Step | Hyp | Ref
| Expression |
1 | | eqid 2737 |
. . . . 5
⊢
(Base‘𝑅) =
(Base‘𝑅) |
2 | | eqid 2737 |
. . . . 5
⊢
(0g‘𝑅) = (0g‘𝑅) |
3 | | psrring.r |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ Ring) |
4 | | ringcmn 19599 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → 𝑅 ∈ CMnd) |
5 | 3, 4 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ CMnd) |
6 | 5 | adantr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝑅 ∈ CMnd) |
7 | | psrass.d |
. . . . . . 7
⊢ 𝐷 = {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin} |
8 | 7 | psrbaglefi 20891 |
. . . . . 6
⊢ (𝑥 ∈ 𝐷 → {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥} ∈ Fin) |
9 | 8 | adantl 485 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥} ∈ Fin) |
10 | 3 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) → 𝑅 ∈ Ring) |
11 | | psrring.s |
. . . . . . . . . 10
⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
12 | | psrass.b |
. . . . . . . . . 10
⊢ 𝐵 = (Base‘𝑆) |
13 | | psrass.x |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
14 | 11, 1, 7, 12, 13 | psrelbas 20904 |
. . . . . . . . 9
⊢ (𝜑 → 𝑋:𝐷⟶(Base‘𝑅)) |
15 | 14 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) → 𝑋:𝐷⟶(Base‘𝑅)) |
16 | | simpr 488 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) → 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) |
17 | | breq1 5056 |
. . . . . . . . . . 11
⊢ (𝑔 = 𝑘 → (𝑔 ∘r ≤ 𝑥 ↔ 𝑘 ∘r ≤ 𝑥)) |
18 | 17 | elrab 3602 |
. . . . . . . . . 10
⊢ (𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥} ↔ (𝑘 ∈ 𝐷 ∧ 𝑘 ∘r ≤ 𝑥)) |
19 | 16, 18 | sylib 221 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) → (𝑘 ∈ 𝐷 ∧ 𝑘 ∘r ≤ 𝑥)) |
20 | 19 | simpld 498 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) → 𝑘 ∈ 𝐷) |
21 | 15, 20 | ffvelrnd 6905 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) → (𝑋‘𝑘) ∈ (Base‘𝑅)) |
22 | | psrass.y |
. . . . . . . . . 10
⊢ (𝜑 → 𝑌 ∈ 𝐵) |
23 | 11, 1, 7, 12, 22 | psrelbas 20904 |
. . . . . . . . 9
⊢ (𝜑 → 𝑌:𝐷⟶(Base‘𝑅)) |
24 | 23 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) → 𝑌:𝐷⟶(Base‘𝑅)) |
25 | | simplr 769 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) → 𝑥 ∈ 𝐷) |
26 | 7 | psrbagf 20877 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ 𝐷 → 𝑘:𝐼⟶ℕ0) |
27 | 20, 26 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) → 𝑘:𝐼⟶ℕ0) |
28 | 19 | simprd 499 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) → 𝑘 ∘r ≤ 𝑥) |
29 | 7 | psrbagcon 20889 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝐷 ∧ 𝑘:𝐼⟶ℕ0 ∧ 𝑘 ∘r ≤ 𝑥) → ((𝑥 ∘f − 𝑘) ∈ 𝐷 ∧ (𝑥 ∘f − 𝑘) ∘r ≤ 𝑥)) |
