MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrcom Structured version   Visualization version   GIF version

Theorem psrcom 21378
Description: Commutative law for the ring of power series. (Contributed by Mario Carneiro, 7-Jan-2015.)
Hypotheses
Ref Expression
psrring.s 𝑆 = (𝐼 mPwSer 𝑅)
psrring.i (𝜑𝐼𝑉)
psrring.r (𝜑𝑅 ∈ Ring)
psrass.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psrass.t × = (.r𝑆)
psrass.b 𝐵 = (Base‘𝑆)
psrass.x (𝜑𝑋𝐵)
psrass.y (𝜑𝑌𝐵)
psrcom.c (𝜑𝑅 ∈ CRing)
Assertion
Ref Expression
psrcom (𝜑 → (𝑋 × 𝑌) = (𝑌 × 𝑋))
Distinct variable groups:   𝑓,𝐼   𝑅,𝑓   𝑓,𝑋   𝑓,𝑌
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑓)   𝐷(𝑓)   𝑆(𝑓)   × (𝑓)   𝑉(𝑓)

Proof of Theorem psrcom
Dummy variables 𝑥 𝑘 𝑧 𝑔 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2736 . . . . 5 (0g𝑅) = (0g𝑅)
3 psrring.r . . . . . . 7 (𝜑𝑅 ∈ Ring)
4 ringcmn 20003 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
53, 4syl 17 . . . . . 6 (𝜑𝑅 ∈ CMnd)
65adantr 481 . . . . 5 ((𝜑𝑥𝐷) → 𝑅 ∈ CMnd)
7 psrass.d . . . . . . 7 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
87psrbaglefi 21334 . . . . . 6 (𝑥𝐷 → {𝑔𝐷𝑔r𝑥} ∈ Fin)
98adantl 482 . . . . 5 ((𝜑𝑥𝐷) → {𝑔𝐷𝑔r𝑥} ∈ Fin)
103ad2antrr 724 . . . . . . 7 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑅 ∈ Ring)
11 psrring.s . . . . . . . . . 10 𝑆 = (𝐼 mPwSer 𝑅)
12 psrass.b . . . . . . . . . 10 𝐵 = (Base‘𝑆)
13 psrass.x . . . . . . . . . 10 (𝜑𝑋𝐵)
1411, 1, 7, 12, 13psrelbas 21347 . . . . . . . . 9 (𝜑𝑋:𝐷⟶(Base‘𝑅))
1514ad2antrr 724 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑋:𝐷⟶(Base‘𝑅))
16 simpr 485 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑘 ∈ {𝑔𝐷𝑔r𝑥})
17 breq1 5108 . . . . . . . . . . 11 (𝑔 = 𝑘 → (𝑔r𝑥𝑘r𝑥))
1817elrab 3645 . . . . . . . . . 10 (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↔ (𝑘𝐷𝑘r𝑥))
1916, 18sylib 217 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑘𝐷𝑘r𝑥))
2019simpld 495 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑘𝐷)
2115, 20ffvelcdmd 7036 . . . . . . 7 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑋𝑘) ∈ (Base‘𝑅))
22 psrass.y . . . . . . . . . 10 (𝜑𝑌𝐵)
2311, 1, 7, 12, 22psrelbas 21347 . . . . . . . . 9 (𝜑𝑌:𝐷⟶(Base‘𝑅))
2423ad2antrr 724 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑌:𝐷⟶(Base‘𝑅))
25 simplr 767 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑥𝐷)
267psrbagf 21320 . . . . . . . . . . 11 (𝑘𝐷𝑘:𝐼⟶ℕ0)
2720, 26syl 17 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑘:𝐼⟶ℕ0)
2819simprd 496 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑘r𝑥)
297psrbagcon 21332 . . . . . . . . . 10 ((𝑥𝐷𝑘:𝐼⟶ℕ0𝑘r𝑥) → ((𝑥f𝑘) ∈ 𝐷 ∧ (𝑥f𝑘) ∘r𝑥))
3025, 27, 28, 29syl3anc 1371 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → ((𝑥f𝑘) ∈ 𝐷 ∧ (𝑥f𝑘) ∘r𝑥))
