstri 3926 . . . . . . 7 ((𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))) supp (0g𝑅)) ⊆ {𝑔𝐷𝑔r𝑥}
5049a1i 11 . . . . . 6 ((𝜑𝑥𝐷) → ((𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))) supp (0g𝑅)) ⊆ {𝑔𝐷𝑔r𝑥})
51 suppssfifsupp 9073 . . . . . 6 ((((𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))) ∈ V ∧ Fun (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))) ∧ (0g𝑅) ∈ V) ∧ ({𝑔𝐷𝑔r𝑥} ∈ Fin ∧ ((𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))) supp (0g𝑅)) ⊆ {𝑔𝐷𝑔r𝑥})) → (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))) finSupp (0g𝑅))
5242, 44, 45, 9, 50, 51syl32anc 1376 . . . . 5 ((𝜑𝑥𝐷) → (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))) finSupp (0g𝑅))
53 eqid 2738 . . . . . . 7 {𝑔𝐷𝑔r𝑥} = {𝑔𝐷𝑔r𝑥}
547, 53psrbagconf1o 21049 . . . . . 6 (𝑥𝐷 → (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ (𝑥f𝑗)):{𝑔𝐷𝑔r𝑥}–1-1-onto→{𝑔𝐷𝑔r𝑥})
5554adantl 481 . . . . 5 ((𝜑𝑥𝐷) → (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ (𝑥f𝑗)):{𝑔𝐷𝑔r𝑥}–1-1-onto→{𝑔𝐷𝑔r𝑥})
561, 2, 6, 9, 36, 52, 55gsumf1o 19432 . . . 4 ((𝜑𝑥𝐷) → (𝑅 Σg (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘))))) = (𝑅 Σg ((𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))) ∘ (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ (𝑥f𝑗)))))
57 simplr 765 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑥𝐷)
58 simpr 484 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑗 ∈ {𝑔𝐷𝑔r𝑥})
597, 53psrbagconcl 21047 . . . . . . . 8 ((𝑥𝐷𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑥f𝑗) ∈ {𝑔𝐷𝑔r𝑥})
6057, 58, 59syl2anc 583 . . . . . . 7 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑥f𝑗) ∈ {𝑔𝐷𝑔r𝑥})
61 eqidd 2739 . . . . . . 7 ((𝜑𝑥𝐷) → (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ (𝑥f𝑗)) = (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ (𝑥f𝑗)))
62 eqidd 2739 . . . . . . 7 ((𝜑𝑥𝐷) → (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))) = (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))))
63 fveq2 6756 . . . . . . . 8 (𝑘 = (𝑥f𝑗) → (𝑋𝑘) = (𝑋‘(𝑥f𝑗)))
64 oveq2 7263 . . . . . . . . 9 (𝑘 = (𝑥f𝑗) → (𝑥f𝑘) = (𝑥f − (𝑥f𝑗)))
6564fveq2d 6760 . . . . . . . 8 (𝑘 = (𝑥f𝑗) → (𝑌‘(𝑥f𝑘)) = (𝑌‘(𝑥f − (𝑥f𝑗))))
6663, 65oveq12d 7273 . . . . . . 7 (𝑘 = (𝑥f𝑗) → ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘))) = ((𝑋‘(𝑥f𝑗))(.r𝑅)(𝑌‘(𝑥f − (𝑥f𝑗)))))
6760, 61, 62, 66fmptco 6983 . . . . . 6 ((𝜑𝑥𝐷) → ((𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))) ∘ (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ (𝑥f𝑗))) = (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋‘(𝑥f𝑗))(.r𝑅)(𝑌‘(𝑥f − (𝑥f𝑗))))))
687psrbagf 21031 . . . . . . . . . . . . . . . 16 (𝑥𝐷𝑥:𝐼⟶ℕ0)
6968adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐷) → 𝑥:𝐼⟶ℕ0)
7069adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑥:𝐼⟶ℕ0)
7170ffvelrnda 6943 . . . . . . . . . . . . 13 ((((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑧𝐼) → (𝑥𝑧) ∈ ℕ0)
72 breq1 5073 . . . . . . . . . . . . . . . . . 18 (𝑔 = 𝑗 → (𝑔r𝑥𝑗r𝑥))