30 | 25, 27, 28, 29 | syl3anc 1373 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) → ((𝑥 ∘f − 𝑘) ∈ 𝐷 ∧ (𝑥 ∘f − 𝑘) ∘r ≤ 𝑥)) |
31 | 30 | simpld 498 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) → (𝑥 ∘f − 𝑘) ∈ 𝐷) |
32 | 24, 31 | ffvelrnd 6905 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) → (𝑌‘(𝑥 ∘f − 𝑘)) ∈ (Base‘𝑅)) |
33 | | eqid 2737 |
. . . . . . . 8
⊢
(.r‘𝑅) = (.r‘𝑅) |
34 | 1, 33 | ringcl 19579 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ (𝑋‘𝑘) ∈ (Base‘𝑅) ∧ (𝑌‘(𝑥 ∘f − 𝑘)) ∈ (Base‘𝑅)) → ((𝑋‘𝑘)(.r‘𝑅)(𝑌‘(𝑥 ∘f − 𝑘))) ∈ (Base‘𝑅)) |
35 | 10, 21, 32, 34 | syl3anc 1373 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) → ((𝑋‘𝑘)(.r‘𝑅)(𝑌‘(𝑥 ∘f − 𝑘))) ∈ (Base‘𝑅)) |
36 | 35 | fmpttd 6932 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥} ↦ ((𝑋‘𝑘)(.r‘𝑅)(𝑌‘(𝑥 ∘f − 𝑘)))):{𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}⟶(Base‘𝑅)) |
37 | | ovex 7246 |
. . . . . . . . . 10
⊢
(ℕ0 ↑m 𝐼) ∈ V |
38 | 7, 37 | rabex2 5227 |
. . . . . . . . 9
⊢ 𝐷 ∈ V |
39 | 38 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝐷 ∈ V) |
40 | | rabexg 5224 |
. . . . . . . 8
⊢ (𝐷 ∈ V → {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥} ∈ V) |
41 | 39, 40 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥} ∈ V) |
42 | 41 | mptexd 7040 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥} ↦ ((𝑋‘𝑘)(.r‘𝑅)(𝑌‘(𝑥 ∘f − 𝑘)))) ∈ V) |
43 | | funmpt 6418 |
. . . . . . 7
⊢ Fun
(𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥} ↦ ((𝑋‘𝑘)(.r‘𝑅)(𝑌‘(𝑥 ∘f − 𝑘)))) |
44 | 43 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → Fun (𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥} ↦ ((𝑋‘𝑘)(.r‘𝑅)(𝑌‘(𝑥 ∘f − 𝑘))))) |
45 | | fvexd 6732 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (0g‘𝑅) ∈ V) |
46 | | suppssdm 7919 |
. . . . . . . 8
⊢ ((𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥} ↦ ((𝑋‘𝑘)(.r‘𝑅)(𝑌‘(𝑥 ∘f − 𝑘)))) supp
(0g‘𝑅))
⊆ dom (𝑘 ∈
{𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥} ↦ ((𝑋‘𝑘)(.r‘𝑅)(𝑌‘(𝑥 ∘f − 𝑘)))) |
47 | | eqid 2737 |
. . . . . . . . 9
⊢ (𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥} ↦ ((𝑋‘𝑘)(.r‘𝑅)(𝑌‘(𝑥 ∘f − 𝑘)))) = (𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥} ↦ ((𝑋‘𝑘)(.r‘𝑅)(𝑌‘(𝑥 ∘f − 𝑘)))) |
48 | 47 | dmmptss 6104 |
. . . . . . . 8
⊢ dom
(𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥} ↦ ((𝑋‘𝑘)(.r‘𝑅)(𝑌‘(𝑥 ∘f − 𝑘)))) ⊆ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥} |
49 | 46, 48 | sstri 3910 |
. . . . . . 7
