MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablfaclem1 Structured version   Visualization version   GIF version

Theorem ablfaclem1 20007
Description: Lemma for ablfac 20010. (Contributed by Mario Carneiro, 27-Apr-2016.) (Revised by Mario Carneiro, 3-May-2016.)
Hypotheses
Ref Expression
ablfac.b 𝐵 = (Base‘𝐺)
ablfac.c 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺s 𝑟) ∈ (CycGrp ∩ ran pGrp )}
ablfac.1 (𝜑𝐺 ∈ Abel)
ablfac.2 (𝜑𝐵 ∈ Fin)
ablfac.o 𝑂 = (od‘𝐺)
ablfac.a 𝐴 = {𝑤 ∈ ℙ ∣ 𝑤 ∥ (♯‘𝐵)}
ablfac.s 𝑆 = (𝑝𝐴 ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))})
ablfac.w 𝑊 = (𝑔 ∈ (SubGrp‘𝐺) ↦ {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑔)})
Assertion
Ref Expression
ablfaclem1 (𝑈 ∈ (SubGrp‘𝐺) → (𝑊𝑈) = {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈)})
Distinct variable groups:   𝑠,𝑝,𝑥,𝐴   𝑔,𝑟,𝑠,𝑆   𝑔,𝑝,𝑤,𝑥,𝐵,𝑟,𝑠   𝑂,𝑝,𝑥   𝐶,𝑔,𝑝,𝑠,𝑤,𝑥   𝑊,𝑝,𝑤,𝑥   𝜑,𝑝,𝑠,𝑤,𝑥   𝑈,𝑔,𝑠   𝑔,𝐺,𝑝,𝑟,𝑠,𝑤,𝑥
Allowed substitution hints:   𝜑(𝑔,𝑟)   𝐴(𝑤,𝑔,𝑟)   𝐶(𝑟)   𝑆(𝑥,𝑤,𝑝)   𝑈(𝑥,𝑤,𝑟,𝑝)   𝑂(𝑤,𝑔,𝑠,𝑟)   𝑊(𝑔,𝑠,𝑟)

Proof of Theorem ablfaclem1
StepHypRef Expression
1 eqeq2 2738 . . . 4 (𝑔 = 𝑈 → ((𝐺 DProd 𝑠) = 𝑔 ↔ (𝐺 DProd 𝑠) = 𝑈))
21anbi2d 628 . . 3 (𝑔 = 𝑈 → ((𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑔) ↔ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈)))
32rabbidv 3434 . 2 (𝑔 = 𝑈 → {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑔)} = {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈)})
4 ablfac.w . 2 𝑊 = (𝑔 ∈ (SubGrp‘𝐺) ↦ {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑔)})
5 ablfac.c . . . . 5 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺s 𝑟) ∈ (CycGrp ∩ ran pGrp )}
6 fvex 6898 . . . . 5 (SubGrp‘𝐺) ∈ V
75, 6rabex2 5327 . . . 4 𝐶 ∈ V
87wrdexi 14482 . . 3 Word 𝐶 ∈ V
98rabex 5325 . 2 {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈)} ∈ V
103, 4, 9fvmpt 6992 1 (𝑈 ∈ (SubGrp‘𝐺) → (𝑊𝑈) = {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  {crab 3426  cin 3942   class class class wbr 5141  cmpt 5224  dom cdm 5669  ran crn 5670  cfv 6537  (class class class)co 7405  Fincfn 8941  cexp 14032  chash 14295  Word cword 14470  cdvds 16204  cprime 16615   pCnt cpc 16778  Basecbs 17153  s cress 17182  SubGrpcsubg 19047  odcod 19444   pGrp cpgp 19446  Abelcabl 19701  CycGrpccyg 19797   DProd cdprd 19915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-1cn 11170  ax-addcl 11172
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-map 8824  df-nn 12217  df-n0 12477  df-word 14471
This theorem is referenced by:  ablfaclem2  20008  ablfaclem3  20009  ablfac  20010
  Copyright terms: Public domain W3C validator