| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ablfaclem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for ablfac 19997. (Contributed by Mario Carneiro, 27-Apr-2016.) (Revised by Mario Carneiro, 3-May-2016.) |
| Ref | Expression |
|---|---|
| ablfac.b | ⊢ 𝐵 = (Base‘𝐺) |
| ablfac.c | ⊢ 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺 ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp )} |
| ablfac.1 | ⊢ (𝜑 → 𝐺 ∈ Abel) |
| ablfac.2 | ⊢ (𝜑 → 𝐵 ∈ Fin) |
| ablfac.o | ⊢ 𝑂 = (od‘𝐺) |
| ablfac.a | ⊢ 𝐴 = {𝑤 ∈ ℙ ∣ 𝑤 ∥ (♯‘𝐵)} |
| ablfac.s | ⊢ 𝑆 = (𝑝 ∈ 𝐴 ↦ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))}) |
| ablfac.w | ⊢ 𝑊 = (𝑔 ∈ (SubGrp‘𝐺) ↦ {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑔)}) |
| Ref | Expression |
|---|---|
| ablfaclem1 | ⊢ (𝑈 ∈ (SubGrp‘𝐺) → (𝑊‘𝑈) = {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2 2743 | . . . 4 ⊢ (𝑔 = 𝑈 → ((𝐺 DProd 𝑠) = 𝑔 ↔ (𝐺 DProd 𝑠) = 𝑈)) | |
| 2 | 1 | anbi2d 630 | . . 3 ⊢ (𝑔 = 𝑈 → ((𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑔) ↔ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈))) |
| 3 | 2 | rabbidv 3402 | . 2 ⊢ (𝑔 = 𝑈 → {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑔)} = {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈)}) |
| 4 | ablfac.w | . 2 ⊢ 𝑊 = (𝑔 ∈ (SubGrp‘𝐺) ↦ {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑔)}) | |
| 5 | ablfac.c | . . . . 5 ⊢ 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺 ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp )} | |
| 6 | fvex 6830 | . . . . 5 ⊢ (SubGrp‘𝐺) ∈ V | |
| 7 | 5, 6 | rabex2 5274 | . . . 4 ⊢ 𝐶 ∈ V |
| 8 | 7 | wrdexi 14428 | . . 3 ⊢ Word 𝐶 ∈ V |
| 9 | 8 | rabex 5272 | . 2 ⊢ {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈)} ∈ V |
| 10 | 3, 4, 9 | fvmpt 6924 | 1 ⊢ (𝑈 ∈ (SubGrp‘𝐺) → (𝑊‘𝑈) = {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {crab 3395 ∩ cin 3896 class class class wbr 5086 ↦ cmpt 5167 dom cdm 5611 ran crn 5612 ‘cfv 6476 (class class class)co 7341 Fincfn 8864 ↑cexp 13963 ♯chash 14232 Word cword 14415 ∥ cdvds 16158 ℙcprime 16577 pCnt cpc 16743 Basecbs 17115 ↾s cress 17136 SubGrpcsubg 19028 odcod 19431 pGrp cpgp 19433 Abelcabl 19688 CycGrpccyg 19784 DProd cdprd 19902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-1cn 11059 ax-addcl 11061 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-map 8747 df-nn 12121 df-n0 12377 df-word 14416 |
| This theorem is referenced by: ablfaclem2 19995 ablfaclem3 19996 ablfac 19997 |
| Copyright terms: Public domain | W3C validator |