3130simpld 495 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑥f𝑘) ∈ 𝐷)
3224, 31ffvelcdmd 7036 . . . . . . 7 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑌‘(𝑥f𝑘)) ∈ (Base‘𝑅))
33 eqid 2736 . . . . . . . 8 (.r𝑅) = (.r𝑅)
341, 33ringcl 19981 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑋𝑘) ∈ (Base‘𝑅) ∧ (𝑌‘(𝑥f𝑘)) ∈ (Base‘𝑅)) → ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘))) ∈ (Base‘𝑅))
3510, 21, 32, 34syl3anc 1371 . . . . . 6 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘))) ∈ (Base‘𝑅))
3635fmpttd 7063 . . . . 5 ((𝜑𝑥𝐷) → (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))):{𝑔𝐷𝑔r𝑥}⟶(Base‘𝑅))
37 ovex 7390 . . . . . . . . . 10 (ℕ0m 𝐼) ∈ V
387, 37rabex2 5291 . . . . . . . . 9 𝐷 ∈ V
3938a1i 11 . . . . . . . 8 ((𝜑𝑥𝐷) → 𝐷 ∈ V)
40 rabexg 5288 . . . . . . . 8 (𝐷 ∈ V → {𝑔𝐷𝑔r𝑥} ∈ V)
4139, 40syl 17 . . . . . . 7 ((𝜑𝑥𝐷) → {𝑔𝐷𝑔r𝑥} ∈ V)
4241mptexd 7174 . . . . . 6 ((𝜑𝑥𝐷) → (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))) ∈ V)
43 funmpt 6539 . . . . . . 7 Fun (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘))))
4443a1i 11 . . . . . 6 ((𝜑𝑥𝐷) → Fun (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))))
45 fvexd 6857 . . . . . 6 ((𝜑𝑥𝐷) → (0g𝑅) ∈ V)
46 suppssdm 8108 . . . . . . . 8 ((𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))) supp (0g𝑅)) ⊆ dom (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘))))
47 eqid 2736 . . . . . . . . 9 (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))) = (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘))))
4847dmmptss 6193 . . . . . . . 8 dom (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))) ⊆ {𝑔𝐷𝑔r𝑥}
4946, 48sstri 3953 . . . . . . 7 ((𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))) supp (0g𝑅)) ⊆ {𝑔𝐷𝑔r𝑥}
5049a1i 11 . . . . . 6 ((𝜑𝑥𝐷) → ((𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))) supp (0g𝑅)) ⊆ {𝑔𝐷𝑔r𝑥})
51 suppssfifsupp 9320 . . . . . 6 ((((𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))) ∈ V ∧ Fun (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))) ∧ (0g𝑅) ∈ V) ∧ ({𝑔𝐷𝑔r𝑥} ∈ Fin ∧ ((𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))) supp (0g𝑅)) ⊆ {𝑔𝐷𝑔r𝑥})) → (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))) finSupp (0g𝑅))
5242, 44, 45, 9, 50, 51syl32anc 1378 . . . . 5 ((𝜑𝑥𝐷) → (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))) finSupp (0g𝑅))
53 eqid 2736 . . . . . . 7 {𝑔𝐷𝑔r𝑥} = {𝑔𝐷𝑔r𝑥}
547, 53psrbagconf1o 21338 . . . . . 6 (𝑥𝐷 → (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ (𝑥f𝑗)):{𝑔𝐷𝑔r𝑥}–1-1-onto→{𝑔𝐷𝑔r𝑥})
5554adantl 482 . . . . 5 ((𝜑𝑥𝐷) → (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ (𝑥f𝑗)):{𝑔𝐷𝑔r𝑥}–1-1-onto→{𝑔𝐷𝑔r𝑥})