⊢ ((𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥} ↦ ((𝑋‘𝑘)(.r‘𝑅)(𝑌‘(𝑥 ∘f − 𝑘)))) supp
(0g‘𝑅))
⊆ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥} |
50 | 49 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥} ↦ ((𝑋‘𝑘)(.r‘𝑅)(𝑌‘(𝑥 ∘f − 𝑘)))) supp
(0g‘𝑅))
⊆ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) |
51 | | suppssfifsupp 9000 |
. . . . . 6
⊢ ((((𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥} ↦ ((𝑋‘𝑘)(.r‘𝑅)(𝑌‘(𝑥 ∘f − 𝑘)))) ∈ V ∧ Fun (𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥} ↦ ((𝑋‘𝑘)(.r‘𝑅)(𝑌‘(𝑥 ∘f − 𝑘)))) ∧
(0g‘𝑅)
∈ V) ∧ ({𝑔 ∈
𝐷 ∣ 𝑔 ∘r ≤ 𝑥} ∈ Fin ∧ ((𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥} ↦ ((𝑋‘𝑘)(.r‘𝑅)(𝑌‘(𝑥 ∘f − 𝑘)))) supp
(0g‘𝑅))
⊆ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥})) → (𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥} ↦ ((𝑋‘𝑘)(.r‘𝑅)(𝑌‘(𝑥 ∘f − 𝑘)))) finSupp
(0g‘𝑅)) |
52 | 42, 44, 45, 9, 50, 51 | syl32anc 1380 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥} ↦ ((𝑋‘𝑘)(.r‘𝑅)(𝑌‘(𝑥 ∘f − 𝑘)))) finSupp
(0g‘𝑅)) |
53 | | eqid 2737 |
. . . . . . 7
⊢ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥} = {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥} |
54 | 7, 53 | psrbagconf1o 20895 |
. . . . . 6
⊢ (𝑥 ∈ 𝐷 → (𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥} ↦ (𝑥 ∘f − 𝑗)):{𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}–1-1-onto→{𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) |
55 | 54 | adantl 485 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥} ↦ (𝑥 ∘f − 𝑗)):{𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}–1-1-onto→{𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) |
56 | 1, 2, 6, 9, 36, 52, 55 | gsumf1o 19301 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝑅 Σg (𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥} ↦ ((𝑋‘𝑘)(.r‘𝑅)(𝑌‘(𝑥 ∘f − 𝑘))))) = (𝑅 Σg ((𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥} ↦ ((𝑋‘𝑘)(.r‘𝑅)(𝑌‘(𝑥 ∘f − 𝑘)))) ∘ (𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥} ↦ (𝑥 ∘f − 𝑗))))) |
57 | | simplr 769 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) → 𝑥 ∈ 𝐷) |
58 | | simpr 488 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) → 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) |
59 | 7, 53 | psrbagconcl 20893 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐷 ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) → (𝑥 ∘f − 𝑗) ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) |
