| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ablfaclem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for ablfac 20020. (Contributed by Mario Carneiro, 27-Apr-2016.) (Revised by Mario Carneiro, 3-May-2016.) |
| Ref | Expression |
|---|---|
| ablfac.b | ⊢ 𝐵 = (Base‘𝐺) |
| ablfac.c | ⊢ 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺 ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp )} |
| ablfac.1 | ⊢ (𝜑 → 𝐺 ∈ Abel) |
| ablfac.2 | ⊢ (𝜑 → 𝐵 ∈ Fin) |
| ablfac.o | ⊢ 𝑂 = (od‘𝐺) |
| ablfac.a | ⊢ 𝐴 = {𝑤 ∈ ℙ ∣ 𝑤 ∥ (♯‘𝐵)} |
| ablfac.s | ⊢ 𝑆 = (𝑝 ∈ 𝐴 ↦ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))}) |
| ablfac.w | ⊢ 𝑊 = (𝑔 ∈ (SubGrp‘𝐺) ↦ {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑔)}) |
| Ref | Expression |
|---|---|
| ablfaclem1 | ⊢ (𝑈 ∈ (SubGrp‘𝐺) → (𝑊‘𝑈) = {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2 2741 | . . . 4 ⊢ (𝑔 = 𝑈 → ((𝐺 DProd 𝑠) = 𝑔 ↔ (𝐺 DProd 𝑠) = 𝑈)) | |
| 2 | 1 | anbi2d 630 | . . 3 ⊢ (𝑔 = 𝑈 → ((𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑔) ↔ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈))) |
| 3 | 2 | rabbidv 3413 | . 2 ⊢ (𝑔 = 𝑈 → {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑔)} = {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈)}) |
| 4 | ablfac.w | . 2 ⊢ 𝑊 = (𝑔 ∈ (SubGrp‘𝐺) ↦ {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑔)}) | |
| 5 | ablfac.c | . . . . 5 ⊢ 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺 ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp )} | |
| 6 | fvex 6871 | . . . . 5 ⊢ (SubGrp‘𝐺) ∈ V | |
| 7 | 5, 6 | rabex2 5296 | . . . 4 ⊢ 𝐶 ∈ V |
| 8 | 7 | wrdexi 14491 | . . 3 ⊢ Word 𝐶 ∈ V |
| 9 | 8 | rabex 5294 | . 2 ⊢ {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈)} ∈ V |
| 10 | 3, 4, 9 | fvmpt 6968 | 1 ⊢ (𝑈 ∈ (SubGrp‘𝐺) → (𝑊‘𝑈) = {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑈)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3405 ∩ cin 3913 class class class wbr 5107 ↦ cmpt 5188 dom cdm 5638 ran crn 5639 ‘cfv 6511 (class class class)co 7387 Fincfn 8918 ↑cexp 14026 ♯chash 14295 Word cword 14478 ∥ cdvds 16222 ℙcprime 16641 pCnt cpc 16807 Basecbs 17179 ↾s cress 17200 SubGrpcsubg 19052 odcod 19454 pGrp cpgp 19456 Abelcabl 19711 CycGrpccyg 19807 DProd cdprd 19925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-1cn 11126 ax-addcl 11128 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-map 8801 df-nn 12187 df-n0 12443 df-word 14479 |
| This theorem is referenced by: ablfaclem2 20018 ablfaclem3 20019 ablfac 20020 |
| Copyright terms: Public domain | W3C validator |