561, 2, 6, 9, 36, 52, 55gsumf1o 19693 . . . 4 ((𝜑𝑥𝐷) → (𝑅 Σg (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘))))) = (𝑅 Σg ((𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))) ∘ (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ (𝑥f𝑗)))))
57 simplr 767 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑥𝐷)
58 simpr 485 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑗 ∈ {𝑔𝐷𝑔r𝑥})
597, 53psrbagconcl 21336 . . . . . . . 8 ((𝑥𝐷𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑥f𝑗) ∈ {𝑔𝐷𝑔r𝑥})
6057, 58, 59syl2anc 584 . . . . . . 7 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑥f𝑗) ∈ {𝑔𝐷𝑔r𝑥})
61 eqidd 2737 . . . . . . 7 ((𝜑𝑥𝐷) → (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ (𝑥f𝑗)) = (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ (𝑥f𝑗)))
62 eqidd 2737 . . . . . . 7 ((𝜑𝑥𝐷) → (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))) = (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))))
63 fveq2 6842 . . . . . . . 8 (𝑘 = (𝑥f𝑗) → (𝑋𝑘) = (𝑋‘(𝑥f𝑗)))
64 oveq2 7365 . . . . . . . . 9 (𝑘 = (𝑥f𝑗) → (𝑥f𝑘) = (𝑥f − (𝑥f𝑗)))
6564fveq2d 6846 . . . . . . . 8 (𝑘 = (𝑥f𝑗) → (𝑌‘(𝑥f𝑘)) = (𝑌‘(𝑥f − (𝑥f𝑗))))
6663, 65oveq12d 7375 . . . . . . 7 (𝑘 = (𝑥f𝑗) → ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘))) = ((𝑋‘(𝑥f𝑗))(.r𝑅)(𝑌‘(𝑥f − (𝑥f𝑗)))))
6760, 61, 62, 66fmptco 7075 . . . . . 6 ((𝜑𝑥𝐷) → ((𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))) ∘ (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ (𝑥f𝑗))) = (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋‘(𝑥f𝑗))(.r𝑅)(𝑌‘(𝑥f − (𝑥f𝑗))))))
687psrbagf 21320 . . . . . . . . . . . . . . . 16 (𝑥𝐷𝑥:𝐼⟶ℕ0)
6968adantl 482 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐷) → 𝑥:𝐼⟶ℕ0)
7069adantr 481 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑥:𝐼⟶ℕ0)
7170ffvelcdmda 7035 . . . . . . . . . . . . 13 ((((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑧𝐼) → (𝑥𝑧) ∈ ℕ0)
72 breq1 5108 . . . . . . . . . . . . . . . . . 18 (𝑔 = 𝑗 → (𝑔r𝑥𝑗r𝑥))
7372elrab 3645 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↔ (𝑗𝐷𝑗r𝑥))
7458, 73sylib 217 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑗𝐷𝑗r𝑥))
7574simpld 495 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑗𝐷)
767psrbagf 21320 . . . . . . . . . . . . . . 15 (𝑗𝐷𝑗:𝐼⟶ℕ0)
7775, 76syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑗:𝐼⟶ℕ0)
7877ffvelcdmda 7035 . . . . . . . . . . . . 13 ((((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑧𝐼) → (𝑗𝑧) ∈ ℕ0)
79 nn0cn 12423 . . . . . . . . . . . . . 14 ((𝑥𝑧) ∈ ℕ0 → (𝑥𝑧) ∈ ℂ)
80 nn0cn 12423 . . . . . . . . . . . . . 14 ((𝑗𝑧) ∈ ℕ0 → (𝑗𝑧) ∈ ℂ)
81 nncan 11430 . . . . . . . . . . . . . 14 (((𝑥𝑧) ∈ ℂ ∧ (𝑗𝑧) ∈ ℂ) → ((𝑥𝑧) − ((𝑥𝑧) − (𝑗𝑧))) = (𝑗𝑧))