60 | 57, 58, 59 | syl2anc 587 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) → (𝑥 ∘f − 𝑗) ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) |
61 | | eqidd 2738 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥} ↦ (𝑥 ∘f − 𝑗)) = (𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥} ↦ (𝑥 ∘f − 𝑗))) |
62 | | eqidd 2738 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥} ↦ ((𝑋‘𝑘)(.r‘𝑅)(𝑌‘(𝑥 ∘f − 𝑘)))) = (𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥} ↦ ((𝑋‘𝑘)(.r‘𝑅)(𝑌‘(𝑥 ∘f − 𝑘))))) |
63 | | fveq2 6717 |
. . . . . . . 8
⊢ (𝑘 = (𝑥 ∘f − 𝑗) → (𝑋‘𝑘) = (𝑋‘(𝑥 ∘f − 𝑗))) |
64 | | oveq2 7221 |
. . . . . . . . 9
⊢ (𝑘 = (𝑥 ∘f − 𝑗) → (𝑥 ∘f − 𝑘) = (𝑥 ∘f − (𝑥 ∘f −
𝑗))) |
65 | 64 | fveq2d 6721 |
. . . . . . . 8
⊢ (𝑘 = (𝑥 ∘f − 𝑗) → (𝑌‘(𝑥 ∘f − 𝑘)) = (𝑌‘(𝑥 ∘f − (𝑥 ∘f −
𝑗)))) |
66 | 63, 65 | oveq12d 7231 |
. . . . . . 7
⊢ (𝑘 = (𝑥 ∘f − 𝑗) → ((𝑋‘𝑘)(.r‘𝑅)(𝑌‘(𝑥 ∘f − 𝑘))) = ((𝑋‘(𝑥 ∘f − 𝑗))(.r‘𝑅)(𝑌‘(𝑥 ∘f − (𝑥 ∘f −
𝑗))))) |
67 | 60, 61, 62, 66 | fmptco 6944 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥} ↦ ((𝑋‘𝑘)(.r‘𝑅)(𝑌‘(𝑥 ∘f − 𝑘)))) ∘ (𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥} ↦ (𝑥 ∘f − 𝑗))) = (𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥} ↦ ((𝑋‘(𝑥 ∘f − 𝑗))(.r‘𝑅)(𝑌‘(𝑥 ∘f − (𝑥 ∘f −
𝑗)))))) |
68 | 7 | psrbagf 20877 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ 𝐷 → 𝑥:𝐼⟶ℕ0) |
69 | 68 | adantl 485 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝑥:𝐼⟶ℕ0) |
70 | 69 | adantr 484 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) → 𝑥:𝐼⟶ℕ0) |
71 | 70 | ffvelrnda 6904 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) ∧ 𝑧 ∈ 𝐼) → (𝑥‘𝑧) ∈
ℕ0) |
72 | | breq1 5056 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑔 = 𝑗 → (𝑔 ∘r ≤ 𝑥 ↔ 𝑗 ∘r ≤ 𝑥)) |
73 | 72 | elrab 3602 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥} ↔ (𝑗 ∈ 𝐷 ∧ 𝑗 ∘r ≤ 𝑥)) |
74 | 58, 73 | sylib 221 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) → (𝑗 ∈ 𝐷 ∧ 𝑗 ∘r ≤ 𝑥)) |
75 | 74 | simpld 498 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) → 𝑗 ∈ 𝐷) |
76 | 7 | psrbagf 20877 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ 𝐷 → 𝑗:𝐼⟶ℕ0) |
77 | 75, 76 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) → 𝑗:𝐼⟶ℕ0) |
78 | 77 | ffvelrnda 6904 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) ∧ 𝑧 ∈ 𝐼) → (𝑗‘𝑧) ∈
ℕ0) |
79 | | nn0cn 12100 |
. . . . . . . . . . . . . 14
⊢ ((𝑥‘𝑧) ∈ ℕ0 → (𝑥‘𝑧) ∈ ℂ) |
80 | | nn0cn 12100 |
. . . . . . . . . . . . . 14
⊢ ((𝑗‘𝑧) ∈ ℕ0 → (𝑗‘𝑧) ∈ ℂ) |
81 | | nncan 11107 |
. . . . . . . . . . . . . 14
⊢ (((𝑥‘𝑧) ∈ ℂ ∧ (𝑗‘𝑧) ∈ ℂ) → ((𝑥‘𝑧) − ((𝑥‘𝑧) − (𝑗‘𝑧))) = (𝑗‘𝑧)) |