7372elrab 3617 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↔ (𝑗𝐷𝑗r𝑥))
7458, 73sylib 217 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑗𝐷𝑗r𝑥))
7574simpld 494 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑗𝐷)
767psrbagf 21031 . . . . . . . . . . . . . . 15 (𝑗𝐷𝑗:𝐼⟶ℕ0)
7775, 76syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑗:𝐼⟶ℕ0)
7877ffvelrnda 6943 . . . . . . . . . . . . 13 ((((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑧𝐼) → (𝑗𝑧) ∈ ℕ0)
79 nn0cn 12173 . . . . . . . . . . . . . 14 ((𝑥𝑧) ∈ ℕ0 → (𝑥𝑧) ∈ ℂ)
80 nn0cn 12173 . . . . . . . . . . . . . 14 ((𝑗𝑧) ∈ ℕ0 → (𝑗𝑧) ∈ ℂ)
81 nncan 11180 . . . . . . . . . . . . . 14 (((𝑥𝑧) ∈ ℂ ∧ (𝑗𝑧) ∈ ℂ) → ((𝑥𝑧) − ((𝑥𝑧) − (𝑗𝑧))) = (𝑗𝑧))
8279, 80, 81syl2an 595 . . . . . . . . . . . . 13 (((𝑥𝑧) ∈ ℕ0 ∧ (𝑗𝑧) ∈ ℕ0) → ((𝑥𝑧) − ((𝑥𝑧) − (𝑗𝑧))) = (𝑗𝑧))
8371, 78, 82syl2anc 583 . . . . . . . . . . . 12 ((((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑧𝐼) → ((𝑥𝑧) − ((𝑥𝑧) − (𝑗𝑧))) = (𝑗𝑧))
8483mpteq2dva 5170 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑧𝐼 ↦ ((𝑥𝑧) − ((𝑥𝑧) − (𝑗𝑧)))) = (𝑧𝐼 ↦ (𝑗𝑧)))
85 psrring.i . . . . . . . . . . . . 13 (𝜑𝐼𝑉)
8685ad2antrr 722 . . . . . . . . . . . 12 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝐼𝑉)
87 ovex 7288 . . . . . . . . . . . . 13 ((𝑥𝑧) − (𝑗𝑧)) ∈ V
8887a1i 11 . . . . . . . . . . . 12 ((((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑧𝐼) → ((𝑥𝑧) − (𝑗𝑧)) ∈ V)
8970feqmptd 6819 . . . . . . . . . . . 12 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑥 = (𝑧𝐼 ↦ (𝑥𝑧)))
9077feqmptd 6819 . . . . . . . . . . . . 13 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑗 = (𝑧𝐼 ↦ (𝑗𝑧)))
9186, 71, 78, 89, 90offval2 7531 . . . . . . . . . . . 12 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑥f𝑗) = (𝑧𝐼 ↦ ((𝑥𝑧) − (𝑗𝑧))))
9286, 71, 88, 89, 91offval2 7531 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑥f − (𝑥f𝑗)) = (𝑧𝐼 ↦ ((𝑥𝑧) − ((𝑥𝑧) − (𝑗𝑧)))))
9384, 92, 903eqtr4d 2788 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑥f − (𝑥f𝑗)) = 𝑗)
9493fveq2d 6760 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑌‘(𝑥f − (𝑥f𝑗))) = (𝑌𝑗))
9594oveq2d 7271 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → ((𝑋‘(𝑥f𝑗))(.r𝑅)(𝑌‘(𝑥f − (𝑥f𝑗)))) = ((𝑋‘(𝑥f𝑗))(.r𝑅)(𝑌𝑗)))
96 psrcom.c . . . . . . . . . 10 (𝜑𝑅 ∈ CRing)
9796ad2antrr 722 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑅 ∈ CRing)
9814ad2antrr 722 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑋:𝐷⟶(Base‘𝑅))
9974simprd 495 . . . . . . . . . . . 12 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑗r𝑥)
1007psrbagcon 21043 . . . . . . . . . . . 12 ((𝑥𝐷𝑗:𝐼⟶ℕ0𝑗r𝑥) → ((𝑥f𝑗) ∈ 𝐷 ∧ (𝑥f𝑗) ∘r𝑥))
10157, 77, 99, 100syl3anc 1369 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → ((𝑥f𝑗) ∈ 𝐷 ∧ (𝑥f𝑗) ∘r𝑥))
102101simpld 494 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑥f𝑗) ∈ 𝐷)
10398, 102ffvelrnd 6944 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑋‘(𝑥f𝑗)) ∈ (Base‘𝑅))
