| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ablfaclem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for ablfac 20027. (Contributed by Mario Carneiro, 27-Apr-2016.) (Revised by Mario Carneiro, 3-May-2016.) |
| Ref | Expression |
|---|---|
| ablfac.b | ⊢ 𝐵 = (Base‘𝐺) |
| ablfac.c | ⊢ 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺 ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp )} |
| ablfac.1 | ⊢ (𝜑 → 𝐺 ∈ Abel) |
| ablfac.2 | ⊢ (𝜑 → 𝐵 ∈ Fin) |
| ablfac.o | ⊢ 𝑂 = (od‘𝐺) |
| ablfac.a | ⊢ 𝐴 = {𝑤 ∈ ℙ ∣ 𝑤 ∥ (♯‘𝐵)} |
| ablfac.s | ⊢ 𝑆 = (𝑝 ∈ 𝐴 ↦ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))}) |
| ablfac.w | ⊢ 𝑊 = (𝑔 ∈ (SubGrp‘𝐺) ↦ {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑔)}) |
| Ref | Expression |
|---|---|
| ablfaclem1 | ⊢ (𝑈 ∈ (SubGrp‘𝐺) → (𝑊‘𝑈) = {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2 2742 | . . . 4 ⊢ (𝑔 = 𝑈 → ((𝐺 DProd 𝑠) = 𝑔 ↔ (𝐺 DProd 𝑠) = 𝑈)) | |
| 2 | 1 | anbi2d 630 | . . 3 ⊢ (𝑔 = 𝑈 → ((𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑔) ↔ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈))) |
| 3 | 2 | rabbidv 3416 | . 2 ⊢ (𝑔 = 𝑈 → {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑔)} = {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈)}) |
| 4 | ablfac.w | . 2 ⊢ 𝑊 = (𝑔 ∈ (SubGrp‘𝐺) ↦ {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑔)}) | |
| 5 | ablfac.c | . . . . 5 ⊢ 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺 ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp )} | |
| 6 | fvex 6874 | . . . . 5 ⊢ (SubGrp‘𝐺) ∈ V | |
| 7 | 5, 6 | rabex2 5299 | . . . 4 ⊢ 𝐶 ∈ V |
| 8 | 7 | wrdexi 14498 | . . 3 ⊢ Word 𝐶 ∈ V |
| 9 | 8 | rabex 5297 | . 2 ⊢ {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈)} ∈ V |
| 10 | 3, 4, 9 | fvmpt 6971 | 1 ⊢ (𝑈 ∈ (SubGrp‘𝐺) → (𝑊‘𝑈) = {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3408 ∩ cin 3916 class class class wbr 5110 ↦ cmpt 5191 dom cdm 5641 ran crn 5642 ‘cfv 6514 (class class class)co 7390 Fincfn 8921 ↑cexp 14033 ♯chash 14302 Word cword 14485 ∥ cdvds 16229 ℙcprime 16648 pCnt cpc 16814 Basecbs 17186 ↾s cress 17207 SubGrpcsubg 19059 odcod 19461 pGrp cpgp 19463 Abelcabl 19718 CycGrpccyg 19814 DProd cdprd 19932 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-1cn 11133 ax-addcl 11135 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-map 8804 df-nn 12194 df-n0 12450 df-word 14486 |
| This theorem is referenced by: ablfaclem2 20025 ablfaclem3 20026 ablfac 20027 |
| Copyright terms: Public domain | W3C validator |