82 | 79, 80, 81 | syl2an 599 |
. . . . . . . . . . . . 13
⊢ (((𝑥‘𝑧) ∈ ℕ0 ∧ (𝑗‘𝑧) ∈ ℕ0) → ((𝑥‘𝑧) − ((𝑥‘𝑧) − (𝑗‘𝑧))) = (𝑗‘𝑧)) |
83 | 71, 78, 82 | syl2anc 587 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) ∧ 𝑧 ∈ 𝐼) → ((𝑥‘𝑧) − ((𝑥‘𝑧) − (𝑗‘𝑧))) = (𝑗‘𝑧)) |
84 | 83 | mpteq2dva 5150 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) → (𝑧 ∈ 𝐼 ↦ ((𝑥‘𝑧) − ((𝑥‘𝑧) − (𝑗‘𝑧)))) = (𝑧 ∈ 𝐼 ↦ (𝑗‘𝑧))) |
85 | | psrring.i |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
86 | 85 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) → 𝐼 ∈ 𝑉) |
87 | | ovex 7246 |
. . . . . . . . . . . . 13
⊢ ((𝑥‘𝑧) − (𝑗‘𝑧)) ∈ V |
88 | 87 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) ∧ 𝑧 ∈ 𝐼) → ((𝑥‘𝑧) − (𝑗‘𝑧)) ∈ V) |
89 | 70 | feqmptd 6780 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) → 𝑥 = (𝑧 ∈ 𝐼 ↦ (𝑥‘𝑧))) |
90 | 77 | feqmptd 6780 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) → 𝑗 = (𝑧 ∈ 𝐼 ↦ (𝑗‘𝑧))) |
91 | 86, 71, 78, 89, 90 | offval2 7488 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) → (𝑥 ∘f − 𝑗) = (𝑧 ∈ 𝐼 ↦ ((𝑥‘𝑧) − (𝑗‘𝑧)))) |
92 | 86, 71, 88, 89, 91 | offval2 7488 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) → (𝑥 ∘f − (𝑥 ∘f −
𝑗)) = (𝑧 ∈ 𝐼 ↦ ((𝑥‘𝑧) − ((𝑥‘𝑧) − (𝑗‘𝑧))))) |
93 | 84, 92, 90 | 3eqtr4d 2787 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) → (𝑥 ∘f − (𝑥 ∘f −
𝑗)) = 𝑗) |
94 | 93 | fveq2d 6721 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) → (𝑌‘(𝑥 ∘f − (𝑥 ∘f −
𝑗))) = (𝑌‘𝑗)) |
95 | 94 | oveq2d 7229 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) → ((𝑋‘(𝑥 ∘f − 𝑗))(.r‘𝑅)(𝑌‘(𝑥 ∘f − (𝑥 ∘f −
𝑗)))) = ((𝑋‘(𝑥 ∘f − 𝑗))(.r‘𝑅)(𝑌‘𝑗))) |
96 | | psrcom.c |
. . . . . . . . . 10
⊢ (𝜑 → 𝑅 ∈ CRing) |
97 | 96 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) → 𝑅 ∈ CRing) |
98 | 14 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) → 𝑋:𝐷⟶(Base‘𝑅)) |
99 | 74 | simprd 499 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) → 𝑗 ∘r ≤ 𝑥) |
100 | 7 | psrbagcon 20889 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ 𝐷 ∧ 𝑗:𝐼⟶ℕ0 ∧ 𝑗 ∘r ≤ 𝑥) → ((𝑥 ∘f − 𝑗) ∈ 𝐷 ∧ (𝑥 ∘f − 𝑗) ∘r ≤ 𝑥)) |
101 | 57, 77, 99, 100 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) → ((𝑥 ∘f − 𝑗) ∈ 𝐷 ∧ (𝑥 ∘f − 𝑗) ∘r ≤ 𝑥)) |
102 | 101 | simpld 498 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) → (𝑥 ∘f − 𝑗) ∈ 𝐷) |
103 | 98, 102 | ffvelrnd 6905 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) → (𝑋‘(𝑥 ∘f − 𝑗)) ∈ (Base‘𝑅)) |
104 | 23 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) → 𝑌:𝐷⟶(Base‘𝑅)) |