8279, 80, 81syl2an 596 . . . . . . . . . . . . 13 (((𝑥𝑧) ∈ ℕ0 ∧ (𝑗𝑧) ∈ ℕ0) → ((𝑥𝑧) − ((𝑥𝑧) − (𝑗𝑧))) = (𝑗𝑧))
8371, 78, 82syl2anc 584 . . . . . . . . . . . 12 ((((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑧𝐼) → ((𝑥𝑧) − ((𝑥𝑧) − (𝑗𝑧))) = (𝑗𝑧))
8483mpteq2dva 5205 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑧𝐼 ↦ ((𝑥𝑧) − ((𝑥𝑧) − (𝑗𝑧)))) = (𝑧𝐼 ↦ (𝑗𝑧)))
85 psrring.i . . . . . . . . . . . . 13 (𝜑𝐼𝑉)
8685ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝐼𝑉)
87 ovex 7390 . . . . . . . . . . . . 13 ((𝑥𝑧) − (𝑗𝑧)) ∈ V
8887a1i 11 . . . . . . . . . . . 12 ((((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑧𝐼) → ((𝑥𝑧) − (𝑗𝑧)) ∈ V)
8970feqmptd 6910 . . . . . . . . . . . 12 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑥 = (𝑧𝐼 ↦ (𝑥𝑧)))
9077feqmptd 6910 . . . . . . . . . . . . 13 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑗 = (𝑧𝐼 ↦ (𝑗𝑧)))
9186, 71, 78, 89, 90offval2 7637 . . . . . . . . . . . 12 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑥f𝑗) = (𝑧𝐼 ↦ ((𝑥𝑧) − (𝑗𝑧))))
9286, 71, 88, 89, 91offval2 7637 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑥f − (𝑥f𝑗)) = (𝑧𝐼 ↦ ((𝑥𝑧) − ((𝑥𝑧) − (𝑗𝑧)))))
9384, 92, 903eqtr4d 2786 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑥f − (𝑥f𝑗)) = 𝑗)
9493fveq2d 6846 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑌‘(𝑥f − (𝑥f𝑗))) = (𝑌𝑗))
9594oveq2d 7373 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → ((𝑋‘(𝑥f𝑗))(.r𝑅)(𝑌‘(𝑥f − (𝑥f𝑗)))) = ((𝑋‘(𝑥f𝑗))(.r𝑅)(𝑌𝑗)))
96 psrcom.c . . . . . . . . . 10 (𝜑𝑅 ∈ CRing)
9796ad2antrr 724 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑅 ∈ CRing)
9814ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑋:𝐷⟶(Base‘𝑅))
9974simprd 496 . . . . . . . . . . . 12 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑗r𝑥)
1007psrbagcon 21332 . . . . . . . . . . . 12 ((𝑥𝐷𝑗:𝐼⟶ℕ0𝑗r𝑥) → ((𝑥f𝑗) ∈ 𝐷 ∧ (𝑥f𝑗) ∘r𝑥))
10157, 77, 99, 100syl3anc 1371 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → ((𝑥f𝑗) ∈ 𝐷 ∧ (𝑥f𝑗) ∘r𝑥))
102101simpld 495 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑥f𝑗) ∈ 𝐷)
10398, 102ffvelcdmd 7036 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑋‘(𝑥f𝑗)) ∈ (Base‘𝑅))
10423ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑌:𝐷⟶(Base‘𝑅))
105104, 75ffvelcdmd 7036 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑌𝑗) ∈ (Base‘𝑅))
1061, 33crngcom 19982 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ (𝑋‘(𝑥f𝑗)) ∈ (Base‘𝑅) ∧ (𝑌𝑗) ∈ (Base‘𝑅)) → ((𝑋‘(𝑥f𝑗))(.r𝑅)(𝑌𝑗)) = ((𝑌𝑗)(.r𝑅)(𝑋‘(𝑥f𝑗))))
10797, 103, 105, 106syl3anc 1371 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → ((𝑋‘(𝑥f𝑗))(.r𝑅)(𝑌𝑗)) = ((𝑌𝑗)(.r𝑅)(𝑋‘(𝑥f𝑗))))