10423ad2antrr 722 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑌:𝐷⟶(Base‘𝑅))
105104, 75ffvelrnd 6944 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑌𝑗) ∈ (Base‘𝑅))
1061, 33crngcom 19716 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ (𝑋‘(𝑥f𝑗)) ∈ (Base‘𝑅) ∧ (𝑌𝑗) ∈ (Base‘𝑅)) → ((𝑋‘(𝑥f𝑗))(.r𝑅)(𝑌𝑗)) = ((𝑌𝑗)(.r𝑅)(𝑋‘(𝑥f𝑗))))
10797, 103, 105, 106syl3anc 1369 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → ((𝑋‘(𝑥f𝑗))(.r𝑅)(𝑌𝑗)) = ((𝑌𝑗)(.r𝑅)(𝑋‘(𝑥f𝑗))))
10895, 107eqtrd 2778 . . . . . . 7 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → ((𝑋‘(𝑥f𝑗))(.r𝑅)(𝑌‘(𝑥f − (𝑥f𝑗)))) = ((𝑌𝑗)(.r𝑅)(𝑋‘(𝑥f𝑗))))
109108mpteq2dva 5170 . . . . . 6 ((𝜑𝑥𝐷) → (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋‘(𝑥f𝑗))(.r𝑅)(𝑌‘(𝑥f − (𝑥f𝑗))))) = (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑌𝑗)(.r𝑅)(𝑋‘(𝑥f𝑗)))))
11067, 109eqtrd 2778 . . . . 5 ((𝜑𝑥𝐷) → ((𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))) ∘ (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ (𝑥f𝑗))) = (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑌𝑗)(.r𝑅)(𝑋‘(𝑥f𝑗)))))
111110oveq2d 7271 . . . 4 ((𝜑𝑥𝐷) → (𝑅 Σg ((𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))) ∘ (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ (𝑥f𝑗)))) = (𝑅 Σg (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑌𝑗)(.r𝑅)(𝑋‘(𝑥f𝑗))))))
11256, 111eqtrd 2778 . . 3 ((𝜑𝑥𝐷) → (𝑅 Σg (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘))))) = (𝑅 Σg (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑌𝑗)(.r𝑅)(𝑋‘(𝑥f𝑗))))))
113112mpteq2dva 5170 . 2 (𝜑 → (𝑥𝐷 ↦ (𝑅 Σg (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))))) = (𝑥𝐷 ↦ (𝑅 Σg (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑌𝑗)(.r𝑅)(𝑋‘(𝑥f𝑗)))))))
114 psrass.t . . 3 × = (.r𝑆)
11511, 12, 33, 114, 7, 13, 22psrmulfval 21064 . 2 (𝜑 → (𝑋 × 𝑌) = (𝑥𝐷 ↦ (𝑅 Σg (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))))))
11611, 12, 33, 114, 7, 22, 13psrmulfval 21064 . 2 (𝜑 → (𝑌 × 𝑋) = (𝑥𝐷 ↦ (𝑅 Σg (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑌𝑗)(.r𝑅)(𝑋‘(𝑥f𝑗)))))))
117113, 115, 1163eqtr4d 2788 1 (𝜑 → (𝑋 × 𝑌) = (𝑌 × 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  {crab 3067  Vcvv 3422  wss 3883   class class class wbr 5070  cmpt 5153  ccnv 5579  dom cdm 5580  cima 5583  ccom 5584  Fun wfun 6412  wf 6414  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  f cof 7509  r cofr 7510   supp csupp 7948  m cmap 8573  Fincfn 8691   finSupp cfsupp 9058  cc 10800  cle 10941  cmin 11135  cn 11903  0cn0 12163  Basecbs 16840  .rcmulr 16889  0gc0g 17067   Σg cgsu 17068  CMndccmn 19301  Ringcrg 19698  CRingccrg 19699   mPwSer cmps 21017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-ofr 7512  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-tset 16907  df-0g 17069  df-gsum 17070  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-cntz 18838  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-cring 19701  df-psr 21022
This theorem is referenced by:  psrcrng  21092
  Copyright terms: Public domain W3C validator