105 | 104, 75 | ffvelrnd 6905 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) → (𝑌‘𝑗) ∈ (Base‘𝑅)) |
106 | 1, 33 | crngcom 19580 |
. . . . . . . . 9
⊢ ((𝑅 ∈ CRing ∧ (𝑋‘(𝑥 ∘f − 𝑗)) ∈ (Base‘𝑅) ∧ (𝑌‘𝑗) ∈ (Base‘𝑅)) → ((𝑋‘(𝑥 ∘f − 𝑗))(.r‘𝑅)(𝑌‘𝑗)) = ((𝑌‘𝑗)(.r‘𝑅)(𝑋‘(𝑥 ∘f − 𝑗)))) |
107 | 97, 103, 105, 106 | syl3anc 1373 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) → ((𝑋‘(𝑥 ∘f − 𝑗))(.r‘𝑅)(𝑌‘𝑗)) = ((𝑌‘𝑗)(.r‘𝑅)(𝑋‘(𝑥 ∘f − 𝑗)))) |
108 | 95, 107 | eqtrd 2777 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) → ((𝑋‘(𝑥 ∘f − 𝑗))(.r‘𝑅)(𝑌‘(𝑥 ∘f − (𝑥 ∘f −
𝑗)))) = ((𝑌‘𝑗)(.r‘𝑅)(𝑋‘(𝑥 ∘f − 𝑗)))) |
109 | 108 | mpteq2dva 5150 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥} ↦ ((𝑋‘(𝑥 ∘f − 𝑗))(.r‘𝑅)(𝑌‘(𝑥 ∘f − (𝑥 ∘f −
𝑗))))) = (𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥} ↦ ((𝑌‘𝑗)(.r‘𝑅)(𝑋‘(𝑥 ∘f − 𝑗))))) |
110 | 67, 109 | eqtrd 2777 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥} ↦ ((𝑋‘𝑘)(.r‘𝑅)(𝑌‘(𝑥 ∘f − 𝑘)))) ∘ (𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥} ↦ (𝑥 ∘f − 𝑗))) = (𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥} ↦ ((𝑌‘𝑗)(.r‘𝑅)(𝑋‘(𝑥 ∘f − 𝑗))))) |
111 | 110 | oveq2d 7229 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝑅 Σg ((𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥} ↦ ((𝑋‘𝑘)(.r‘𝑅)(𝑌‘(𝑥 ∘f − 𝑘)))) ∘ (𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥} ↦ (𝑥 ∘f − 𝑗)))) = (𝑅 Σg (𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥} ↦ ((𝑌‘𝑗)(.r‘𝑅)(𝑋‘(𝑥 ∘f − 𝑗)))))) |
112 | 56, 111 | eqtrd 2777 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝑅 Σg (𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥} ↦ ((𝑋‘𝑘)(.r‘𝑅)(𝑌‘(𝑥 ∘f − 𝑘))))) = (𝑅 Σg (𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥} ↦ ((𝑌‘𝑗)(.r‘𝑅)(𝑋‘(𝑥 ∘f − 𝑗)))))) |
113 | 112 | mpteq2dva 5150 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝐷 ↦ (𝑅 Σg (𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥} ↦ ((𝑋‘𝑘)(.r‘𝑅)(𝑌‘(𝑥 ∘f − 𝑘)))))) = (𝑥 ∈ 𝐷 ↦ (𝑅 Σg (𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥} ↦ ((𝑌‘𝑗)(.r‘𝑅)(𝑋‘(𝑥 ∘f − 𝑗))))))) |
114 | | psrass.t |
. . 3
⊢ × =
(.r‘𝑆) |
115 | 11, 12, 33, 114, 7, 13, 22 | psrmulfval 20910 |
. 2
⊢ (𝜑 → (𝑋 × 𝑌) = (𝑥 ∈ 𝐷 ↦ (𝑅 Σg (𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥} ↦ ((𝑋‘𝑘)(.r‘𝑅)(𝑌‘(𝑥 ∘f − 𝑘))))))) |
116 | 11, 12, 33, 114, 7, 22, 13 | psrmulfval 20910 |
. 2
⊢ (𝜑 → (𝑌 × 𝑋) = (𝑥 ∈ 𝐷 ↦ (𝑅 Σg (𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥} ↦ ((𝑌‘𝑗)(.r‘𝑅)(𝑋‘(𝑥 ∘f − 𝑗))))))) |
117 | 113, 115,
116 | 3eqtr4d 2787 |
1
⊢ (𝜑 → (𝑋 × 𝑌) = (𝑌 × 𝑋)) |