10895, 107eqtrd 2776 . . . . . . 7 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → ((𝑋‘(𝑥f𝑗))(.r𝑅)(𝑌‘(𝑥f − (𝑥f𝑗)))) = ((𝑌𝑗)(.r𝑅)(𝑋‘(𝑥f𝑗))))
109108mpteq2dva 5205 . . . . . 6 ((𝜑𝑥𝐷) → (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋‘(𝑥f𝑗))(.r𝑅)(𝑌‘(𝑥f − (𝑥f𝑗))))) = (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑌𝑗)(.r𝑅)(𝑋‘(𝑥f𝑗)))))
11067, 109eqtrd 2776 . . . . 5 ((𝜑𝑥𝐷) → ((𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))) ∘ (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ (𝑥f𝑗))) = (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑌𝑗)(.r𝑅)(𝑋‘(𝑥f𝑗)))))
111110oveq2d 7373 . . . 4 ((𝜑𝑥𝐷) → (𝑅 Σg ((𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))) ∘ (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ (𝑥f𝑗)))) = (𝑅 Σg (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑌𝑗)(.r𝑅)(𝑋‘(𝑥f𝑗))))))
11256, 111eqtrd 2776 . . 3 ((𝜑𝑥𝐷) → (𝑅 Σg (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘))))) = (𝑅 Σg (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑌𝑗)(.r𝑅)(𝑋‘(𝑥f𝑗))))))
113112mpteq2dva 5205 . 2 (𝜑 → (𝑥𝐷 ↦ (𝑅 Σg (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))))) = (𝑥𝐷 ↦ (𝑅 Σg (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑌𝑗)(.r𝑅)(𝑋‘(𝑥f𝑗)))))))
114 psrass.t . . 3 × = (.r𝑆)
11511, 12, 33, 114, 7, 13, 22psrmulfval 21353 . 2 (𝜑 → (𝑋 × 𝑌) = (𝑥𝐷 ↦ (𝑅 Σg (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑘)(.r𝑅)(𝑌‘(𝑥f𝑘)))))))
11611, 12, 33, 114, 7, 22, 13psrmulfval 21353 . 2 (𝜑 → (𝑌 × 𝑋) = (𝑥𝐷 ↦ (𝑅 Σg (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑌𝑗)(.r𝑅)(𝑋‘(𝑥f𝑗)))))))
117113, 115, 1163eqtr4d 2786 1 (𝜑 → (𝑋 × 𝑌) = (𝑌 × 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  {crab 3407  Vcvv 3445  wss 3910   class class class wbr 5105  cmpt 5188  ccnv 5632  dom cdm 5633  cima 5636  ccom 5637  Fun wfun 6490  wf 6492  1-1-ontowf1o 6495  cfv 6496  (class class class)co 7357  f cof 7615  r cofr 7616   supp csupp 8092  m cmap 8765  Fincfn 8883   finSupp cfsupp 9305  cc 11049  cle 11190  cmin 11385  cn 12153  0cn0 12413  Basecbs 17083  .rcmulr 17134  0gc0g 17321   Σg cgsu 17322  CMndccmn 19562  Ringcrg 19964  CRingccrg 19965   mPwSer cmps 21306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-ofr 7618  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-fzo 13568  df-seq 13907  df-hash 14231  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-plusg 17146  df-mulr 17147  df-sca 17149  df-vsca 17150  df-tset 17152  df-0g 17323  df-gsum 17324  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-grp 18751  df-minusg 18752  df-cntz 19097  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-cring 19967  df-psr 21311
This theorem is referenced by:  psrcrng  21382
  Copyright terms: Public domain W3C validator